

Methods for Choosing the Regularization Parameter

An Overview of our Current Research

Frank Bauer (fbauer@math.uni-goettingen.de)

Georg-August Universität Göttingen

17.11.2005

Inverse Problems and Regularization

Inverse Problems

- Many domains of modern technology require the solution of unstable problems
- ► In order to solve these problems one has to balance
 - Measurements which we cannot really trust
 - A-priori assumptions which we do not really know

Frank Bauer (fbauer@math.uni-goettingen.de), Methods for Choosing the Regularization Parameter

Inverse Problems

- Many domains of modern technology require the solution of unstable problems
- ► In order to solve these problems one has to balance
 - Measurements which we cannot really trust
 - A-priori assumptions which we do not really know

Regularization

This balancing is done by regularization methods, e.g. Tikhonov:

 $x_{\rm sol} = \mathop{\rm argmin}_{x} \mathop{\rm measurement}_{x} + \alpha \quad \begin{array}{l} {\rm distance \ to} \\ {\rm a-priori \ assump.} \end{array}$

\blacktriangleright One crucial point is finding the regularization parameter α

Frank Bauer (fbauer@math.uni-goettingen.de), Methods for Choosing the Regularization Parameter

Parameter Choice Methods

More Difficulties

- Noise structure badly known
- In non-classical but natural noise assumptions the energy of the noise can be infinite
- Sometimes we are interested in solutions in Non-Hilbert spaces

Frank Bauer (fbauer@math.uni-goettingen.de), Methods for Choosing the Regularization Parameter

Parameter Choice Methods

More Difficulties

- Noise structure badly known
- In non-classical but natural noise assumptions the energy of the noise can be infinite
- Sometimes we are interested in solutions in Non-Hilbert spaces

Selected Methods

- Cross-Validation
- L-Curve, Generalized Cross-Validation and others
- Morozov
- Balancing principle

Frank Bauer (fbauer@math.uni-goettingen.de), Methods for Choosing the Regularization Parameter

Balancing Principle

Input

- Expectation of the noise with respect to the regularization parameter and measurement noise
- Regularized solutions with respect to the regularization parameters

Frank Bauer (fbauer@math.uni-goettingen.de), Methods for Choosing the Regularization Parameter

Balancing Principle

Input

- Expectation of the noise with respect to the regularization parameter and measurement noise
- Regularized solutions with respect to the regularization parameters

Where it works (provenly)

- Linear problems with almost all regularization methods
- Non-linear problems with some regularization methods
- Classical and Stochastic noise
- Metric solution spaces
- Some Multi-parameter regularization methods

Frank Bauer (fbauer@math.uni-goettingen.de), Methods for Choosing the Regularization Parameter