LECTURE NOTES

Domain Decomposition Methods

Sergey Nepomnyaschikh

1 Domain Decomposition

Let Ω be L-shaped domain. Decompose Ω into two rectangles Ω_1 and Ω_2 with the common boundary γ . Consider the following p.d.e.

$$-\Delta u = f \quad \text{in } \Omega,$$

$$u = 0 \text{ on } \Gamma$$
.

Let $H_0^1(\Omega) = \{u \in H^1(\Omega) | u(x) = 0, x \in \Gamma\}$. Then the weak formulation is : Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} (\nabla u, \nabla v) d\Omega = \int_{\Omega} f v \, d\Omega \;, \forall v \in H^1_0(\Omega).$$

Assume that Ω^h be uniform triangulation. Let $H_h(\Omega) = \{u^h \in H_0^1(\Omega) \mid u^h = PW\text{-linear}\}$. For the function $u^h \in H_h(\Omega)$, it can be identified as a vector

$$\bar{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_N \end{bmatrix}$$
, where $u_i = u^h(z_i)$.

Define a $\bar{\text{bilinear}}$ form A by

$$A(\bar{u}, \bar{v}) = \int_{\Omega} (\nabla u^h, \nabla v^h) d\Omega.$$

Then the weak formulation can be expressed as a algebraic (matrix) form.

$$A\bar{u}=\bar{f}.$$

The vector \bar{u} can be decomposed into three groups, that is, $\bar{u} = \begin{bmatrix} \bar{u}_0 \\ \bar{u}_1 \\ \bar{u}_2 \end{bmatrix}$, where \bar{u}_0 , \bar{u}_1 , and \bar{u}_2 are corresponding to γ , Ω_1 , and Ω_2 , respectively.

$$A\bar{u} = \begin{bmatrix} A_0 & A_{01} & A_{02} \\ A_{10} & A_1 & 0 \\ A_{20} & 0 & A_2 \end{bmatrix} \begin{bmatrix} \bar{u}_0 \\ \bar{u}_1 \\ \bar{u}_2 \end{bmatrix} = \begin{bmatrix} \bar{f}_0 \\ \bar{f}_1 \\ \bar{f}_2 \end{bmatrix} = \bar{f}.$$

Observe that A_i corresponds to the Dirichlet problem in Ω_i , that is, $A_i \longleftrightarrow -\Delta_{\Omega_i}$, for i=1,2.

From the second and the third equation, we obtain

$$\bar{u}_1 = A_1^{-1} \bar{f}_1 - A_1^{-1} A_{10} \bar{u}_0,$$

$$\bar{u}_2 = A_2^{-1} \bar{f}_2 - A_2^{-1} A_{20} \bar{u}_0.$$

Substitute into the first equation to get

$$(A_0 - A_{01}A_1^{-1}A_{10} - A_{02}A_2^{-1}A_{20})\bar{u}_0 = \bar{f}_0 - A_{01}A_1^{-1}\bar{f}_1 - A_{02}A_2^{-1}\bar{f}_2.$$

Let

$$S = A_0 - A_{01}A_1^{-1}A_{10} - A_{02}A_2^{-1}A_{20}$$

$$\phi = \bar{u}_0$$

$$\psi = \bar{f}_0 - A_{01}A_1^{-1}\bar{f}_1 - A_{02}A_2^{-1}\bar{f}_2.$$

S is called by Schur-complement matrix and we have to solve the equation

$$S\phi = \psi$$
.

If we can find a preconditioner Σ for S, then the solution ϕ is obtained by a iterative method, e.g.

$$\Sigma(\phi^{k+1} - \phi^k) = -\tau_k(S\phi^k - \psi).$$

Lemma 1.1 If $\|\phi^n - \phi\|_S = \epsilon$ and $\bar{u}_0^n = \varphi^n$, $\bar{u}_1^n = A_1^{-1}(\bar{f}_1 - A_{10}\phi^n)$, $\bar{u}_2^n = A_2^{-1}(\bar{f}_2 - A_{20}\phi^n)$, then $\|\bar{u}^n - \bar{u}\|_A = \epsilon$.

Proof.

$$\begin{split} \|\bar{u}^n - \bar{u}\|_A^2 &= (A(\bar{u}^n - \bar{u}), \bar{u}^n - \bar{u}) \\ &= \begin{pmatrix} \begin{bmatrix} A_0 & A_{01} & A_{02} \\ A_{10} & A_1 & 0 \\ A_{20} & 0 & A_2 \end{bmatrix} \begin{bmatrix} \bar{u}_0^n - \bar{u}_0 \\ \bar{u}_1^n - \bar{u}_1 \\ \bar{u}_1^n - \bar{u}_2 \end{bmatrix}, \begin{bmatrix} \bar{u}_0^n - \bar{u}_0 \\ \bar{u}_1^n - \bar{u}_1 \\ \bar{u}_1^n - \bar{u}_2 \end{bmatrix} \end{pmatrix} \\ &= \begin{pmatrix} \begin{bmatrix} A_0 \bar{u}_0^n + A_{01} \bar{u}_1^n + A_{02} \bar{u}_2^n - \bar{f}_0 \\ A_{10} \bar{u}_0^n + A_1 \bar{u}_1^n - \bar{f}_1 \\ A_{20} \bar{u}_0^n + A_2 \bar{u}_2^n - \bar{f}_2 \end{bmatrix}, \begin{bmatrix} \bar{u}_0^n - \bar{u}_0 \\ \bar{u}_1^n - \bar{u}_1 \\ \bar{u}_1^n - \bar{u}_2 \end{bmatrix} \end{pmatrix} \\ &= \begin{pmatrix} \begin{bmatrix} S \bar{u}_0^n - \psi \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \bar{u}_0^n - \bar{u}_0 \\ \bar{u}_1^n - \bar{u}_1 \\ \bar{u}_1^n - \bar{u}_2 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} S \bar{u}_0^n - \psi, & \varphi^n - \varphi \\ 0, & 0 \\ 0, & 0 \end{pmatrix} \end{split}$$

There are some interesting facts about S. The first is that though, S is an interface problem, it is closely related to the entire problem. The second is that the quadratic form $(S\phi, \phi)$ is equivalent to some trace norm.

$$\begin{split} (A\bar{u},\bar{u}) &= \int_{\Omega} |\nabla u^h|^2 \, d\Omega \\ &= \int_{\Omega_1} |\nabla u^h|^2 \, d\Omega_1 + \int_{\Omega_2} |\nabla u^h|^2 \, d\Omega_2 \\ &= \left(A^{(1)} \begin{bmatrix} \bar{u}_0 \\ \bar{u}_1 \end{bmatrix}, \begin{bmatrix} \bar{u}_0 \\ \bar{u}_1 \end{bmatrix} \right) + \left(A^{(2)} \begin{bmatrix} \bar{u}_0 \\ \bar{u}_2 \end{bmatrix}, \begin{bmatrix} \bar{u}_0 \\ \bar{u}_2 \end{bmatrix} \right), \end{split}$$

where
$$A^{(i)} = \begin{bmatrix} A_0^{(i)} & A_{0i} \\ A_{i0} & A_i \end{bmatrix}$$
.

 $A^{(i)}$, i=1,2, is just the discrete Laplacian $-\Delta_{\Omega_i}$, which satisfies the Dirichlet condition on $\partial\Omega_i\setminus\gamma$ and the Neumann condition on γ .

Let $S_i = A_0^{(i)} - A_{i0}A_i^{-1}A_{i0}$. Then $S = S_1 + S_2$ and $A_0 = A_0^{(1)} + A_0^{(2)}$.

$$\inf_{u_1} \left(A^{(1)} \begin{bmatrix} \phi \\ u_1 \end{bmatrix}, \begin{bmatrix} \phi \\ u_1 \end{bmatrix} \right)$$

$$= \inf_{u_1} ((A_0^{(1)} \phi, \phi) + (A_1 u_1, u_1) + 2(A_{10} \phi, u_1))$$

$$= (A_0^{(1)} \phi, \phi) + \inf_{u_1} ((A_1 u_1, u_1) - 2(-A_{10} \phi, u_1)).$$

The quadratic form $(A_1u_1,u_1)-2(-A_{10}\phi,u_1)$ has its minimum at $A_1u_1=-A_{10}\phi$, that is, $u_1=-A_1^{-1}A_{10}\phi$. So

$$\inf_{u_1} \left(A^{(1)} \begin{bmatrix} \phi \\ u_1 \end{bmatrix}, \begin{bmatrix} \phi \\ u_1 \end{bmatrix} \right)$$

$$= (A_0^{(1)} \phi, \phi) + (A_{10} \phi, A_1^{-1} A_{10} \phi) - 2(A_{10} \phi, A_1^{-1} A_{10} \phi)$$

$$= (A_0^{(1)} \phi, \phi) - (A_{01} A_1^{-1} A_{10} \phi, \phi)$$

$$= (S_1 \phi, \phi).$$

Hence we obtain the following.

$$(S\phi,\phi) = \inf_{u_h \in H_h(\Omega_1), u_h|_{\gamma} = \phi_h} |u^h|_{H^1(\Omega_1)}^2 + \inf_{u_h \in H_h(\Omega_2), u_h|_{\gamma} = \phi_h} |u^h|_{H^1(\Omega_2)}^2.$$

In fact, the infimum occurs at u^h which solves the discrete Laplacian problem :

$$-\Delta_h u^h = 0, \text{ in } \Omega_i$$
$$u^h = 0, \text{ on } \partial \Omega_i \setminus \gamma$$
$$u^h = \phi^h, \text{ on } \gamma$$

Then we obtain the following theorem.

Theorem 1.1 Suppose that there exist c_1 and c_2 such that for any $u_i^h \in H_h(\Omega_i)$ with $u_i^h = \phi^h$ on γ ,

$$\|\phi^h\|_{H_h^{\frac{1}{2}}(\partial\Omega_i)} \le c_1 \|u_i^h\|_{H^1(\Omega_i)}$$

holds and for any $\phi^h \in H_h^{\frac{1}{2}}(\partial\Omega_i)$, there exist $u_i^h \in H_h(\Omega_i)$ with $u_i^h = \phi^h$ such that

$$||u_i^h||_{H^1(\Omega_i)} \le c_2 ||\phi^h||_{H^{\frac{1}{2}}_{\nu}(\partial\Omega_i)}$$

Then

$$(S_i\phi,\phi)\simeq \|\phi^h\|_{H_h^{\frac{1}{2}}(\partial\Omega_i)}^2.$$

Here ϕ is matrix representation of ϕ^h .

We treated just the Laplacian equation. For the general elliptic case, S is more complicated so that it is difficult to find a preconditioner for S. But the following lemma shows that it is enough to find a preconditioner for the Laplacian equation.

Lemma 1.2 Let $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ and $B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$. Assume that $A = A^T \ge 0$, $B = B^T \ge 0$, $A_{11} > 0$, and $B_{11} > 0$. Let $S_A = A_{22} - A_{21}A_{11}^{-1}A_{12}$ and $S_B = B_{22} - B_{21}B_{11}^{-1}B_{12}$. If

$$c_1(Au, u) \le (Bu, u) \le c_2(Au, u), \quad \forall u$$

then

$$c_1(S_A u, u) \le (S_B u, u) \le c_2(S_A u, u), \quad \forall u.$$

Proof.

$$(S_B u_2, u_2) = \inf_{u_1} \left(B \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right)$$

$$= \left(B \begin{bmatrix} v_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} v_1 \\ u_2 \end{bmatrix} \right) \qquad \text{(for some } v_1)$$

$$\geq c_1 \left(A \begin{bmatrix} v_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} v_1 \\ u_2 \end{bmatrix} \right)$$

$$\geq c_1 \inf_{u_1} \left(A \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right)$$

$$= c_1 (S_A u_2, u_2).$$

Let

$$Lu = -\sum_{i,j} \frac{\partial}{\partial x_i} (a_{ij}(x) \frac{\partial u}{\partial x_j}) + a_0(x)u = f(x), \ x \in \Omega.$$

Assume that

$$(Lu, u) \simeq ||u||_{H^1(\Omega)}^2.$$

Let S_L and S_1 be Schur-complement matrices for L and $-\Delta$, respectively. The above lemma implies that it is enough to construct a precondtioner for S_1 in place of S_L .

2 Finite Element Trace Theorem

Theorem 2.1 Let Ω be a bounded domain with the piecewise smooth boundary Γ , and let Ω^h (Ω^h is a polygonal approximation of Ω whose vertex may not lie on Γ) be a shape-regular triangulation of Ω such that

i) we have

$$\frac{\operatorname{diam} \ \tau_i}{r_i} \le c \ne c(h),$$

where r_i denotes the radius of the largest ball inscribed in τ_i ,

- ii) there exists a mapping $T: \tau_i \to \tilde{\tau}_i$ such that $T(z_i) = \tilde{z}_i$ (z_i and \tilde{z}_i are the vertices of τ_i and $\tilde{\tau}_i$, respectively) and
 - $T(\tau_i) = \tilde{\tau}_i$ is also shape regular,
 - $z_i \in \Gamma^h \Longrightarrow \tilde{z}_i \in \Gamma$ (The map T moves $z_i \in \Gamma^h$ to $\tilde{z}_i \in \Gamma$.
 - $\exists c_1, c_2 \neq c(h), \ c_1|z_i z_j| \leq |\tilde{z}_i \tilde{z}_j| \leq c_2|z_i z_j|.$

Then

(1) There exists $c_3 \neq c_3(h)$ such that

$$\|\varphi^h\|_{H_h^{1/2}(\Gamma^h)} \le c_3 \|u^h\|_{H^1(\Omega^h)}, \quad \forall u^h \in H_h(\Omega^h) \text{ with } u^h|_{\Gamma^h} = \varphi^h.$$

(2) There exists $c_4 \neq c_4(h)$ such that for any given $\varphi^h \in H_h(\Gamma^h)$, a $u^h \in H_h(\Omega^h)$ exists satisfying $u^h = \varphi^h$ on Γ_h and

$$||u^h||_{H^1(\Omega^h)} \le c_4 ||\varphi^h||_{H^{1/2}(\Gamma^h)}.$$

Remark 2.1 Such T's exist if $\Gamma^h \approx \Gamma$ in $O(h^2)$.

In the paper of Korneev (1970) the special finite element space $\tilde{u}^h \in H_h(\widetilde{\Omega}^h)$ on the curvelinear tirangulation $\widetilde{\Omega}^h$ was suggested that $\tilde{u}^h(\tilde{z}_i) = u^h(z_i)$ where $\tilde{u}^h \in H_h(\widetilde{\Omega}^h)$ $u^h \in H_h(\Omega^h)$ and the following lemma holds

Lemma 2.1 There exists $c_5, c_6 \neq c(h)$ such that

$$c_{5}\|\tilde{u}^{h}\|_{L^{2}(\tilde{\tau}_{i})} \leq \|u^{h}\|_{L^{2}(\tau_{i})} \leq c_{6}\|\tilde{u}^{h}\|_{L^{2}(\tilde{\tau}_{i})},$$

$$c_{5}\|\tilde{u}^{h}|_{H^{1}(\tilde{\tau}_{i})} \leq |u^{h}|_{H^{1}(\tau_{i})} \leq c_{6}\|\tilde{u}^{h}|_{H^{1}(\tilde{\tau}_{i})},$$

$$c_{5}\|\tilde{\varphi}^{h}\|_{L^{2}(\tilde{I}_{i})} \leq \|\varphi^{h}\|_{L^{2}(I_{i})} \leq c_{6}\|\tilde{\varphi}^{h}\|_{L^{2}(\tilde{I}_{i})},$$

and

$$c_5 \int_{\tilde{I}_i} \int_{\tilde{I}_j} \frac{(\tilde{\varphi}^h(x) - \tilde{\varphi}^h(y))^2}{|x - y|^2} \, dx dy \le \int_{I_i} \int_{I_j} \frac{(\varphi^h(x) - \varphi^h(y))^2}{|x - y|^2} \, dx dy$$
$$\le c_6 \int_{\tilde{I}_i} \int_{\tilde{I}_j} \frac{(\tilde{\varphi}^h(x) - \tilde{\varphi}^h(y))^2}{|x - y|^2} \, dx dy,$$

where $\Gamma^h = \bigcup_i I_i$ and $\Gamma = \bigcup_i \tilde{I}_i$.

Proof. (Existence of c_3) There exists c_7 such that for any given $u^h \in H_h(\Omega^h)$ there is a $\tilde{u}^h \in H^1(\tilde{\Omega}^h)$ satisfying $\|\tilde{u}^h\|_{H^1(\tilde{\Omega}^h)} \leq c_7 \|u^h\|_{H^1(\Omega^h)}$.

Letting $\tilde{\varphi}^h = \tilde{u}^h|_{\Gamma} \in H_h(\Gamma)$, define $\varphi^h \in H_h(\Gamma_h)$ as a linear combinations of vertex values of $\tilde{\varphi}^h$. We have from the trace theorem

$$\|\tilde{\varphi}^h\|_{H^{1/2}(\Gamma)} \le c_8 \|\tilde{u}^h\|_{H^1(\Omega)}.$$

By Lemma 2.1 it follows that

$$\|\varphi^h\|_{H^{1/2}(\Gamma^h)} \le c_9 \|\tilde{\varphi}^h\|_{H^{1/2}(\Gamma)}.$$

We remark that this is immediate in the case $\Omega^h = \overline{\Omega}$. \square

Proof. (Existence of c_4) For a given $\varphi^h \in H_h(\Gamma^h)$, let $\tilde{\varphi}^h \in H_h(\Gamma)$ be such that $\tilde{\varphi}^h(\tilde{z}_i) = \varphi^h(z_i)$. Then we have by Lemma 2.1

$$\|\tilde{\varphi}^h\|_{H^{1/2}(\Gamma)} \le c \|\varphi^h\|_{H^{1/2}_h(\Gamma^h)}.$$

By inverse trace theorem, there exists $u \in H^1(\Omega)$ such that $u|_{\Gamma} = \tilde{\varphi}^h$ and $\|u\|_{H^1(\Omega)} \leq c\|\tilde{\varphi}^h\|_{H^{1/2}(\Gamma)}$. But $u \notin H_h(\Omega)$. How can we construct $\tilde{u}^h \in H_h(\Omega)$? It's enough to have values at \tilde{z}_i . Let

$$\tilde{u}^h(\tilde{z}_i) = \begin{cases} \tilde{\varphi}^h(\tilde{z}_i), & \text{if } \tilde{z}_i \in \Gamma, \\ \frac{1}{\pi r_i} \int_{B(\tilde{z}_i, r_i)} u(x) \, dx, & \text{otherwise,} \end{cases}$$

where r_i is the radius of the largest ball $B(\tilde{z}_i, r_i)$ inscribed in the union of all elements sharing the vertex \tilde{z}_i which is denoted by K_i . Then we take $u^h \in H_h(\Omega^h)$ with $u^h(z_i) = \tilde{u}^h(\tilde{z}_i)$. By Lemma 2.1 it follows that $||u^h||_{H^1(\Omega^h)} \le c||\tilde{u}^h||_{H^1(\Omega)}$.

It remains to show that $\|\tilde{u}^h\|_{H^1(\Omega)} \leq c \|\tilde{\varphi}^h\|_{H^{1/2}(\Gamma)}$. (Note $\varphi^h \to \tilde{\varphi}^h \to u \to \tilde{u}^h \to u^h$.) By Friedrich's inequality we obtain

$$\|\tilde{u}^h\|_{L^2(\Omega)} \le c(|\tilde{u}^h|_{H^1(\Omega)} + \|\tilde{\varphi}^h\|_{L^2(\Gamma)}),$$

and since $\|\tilde{\varphi}^h\|_{L^2(\Gamma)} \le C \|\varphi\|_{H^{1/2}(\Gamma)}$ it is enough to estimate $|\tilde{u}^h|_{H^1(\Omega)}$. Note

$$|\tilde{u}^h|_{H^1(\Omega)}^2 \le c \sum_{l_i \in \tilde{\Omega}^h} (\tilde{u}^h(\tilde{z}_{i_1}) - \tilde{u}^h(\tilde{z}_{i_2}))^2,$$

where \tilde{z}_{i_1} and \tilde{z}_{i_2} are the vertices of the edge l_i . We consider the following three cases separately:

Case 1) $\tilde{z}_{i_1}, \tilde{z}_{i_2} \in \Gamma$

$$\sum (\tilde{u}^{h}(\tilde{z}_{i_{1}}) - \tilde{u}^{h}(\tilde{z}_{i_{2}}))^{2} = \sum (\tilde{\varphi}^{h}(\tilde{z}_{i_{1}}) - \tilde{\varphi}^{h}(\tilde{z}_{i_{2}}))^{2}$$

$$\leq \sum_{\tilde{z}_{i}} \sum_{\tilde{z}_{j}} \frac{(\tilde{\varphi}^{h}(\tilde{z}_{i}) - \tilde{\varphi}^{h}(\tilde{z}_{i}))^{2}}{|z_{i} - z_{j}|^{2}} h_{i} h_{j}$$

$$\leq c |\tilde{\varphi}^{h}|_{H^{1/2}(\Gamma)}^{2}$$

Case 2) $\tilde{z}_{i_1}, \tilde{z}_{i_2} \in \Omega$

Lemma 2.2 Let $0 < h_1 \le h_2$. Then we have for all $u \in H^1(B(0,h_2))$

$$\left(\frac{1}{\pi h_2^2} \int_{B(0,h_2)} u(x) \, dx - \frac{1}{\pi h_1^2} \int_{B(0,h_1)} u(x) \, dx\right)^2 \le \frac{h_2}{\pi h_1} |u|_{H^1(B(0,h_2))}^2.$$

Proof. Let (r, θ) be the radial coordinate system given by

$$x = (x_1, x_2) = (r \cos \theta, r \sin \theta).$$

Then we obtain

$$\begin{split} \left(\frac{1}{\pi h_2^2} \int_{B(0,h_2)} u(x) \, dx - \frac{1}{\pi h_1^2} \int_{B(0,h_1)} u(x) \, dx \right)^2 \\ &= \left(\frac{1}{\pi h_2^2} \int_0^{h_2} \int_0^{2\pi} u(r,\theta) \, r d\theta dr - \frac{1}{\pi h_1^2} \int_0^{h_1} \int_0^{2\pi} u(r,\theta) \, r d\theta dr \right)^2 \\ &= \left(\frac{1}{\pi h_2^2} \int_0^{h_2} \int_0^{2\pi} \left(u(r,\theta) - u(r/a,\theta)\right) r d\theta dr \right)^2 \qquad (a = h_2/h_1 \ge 1) \\ &= \frac{1}{\pi^2 h_2^4} \left(\int_0^{h_2} \int_0^{2\pi} \left[\int_{\frac{r}{a}}^r r^{1/2} \frac{\partial u(t,\theta)}{\partial t} \, dt \right] r^{1/2} d\theta dr \right)^2 \\ &\leq \frac{1}{\pi h_2} \int_0^{h_2} \int_0^{2\pi} \int_{\frac{r}{a}}^r \left(\frac{\partial u(t,\theta)}{\partial t}\right)^2 r \, dt d\theta dr \qquad \text{(by C-B inequality)} \\ &\leq \frac{a}{\pi h_2} \int_0^{h_2} \int_0^{2\pi} \int_{\frac{r}{a}}^r \left(\frac{\partial u(t,\theta)}{\partial t}\right)^2 t \, dt d\theta dr \qquad (\because r \le at) \\ &\leq \frac{a}{\pi h_2} \int_0^{h_2} \int_0^{2\pi} \int_0^{h_2} \left(\frac{\partial u(t,\theta)}{\partial t}\right)^2 t \, dt d\theta dr \\ &= \frac{a}{\pi} \int_0^{2\pi} \int_0^{h_2} \left(\frac{\partial u(t,\theta)}{\partial t}\right)^2 t \, dt d\theta dr \\ &\leq \frac{a}{\pi} |u|_{H^1(B(0,h_2))}^2. \end{split}$$

The last inequality follows from the fact that $(\frac{\partial u}{\partial r})^2 \leq (\frac{\partial u}{\partial x_1})^2 + (\frac{\partial u}{\partial x_2})^2$.

Does there exist c_4 such that $\forall \phi_h \in H_h(\Gamma^h) \exists u^h \in H_h(\Omega^h)$ such that $u^h(x) = \phi^h(x), \quad x \in \Gamma^h$ and $\|u^h\|_{H^1(\Omega^h)} \le c_4 |\phi^h|_{H_h^{1/2}(\Gamma^h)}$?

$$\phi^h \to \tilde{\phi}^h \in \tilde{H}_h(\Gamma) \to u \in H^1(\Omega) \to \tilde{u}^h \in \tilde{H}_h(\Omega)$$

$$\tilde{u}^h(\tilde{z}_i) = \frac{1}{\pi r_i^2} \int_{B(\tilde{z}_i, r_i)} u(x) dx \tag{1}$$

There are two cases:

- 1) $\tilde{z}_i, \tilde{z}_j \in \Gamma$
- $2) \quad \tilde{z}_i, \tilde{z}_j \in \Omega$

Let r denote the radius satisfying the following inclusion:

$$r: B(x, \sqrt{2}r) \subset K_{i_1} \cup K_{i_2}, \quad x \in l_i.$$

Now we estimate $(\tilde{u}^h(\tilde{z}_{i_2}) - \tilde{u}^h(\tilde{z}_{i_1}))^2$.

$$(\tilde{u}^h(\tilde{z}_{i_2}) - \tilde{u}^h(\tilde{z}_{i_1}))^2 \le 3 \left(\left(\tilde{u}^h(\tilde{z}_{i_2}) - \frac{1}{\pi r^2} \int_{B(\tilde{z}_{i_2}, r)} u(x) dx \right)^2 + \left(\frac{1}{\pi r^2} \int_{B(\tilde{z}_{i_1}, r)} u(x) dx - \tilde{u}^h(\tilde{z}_{i_1}) \right)^2 + \left(\frac{1}{\pi r^2} \int_{B(\tilde{z}_{i_2}, r)} u(x) dx - \frac{1}{\pi r^2} \int_{B(\tilde{z}_{i_1}, r)} u(x) dx \right)^2 \right)$$

For the first two terms we can use Lemma 6.2 Now we will have the estimation for the third term.

$$\begin{split} &\left(\frac{1}{\pi r^2} \int_{B(\tilde{z}_{i_2},r)} u(x) dx - \frac{1}{\pi r^2} \int_{B(\tilde{z}_{i_1},r)} u(x) dx\right)^2 \\ &= \frac{1}{\pi^2 r^4} \left(\int_{B(\tilde{z}_{i_1},r)} (u(x+y) - u(x)) \cdot 1 dx\right)^2 \\ &\leq \frac{1}{\pi r^2} \int_{B(\tilde{z}_{i_1},r)}^r (u(x+y) - u(x))^2 dx \\ &\leq \frac{1}{\pi r^2} \int_{-r}^r \int_{-r}^r (u(s+h,t) - u(s,t))^2 ds dt \\ &\leq \frac{1}{\pi r^2} \int_{-r}^r \int_{-r}^r \int_{-r}^{s+h} \left(\frac{\partial u(\xi,t)}{\partial \xi}\right)^2 d\xi ds dt \\ &\leq \frac{1}{\pi r^2} \int_{-r}^r \int_{-r}^r \int_{-r}^{r+h} \left(\frac{\partial u(\xi,t)}{\partial \xi}\right)^2 d\xi ds dt \\ &= \frac{2h}{\pi r^2} \int_{-r}^r \int_{-r}^{r+h} \left(\frac{\partial u(\xi,t)}{\partial \xi}\right)^2 d\xi dt \\ &\leq \frac{2h}{\pi r^2} |u|_{H^1(K_{i_1} \cup K_{i_2})}. \end{split}$$

Case 3) $\tilde{z}_{i_1} \in \Gamma$, $\tilde{z}_{i_2} \in \Omega$ Next, let $\tilde{z}_{i_1} = (0,0)$, $\tilde{z}_{i_1}^+ = (h_1,0)$, $\tilde{z}_{i_1}^- = (-h_2,0)$, $\tilde{z}_{i_2} = (0,h_3)$, and $r \colon B(\tilde{z}_i,r) \subset S$, where $S = \{(s,h)| -h_2 \le s \le h_1, 0 \le h \le 2h_3\}$.

$$(\tilde{u}^h(\tilde{z}_{i_2}) - \tilde{u}^h(\tilde{z}_{i_1}))^2 \le 2\left(\tilde{u}^h(\tilde{z}_{i_2}) - \frac{1}{\pi r^2} \int_{B_(\tilde{z}_{i_2}, r)} u(x) dx\right)^2 + \left(\frac{1}{\pi r^2} \int_{B_(\tilde{z}_{i_2}, r)} u(x) dx - \tilde{u}^h(\tilde{z}_{i_1})\right)^2$$

The the second term is estimated as follows:

$$\begin{split} &\frac{1}{\pi^2 r^4} \left(\int_{B_(\tilde{z}_{i_1},r)} (u(x) - \tilde{u}^h(\tilde{z}_{i_2})) dx \right)^2 \leq CB \leq \frac{1}{\pi r^2} \int_{B_(\tilde{z}_{i_1},r)}^{h_1} (u(x) - \tilde{u}^h(\tilde{z}_{i_2}))^2 dx \\ &\leq &\frac{1}{\pi r^2} \int_{-h_2}^{h_1} \int_{0}^{2h_3} (u(s,t) - \phi^h(0))^2 dt ds \\ &\leq &\frac{2}{\pi r^2} \left(\int_{-h_2}^{h_1} \int_{0}^{2h_3} (u(s,t) - \phi^h(s))^2 dt ds + \int_{-h_2}^{h_1} \int_{0}^{2h_3} (\phi(s) - \phi^h(0))^2 dt ds \right) \\ &\leq &\frac{2}{\pi r^2} \left(\int_{-h_2}^{h_1} \int_{0}^{2h_3} \left(\int_{0}^{t} \frac{\partial u(s,\xi)}{\partial \xi} d\xi \right)^2 dt ds \\ &+ 2 \left(\int_{0}^{h_1} \left(\tilde{\phi}(s) - \tilde{\phi}^h(0) \right)^2 ds + \int_{-h_2}^{0} \left(\tilde{\phi}(s) - \tilde{\phi}^h(0) \right)^2 ds \right) \right) \\ &\leq &C \left(|u|_{H^1(S)}^2 + (\tilde{\phi}^h(z_{i_1}^+) - \tilde{\phi}^h(z_{i_1})^2 + (\tilde{\phi}^h(z_{i_1}^-) - \tilde{\phi}^h(z_{i_1})^2 \right)^2. \end{split}$$

We have

$$||u^h||_{H^1(\Omega^h)} \le C_4 ||\phi^h||_{H^{1/2}_{\mu}(\Gamma^h)}.$$

Theorem 2.2 (Sobolev) Let $l: H^1(\Omega) \to R$ be a linear bounded functional such that l(c) = 0 and c is constant $\Longrightarrow c = 0$. Then $||u||_{H^1(\Omega)} \approx |u|_{H^1(\Omega)} + |l(u)|$.

For example of this theorem, Poincaré inequality.

$$||u||_{L^2(\Omega)} \le C \left(|u|_{H^1(\Omega)}^2 + \left(\int_{\Omega} u(x)dx \right)^2 \right)$$

If $\int_{\Omega} u \, dx = 0$ we have usual Poincaré inequality.

Lemma 2.3 (Poincaré inequality in $H^{1/2}(\Gamma)$)

$$\int_{\Gamma} \phi^{2}(x)dx \le C \left(\int_{\Gamma} \int_{\Gamma} \frac{|\phi(x) - \phi(y)|^{2}}{|x - y|^{2}} dx dy + \left(\int_{\Gamma} \phi(x) dx \right)^{2} \right)$$
(2)

Proof. Let $x, y \in \Gamma$ and $x \neq y$ then

$$(\phi(x) - \phi(y))^2 \le C_0 \frac{(\phi(x) - \phi(y))^2}{|x - y|^2}$$

where $C_0 = \text{diam}\Omega$. So we have

$$\int_{\Gamma} \int_{\Gamma} (\phi(x) - \phi(y))^2 dx dy \le C_0 \int_{\Gamma} \int_{\Gamma} \frac{(\phi(x) - \phi(y))^2}{|x - y|^2} dy dy.$$

But

$$\begin{split} \int_{\Gamma} \int_{\Gamma} (\phi(x) - \phi(y))^2 dx dy &= \int_{\Gamma} \int_{\Gamma} \phi(x)^2 dx dy - 2 \int_{\Gamma} \int_{\Gamma} \phi(x) \phi(y)^2 dx dy + \int_{\Gamma} \int_{\Gamma} \phi(y)^2 dx dy \\ &= 2 \cdot \operatorname{meas}(\Gamma) \int_{\Gamma} \phi^2(x) dx - 2 \left(\int_{\Gamma} \phi(x) dx \right)^2. \end{split}$$

Substituting the integral into above equation we have the result. \square

Theorem 2.3 (Trace theorem with semi-norm) There are two positive constant C_1 and C_2 satisfying the following conditions: There exists C_1 such that $\forall u \in H^1(\Omega), \phi(x) = u(x), \quad x \in \Gamma$ exists and

$$|\phi|_{H^{1/2}(\Gamma)} \le C_1 |u|_{H^1(\Omega)}.$$

There exists C_2 such that $\forall \phi \in H^{1/2}(\Gamma), \exists u \in H^1(\Omega)$ such that $u(x) = \phi(x)$ $x \in \Gamma$ and

$$|u|_{H^1(\Omega)} \le C_2 |\phi|_{H^{1/2}(\Gamma)}$$

Proof. For the first proof: Let $u \in H^1(\Omega)$. Then u can be split into two parts as follows:

$$u = u_0 + u_1$$
, $u_0 = \text{constant} = \frac{1}{\text{meas}(\Omega)} \int_{\Omega} u d\Omega$, $\int_{\Omega} u_1 d\Omega = 0$

Let us split ϕ as following:

$$\phi_0 = u_0|_{\Gamma}, \quad \phi_1 = u_1|_{\Gamma}, \quad \phi = \phi_0 + \phi_1.$$

Then we have

$$|\phi|_{H^{1/2}(\Gamma)} = |\phi_1|_{H^{1/2}(\Gamma)} \le C_3 ||u_1||_{H^1(\Omega)}$$

$$\le C_4 |u_1|_{H^1(\Omega)} = C_4 |u|_{H^1(\Omega)}$$

For the second proof: Let $\phi \in H^{1/2}(\Gamma)$ be decomposed as

$$\phi = \phi_0 + \phi_1, \quad \phi_0 = \text{constant} = u_0, \quad \int_{\Gamma} \phi_1 d\Gamma = 0$$

By Theorem 3.1(Trace theorem), there exists u_1 s.t. $u_1(x) = \phi_1(x)$ and

$$||u_1||_{H^1(\Omega)} \le C_5 ||\phi_1||_{H^{1/2}(\Gamma)}$$

Set $u = u_0 + u_1$. Then $u(x) = \phi(x)$, $x \in \Gamma$ and

$$|u|_{H^1(\Omega)}^2 = |u_1|_{H^1(\Omega)}^2 \le C_5 \|\phi_1\|_{H^{1/2}(\Gamma)}^2 \le C_6 |\phi|_{H^{1/2}(\Gamma)}^2$$

where the last one by Poincaré. \square

Remark 2.2 We have the same theorem for finite element space because FEM space contains constant function.

Let $H_0 \subset H$ be two Hilbert spaces and $a: H \times H$ be a semi positive symmetric bilinear form. Assume a is positive definite only on H_0 . For a given $u \in H$ consider the problem of finding $u \in H$ s.t.

$$\inf_{v_0 \in H_0} a(v_0 + u, v_0 + u)$$

Define $u_0 \in H_0$ by

$$a(u+u_0, w_0) = 0, \quad \forall w_0 \in H_0$$

Let $H=H^1, H_0=H^1_0$ and consider the problem: Find $v\in H^1(\Omega)$ s.t $v(x)=\phi(x),\ x\in\Gamma$ and

$$||v||_{H^1(\Omega)} = \inf_{w|_{\Gamma} = \phi} ||w||_{H^1(\Omega)}.$$

$$a(u,v) = \int \nabla u \cdot \nabla v + uv \, dx$$

 $u \in H^1, u|_{\Gamma} = \phi$

$$\inf_{v_0 \in H_0^1} \|u + v_0\|_{H^1(\Omega)} = \inf_{w \mid \Gamma = \phi} \|w\|_{H^1(\Omega)}$$

 $v = u + u_0, a(u + u_0, u_0) = 0$ Solves

$$\begin{array}{rcl}
-\Delta v + v & = & 0 \\
v|_{\Gamma} & = & \phi
\end{array}$$

Remark 2.3 Let $a'(u,v) = \int \nabla u \cdot \nabla v \, dx$ Then

$$v' = \min_{w|_{\Gamma} = \phi} a'(w, w)$$

is equivalent to(Harmonic extension)

$$\begin{array}{rcl}
-\Delta v & = & 0 \\
v|_{\Gamma} & = & \phi
\end{array}$$

 $||v||_{H^1(\Omega)} \leq ||v'||_{H^1(\Omega)}$ because left hand side is extension with minimal norm.

$$||v'||_{H^{1}(\Omega)} \leq |v'|_{H^{1}(\Omega)}^{2} + ||v'||_{L^{2}}^{2} \leq |v|_{H^{1}(\Omega)}^{2} + ||v'||_{L^{2}}^{2}$$

$$\leq |v|_{H^{1}(\Omega)}^{2} + C(|v'|_{H^{1}(\Omega)}^{2} + ||\phi||_{H^{1/2}(\Gamma)}^{2})$$

$$\leq (1+C)|v|_{H^{1}(\Omega)}^{2} + c||\phi||_{H^{1/2}(\Gamma)}^{2} \leq C||v||_{H^{1}(\Omega)}^{2} \leq C||v'||_{H^{1}(\Omega)}^{2}$$

So extension by min with semi norm is equivalent to min with norm.

Now FEM. With $H_h(\Omega^h), H_h^{1/2}(\Gamma^h)$, The solution of the minimization problem

$$||v^h||_A = \inf_{w^h|_{\Gamma} = \phi^h} ||w^h||_A$$

is the solution of

$$-\Delta v^h = 0$$
$$v^h|_{\Gamma} = \phi^h.$$

In variational form

$$\begin{cases} a(v^h, w_0^h) &= 0, \quad w_0^h \in \overset{0}{H}_h(\Omega^h) \\ v^h|_{\Gamma} &= \phi^h \end{cases}$$

a form can be written as

$$a(v^h, v^h) = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} v_0 \\ \phi \end{bmatrix}, \begin{bmatrix} v_0 \\ \phi \end{bmatrix} \end{pmatrix}$$

Solution is equivalent to

$$0 = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} v_0, & w_0 \\ \phi, & 0 \end{pmatrix} = (A_{11}v_0 + A_{12}\phi, w_0), \quad \forall w_0$$

This implies

$$A_{11}v_0 = -A_{12}\phi, \quad v_0 = -A_{11}^{-1}A_{12}\phi$$

Then consider

$$\inf a(w^h, w^h)$$

where $a(w^h, w^h)$ is

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} -A_{11}^{-1} A_{12} \phi \\ \phi \end{bmatrix}, \begin{bmatrix} -A_{11}^{-1} A_{12} \phi \\ \phi \end{bmatrix}$$

$$= (-A_{12} \phi + A_{12} \phi, -A_{11}^{-1} A_{12} \phi) + (-A_{21} A_{11}^{-1} A_{12} \phi + A_{22} \phi, \phi)$$

$$= ((A_{22} - A_{21} A_{11}^{-1} A_{12}) \phi, \phi) \approx \|\phi\|_{H^{1/2}(\Gamma)}^{1}$$

Here the $S = (A_{22} - A_{21}A_{11}^{-1}A_{12})$ is the Schur complement. How to construct an equivalent norm ?

Note $\|\phi\|_{H^{1/2}(\Gamma)}$ is very complicated.

If $\phi \in H^1(-1,1)$ then

$$\|\phi\|_{H(-1,1)}^2 = \|\phi\|_{H(-1,0)}^2 + \|\phi\|_{H(0,1)}^2$$

This is only true for H^{α} , $0 < \alpha \le 1$, $\alpha \ne 1/2$.

$$\|\phi\|_{H^{\alpha}}^{2} = \|\phi\|_{L^{2}}^{2} + \int_{-1}^{1} \int_{-1}^{1} \frac{(\phi(x) - \phi(y))^{2}}{|x - y|^{1 + 2\alpha}} dx$$

Lemma 2.4 There exist c_1, c_2 such that

$$c_{1}\|\phi\|_{H^{1/2}(-1,1)}^{2} \leq \|\phi\|_{H^{1/2}(-1,0)}^{2} + \|\phi\|_{H^{1/2}(0,1)}^{2} + \int_{0}^{1} \frac{(\phi(x) - \phi(-x))^{2}}{x} dx \leq c_{2}\|\phi\|_{H^{1/2}(-1,1)}^{2}$$
(3)

We denote the third term as $I(\phi)$.

Proof.

$$\int_0^1 \frac{dy}{(x+y)}^2 = \int_x^{1+x} \frac{dt}{t^2} = \frac{1}{x(1+x)}$$

Thus

$$\frac{1}{2x} \le \int_0^1 \frac{dy}{(x+y)}^2 \le \frac{1}{x}$$

Consider

$$\begin{split} I(\phi) &= \int_0^1 \frac{(\phi(x) - \phi(-x))^2}{x} \, dx \\ &\leq \int_0^1 \int_0^1 \frac{(\phi(x) - \phi(-x))^2}{(x+y)^2} \, dy dx \\ &\leq 4 \int_0^1 \int_0^1 \frac{(\phi(x) - \phi(y))^2}{(x+y)^2} \, dy dx + 4 \int_0^1 \int_0^1 \frac{(\phi(y) - \phi(-x))^2}{(x+y)^2} \, dy dx \\ &\leq 4 (|\phi|_{H^{1/2}(0,1)}^2 + |\phi|_{H^{1/2}(-1,1)}^2) \end{split}$$

So C_2 is proved. For C_1 we only need to consider semi norm. Since

$$|\phi|_{H^{1/2}(0,1)}^2 = \int_0^1 \int_0^1 \frac{(\phi(x) - \phi(y))^2}{(x - y)^2} \, dy dx$$

Since $I=|\phi|^2_{H^{1/2}(0,1)}, IV=|\phi|^2_{H^{1/2}(-1,0)}$ only II=III matters. So consider one of them.

$$\int_{-1}^{0} \int_{0}^{1} \frac{(\phi(x) - \phi(y))^{2}}{(x - y)^{2}} dy dx$$

$$= 2 \left(\int_{-1}^{0} \int_{0}^{1} \frac{(\phi(x) - \phi(-x))^{2}}{(x - y)^{2}} + \int_{-1}^{0} \int_{0}^{1} \frac{(\phi(-x) - \phi(y))^{2}}{(x - y)^{2}} \right)$$

$$\leq 2 \int_{0}^{1} (\phi(-x) - \phi(y))^{2} \int_{0}^{1} \frac{dy}{(x + y)^{2}} (y \to -y')$$

$$+ \int_{-1}^{0} \int_{-1}^{0} \frac{(\phi(x) - \phi(y))^{2}}{(x + y)^{2}} dy dx (x \to -x')$$

Use the estimate of the integral

$$\frac{1}{2x} \le \int_0^1 \frac{dy}{(x+y)}^2 \le \frac{1}{x}$$

to see the third term is less than $|\phi|_{H^{1/2}(-1,0)}^2$

The whole thing is less than

$$2(I(\phi) + |\phi|_{H^{1/2}(-1,0)}^2)$$

Now divide the boundary (like circle) by two point a,b on Γ and left hand side is called Γ_1 Consider

 $H_{00}^{1/2}(\Gamma_1)$

Assume ϕ is equal to zero on $\Gamma_0 = \Gamma \backslash \Gamma_1$ and equivalent to harmonic extension into interior, i.e.

$$\|\phi\|_{H^{1/2}(\Gamma)}^2 \approx \|\phi\|_{H^{1/2}(\Gamma_1)}^2 + \|\phi\|_{H^{1/2}(\Gamma_0)}^2 (=0) + \int_{\Gamma_1} \frac{\phi^2}{|x-a|^2} + \int_{\Gamma_1} \frac{\phi^2}{|x-b|^2}.$$

With this motivation, define

$$\|\phi\|_{H_{00}^{1/2}(\Gamma_1)}^2 = \|\phi\|_{H^{1/2}(\Gamma_1)}^2 + \int_{\Gamma_1} \frac{\phi^2}{|x-a|^2} + \int_{\Gamma_1} \frac{\phi^2}{|x-b|^2}$$
 (4)

Similarly define

$$\|\phi\|_{H^{00^{1/2}}(0,1)} = \|\phi\|_{H^{1/2}(0,1)}^1 + \int_0^1 \frac{\phi^2}{x(1-x)}$$
 (5)

Meanwhile a function in $H^{1/2}(0,1)$ does not have anything to do with the value outside (0,1).

Now a FEM case. Let Ω be triangularized by Ω^h . Some part of it is denoted by Γ^h_1 some other by Γ^h_0 define

$$\|\phi^h\|_{H_h^{00^{1/2}}(\Gamma_1^h)} = \|\phi^h\|_{H_h^{1/2}(\Gamma_1^h)}^1 + \sum_{z_i \in \Gamma_1^h} \frac{(\phi^h(z_i))^2}{|z_i - a|} h_i + \sum_{z_i \in \Gamma_1^h} \frac{(\phi^h(z_i))^2}{|z_i - b|} h_i$$

$$\text{Let } \begin{matrix} 0 \\ H_h(\Gamma_1^h) = \{\phi^h \in H_h^{1/2}(\Gamma_1^h) | \ \phi^h(a) = \phi^h(b) = 0 \}. \\ \phi^h \to \phi \in \mathbb{R}^n \end{matrix}$$

$$(S\phi,\phi) \approx \|\phi^h\|_{H^{1/2}(\Gamma^h)} \approx \|\phi^h\|_{ \substack{00^{1/2} \\ H} (\Gamma_1^h)} \approx \|\tilde{\phi}^h\|_{ \substack{00^{1/2} \\ H} (I)}$$

Here I is straightened boundary. Now $\phi^h(z_i) = \tilde{\phi}(\tilde{z}_i)$ by mapping and extend into the unit square and consider on uniform grid

$$\|\tilde{\phi}^h\|_{\underset{H}{00^{1/2}}(I)} \approx (\tilde{S}\phi, \phi)$$

Finally, we have

$$(S\phi,\phi)\approx (\tilde{S}\phi,\phi)$$

Hence a preconditioner for \tilde{S} suffices for the original problem. In summary, Schur complement S is equivalent to the interface norm which is in turn equivalent to Schur complement \tilde{S} . On good domain, Schur complement \tilde{S} can be found analytically.

A detailed study on the space $H_{00}^{\frac{1}{2}}(\Gamma_1)$

A review on the Schur complement as norm:

Since

$$(S\varphi,\varphi) = \inf_{w^h|_{\Gamma} = \varphi^h} \|w^h\|_{H^1(\Omega)}^2 = \|u^h\|_{H^1(\Omega)}^2$$
 (6)

Here u^h satisfying $u^h|_{\Gamma} = \varphi$ is the minimizer. Then

$$\|\varphi^h\|_{H^{1/2}(\Gamma)}^2 \le C_3 \|u^h\|_{H^1(\Omega)}^2 = (S\varphi, \varphi)$$

For φ^h , there exists c^h such that

$$||v^h||_{H^1(\Omega)}^2 \le C_4 ||\varphi^h||_{H^{1/2}(\Gamma)}^2$$

Thus

$$(S\varphi,\varphi) = \inf_{w^h|_{\Gamma} = \varphi^h} \|w^h\|_{H^1(\Omega)}^2 = \|u^h\|_{H^1(\Omega)}^2 \le \|v^h\|_{H^1(\Omega)}^2 \le C_4 \|\varphi^h\|_{H^{1/2}(\Gamma)}^2$$

We see that Schur complement norm is equivalent to $H^{1/2}(\Gamma)$ norm. Let $\dot{C}^{\infty}(0,1)$ be the subspace of $C^{\infty}(0,1)$ with compact support. Then it is well known that for L^2 case

$$\overline{(C^{\infty}(0,1))}_{L^2}=L^2(0,1)$$
 and $\overline{(\dot{C}^{\infty}(0,1))}_{L^2}=L^2(0,1)$

However, for H^1

$$\overline{(C^{\infty}(0,1))}_{H^1(0,1)} = H^1(0,1) \qquad \text{ and } \overline{(\dot{C}^{\infty}(0,1))}_{H^1(0,1)} = H^1_0(0,1)$$

For H^{α} for $\alpha \leq 1/2$ follows from L^2 case and for $\alpha > 1/2$ follows H^1 case:

$$\underline{\mathbf{Def}}. \ \|\varphi\|_{H^{\alpha}(0,1)}^{2} = \|\varphi\|_{L^{2}(0,1)}^{2} + \int_{0}^{1} \int_{0}^{1} \frac{(\varphi(x) - \varphi(y))^{2}}{|x - y|^{1 + 2\alpha}} \, dx \, dy$$

If $\alpha \leq \frac{1}{2}$

$$\overline{(C^{\infty}(0,1))}_{H^{\alpha}} = H^{\alpha}(0,1) \qquad \overline{(\dot{C}^{\infty}(0,1))} = H^{\alpha}(0,1) \tag{7}$$

When $\alpha < 1/2$, for $u \in H^{\alpha}(0,1)$, its extension by zero outside (0,1) belongs to $H^{\alpha}(-1,2)$ like L^2 space. But for $\alpha = 1/2$, a function in $H^{1/2}(0,1)$ cannot be extended by zero. (Note: $H_0^{\frac{1}{2}} = H^{\frac{1}{2}}(0,1)$)

If
$$\alpha > \frac{1}{2}$$
, $\overline{(C^{\infty}(0,1))}_{H^{\alpha}} = H^{\alpha}(0,1)$ $\overline{(\dot{C}^{\infty}(0,1))}_{H^{\alpha}} = H_0^{\alpha}(0,1)$

Let $\alpha=\frac{1}{2}$. If we extend $\dot{C}^{\infty}(0,1)$ by the norm $\|\cdot\|_{H_{00}^{\frac{1}{2}}}$, then we obtain $H_{00}^{\frac{1}{2}}(0,1)$ and we can extend the function in $H_{00}^{\frac{1}{2}}(0,1)$ to a function in $H^{\frac{1}{2}}(-1,2)$ by zero.

Hence

$$H^{\frac{1}{2}}(0,1) \supseteq H^{\frac{1}{2}}_{00}(0,1)$$

$$\text{Note: } \|\varphi\|_{H^{\frac{1}{2}}(-1,1)}^2 \approx \|\varphi\|_{H^{\frac{1}{2}}(-1,0)}^2 + \|\varphi\|_{H^{\frac{1}{2}}(0,1)}^2 + \int_0^1 \frac{(\varphi(x) - \varphi(-x))^2}{x} \, dx$$

For $\varphi \in H_{00}^{\frac{1}{2}}(0,1)$

$$\|\varphi\|_{H_{00}^{\frac{1}{2}}(0,1)}^{2} = \|\varphi\|_{H^{\frac{1}{2}}(0,1)}^{2} + \int_{0}^{1} \frac{(\varphi(x))^{2}}{x(1-x)} dx$$

Hence $\varphi \to 0$ as $x \to 0, 1$.

Define $\tilde{\varphi} \in H^{\frac{1}{2}}(-1,2)$

$$\tilde{\varphi}(x) = \begin{cases} 0 & x \in (-1,0), \\ \varphi(x) & x \in (0,1), \\ 0 & x \in (1,2) \end{cases}$$

$$\begin{split} \|\tilde{\varphi}\|_{H^{\frac{1}{2}}(-1,2)}^2 &\approx \|\varphi\|_{H^{\frac{1}{2}}(0,1)}^2 + \int_0^1 \frac{(\tilde{\varphi}(x) - \tilde{\varphi}(-x))^2}{x} \, dx + \int_0^1 \frac{(\tilde{\varphi}(x) - \tilde{\varphi}(2-x))^2}{1-x} \, dx \\ &= \|\varphi\|_{H^{\frac{1}{2}}(0,1)}^2 + \int_0^1 \frac{\varphi(x)^2}{x} + \frac{\varphi(x)^2}{1-x} \, dx \\ &\approx \|\varphi\|_{H^{\frac{1}{2}}(0,1)}^2 + \int_0^1 \frac{\varphi(x)^2}{x(1-x)} \, dx \\ &\approx \|\varphi\|_{H^{\frac{1}{2}}}^2(0,1) \end{split}$$

where in the first equivalence, we omitted $\|\tilde{\varphi}\|_{H^{\frac{1}{2}}(-1,0)}^2$ and $\|\tilde{\varphi}\|_{H^{\frac{1}{2}}(1,2)}^2$ because they are zero by extension.

they are zero by extension.
$$\varphi \in H^{\alpha}(0,1), \quad \alpha > \frac{1}{2}, \quad \lim_{x \to x_0} \varphi(x) = \varphi(x_0)$$

$$(H^{\alpha}(\alpha > \frac{1}{2}) \hookrightarrow C^0(0,1))$$

Example 2.1 Let the boundary Γ of Ω be divided by three points a, b, c and call the resulting pieces $\Gamma_1, \Gamma_0, \tilde{\Gamma}_1$

Consider the problem:

$$\inf_{w \in H^1(\Omega), w|_{\Gamma_1} = \varphi, w|_{\Gamma_0} = 0} \|w\|_{H^1(\Omega)}^2$$

The above problem is equivalent to

$$\begin{cases} -\triangle w + w = 0 \\ w|_{\Gamma_1} = \varphi \\ w|_{\Gamma_0} = 0 \\ \frac{\partial w}{\partial n}|_{\tilde{\Gamma}_1} = 0 \end{cases}$$

What is correct norm of $\check{H}^{\frac{1}{2}}(\Gamma_1) = ?$

$$\|\varphi\|_{\check{H}^{\frac{1}{2}}(\Gamma_{1})}^{2} = \|\varphi\|_{H^{\frac{1}{2}}(\Gamma_{1})}^{2} + \int_{\Gamma_{1}} \frac{(\varphi(x))^{2}}{|x-a|} dx$$

It is like $H_{00}^{1/2}(\Gamma_1)$, but only one side norm because integral near the point b is missing.

FEM case, we use discrete norm:

$$H_{h}(\Omega), \qquad H_{h}(\Gamma), \qquad H_{h}(\Gamma_{1})$$

$$\|\varphi^{h}\|_{\dot{H}_{h}^{\frac{1}{2}}(\Gamma_{1})}^{2} = \|\varphi^{h}\|_{H_{h}^{\frac{1}{2}}(\Gamma_{1})}^{2} + \sum_{z_{i} \in \Gamma_{t}} \frac{(\varphi^{h}(z_{i}))^{2}}{|z_{i} - a|} h_{i}$$

3 Domain Decomposition Method: *Strip Case

*It does not have any cross point

$$\bar{\Omega} = \bigcup_{i=1}^{n} \bar{\Omega}_{i}, \qquad \gamma = \bigcup_{i=1}^{n} \partial \Omega_{i} \backslash \Gamma,$$

$$\gamma_{i} \cap \gamma_{j} = \emptyset, \quad \gamma = \bigcup_{i=1}^{n-1} \gamma_{i}$$

$$\left\{ -\Delta u = f(x) \quad x \in \Omega, \\ u(x) = 0 \quad x \in \Gamma \right\}$$

$$\Longrightarrow Au = f$$

$$\sim S\varphi = \psi$$

$$\varphi^{k+1} = \varphi^{k} - \hat{\tau}_{k} \Sigma^{-1} (S\varphi^{k} - \psi) \quad \text{where } C_{1}(\Sigma\varphi, \varphi) \leq (S\varphi, \varphi) \leq C_{2}(\Sigma\varphi, \varphi)$$

$$Au = \begin{pmatrix} A_0 & A_{01} & \cdot & \cdot & \cdot & A_{0n} \\ A_{10} & A_1 & & & & \\ \cdot & & \cdot & & 0 \\ \cdot & & & \cdot & & \\ \cdot & & & 0 & \cdot & \\ A_{n0} & & & & A_n \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ \cdot \\ \cdot \\ u_n \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ \cdot \\ \cdot \\ \cdot \\ f_n \end{pmatrix}$$

$$A_{i0}u_0 + A_iu_i = f_i,$$

$$u_i = -A_i^{-1}A_{i0}u_0 + A_i^{-1}f_i$$

Substitute and get

$$(A_0 - \sum_{i=1}^n A_{0i} A_i^{-1} A_{i0}) u_0 = f_0 - \sum_{i=1}^n A_{0i} A_i^{-1} f_i$$

We get

$$S\varphi = \psi$$

Consider an iterative method

$$\varphi^{k+1} = \varphi^k - \tau_k \Sigma^{-1} (S\varphi^k - \psi)$$

where Σ is a preconditioner satisfying

$$c_1(\Sigma\varphi,\varphi) \le (S\varphi,\varphi) \le C_2(\Sigma\varphi,\varphi)$$
 (8)

Split
$$u_0$$
 as
$$u_0 = \begin{pmatrix} \varphi_1 \\ \vdots \\ \vdots \\ \varphi_{n-1} \end{pmatrix}$$

where φ_i corresponds to γ_i . Then

$$S = S_1 + \dots + S_{n-1}$$

$$\Omega_i \to S_i u_0 = \begin{pmatrix} 0 & 0 \\ S_{11}^{(i)} & S_{12}^{(i)} \\ S_{21}^{(i)} & S_{22}^{(i)} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \gamma_l \\ \gamma_m \\ 0 \end{pmatrix}$$

$$\tilde{S}_i pprox egin{pmatrix} \Sigma_l & 0 \\ 0 & \Sigma_m \end{pmatrix}$$

Problem: Exnted by mini norm with φ_l, φ_m on γ_l, γ_m . $(\Sigma_l \varphi_l, \varphi_l) \approx \|\varphi_l\|_{H^{\frac{1}{2}}}^2 (\gamma_l)$

$$(\Sigma_m \varphi_m, \varphi_m) \approx \|\varphi_m\|_{H^{\frac{1}{2}}_{\infty}}^2 (\gamma_m)$$

$$\begin{array}{c|c} \Gamma_0 \\ \hline \gamma_l & \Omega_i & \gamma_m \\ \hline \end{array}$$

$$\left(S_i \begin{pmatrix} \varphi_l \\ \varphi_m \end{pmatrix}, \begin{pmatrix} \varphi_l \\ \varphi_m \end{pmatrix}\right) = \inf_{w^h \in H_h(\Omega_i), w^h|_{\gamma_l} = \varphi_l, w^h|_{\gamma_m} = \varphi_m, w^h|_{\Gamma \cap \partial \Omega_i} = 0} |w^h|_{H^1(\Omega_i)}^2$$

$$\approx \|\varphi_l^h\|_{H_{00}^{\frac{1}{2}}(\gamma_l)}^2 + \|\varphi_m^h\|_{H_{00}^{\frac{1}{2}}(\gamma_m)}^2$$

by previous analysis. Hence we have preconditioner for global Schur complement as block diagonal. Consider some one substructure γ_{ℓ} and omit the subindex ℓ .

$$\|\varphi^{h}\|_{H_{00}^{\frac{1}{2}}(\gamma)}^{2} = \sum_{z_{i} \in \gamma} (\varphi^{h}(z_{i}))^{2} \cdot h + \sum_{z_{i}, i \neq j} \sum_{z_{j}} \frac{(\varphi^{h}(z_{i}) - \varphi^{h}(z_{j}))^{2}}{|z_{i} - z_{j}|^{2}} h_{i} h_{j} + \sum_{z_{i} \in \gamma} \frac{(\varphi^{2}(z_{i}))^{2}}{(z_{i} - a)(z_{j} - b)} h_{i}$$

$$\approx \sum_{\tilde{z}_{i} \in \tilde{\gamma}} \dots + \dots + \dots$$

$$= \|\tilde{\varphi}^{h}\|_{H_{00}^{\frac{1}{2}}(\tilde{\gamma})}^{2}$$

where in the second equation, we have everything replaced by its "tilde" (map it onto [0,1]) which is for a curved boundary.

Hence consider the square domain. For example, consider the domain with 4 subdomains(Ω_i , i=1,2,3,4) whose interfaces(γ_i , i=1,2,3) do not meet each other. Then, we have

$$S = \begin{bmatrix} S_1 + S_2^{(1,1)} & S_2^{(1,2)} \\ S_2^{(2,1)} & S_2^{(2,2)} + S_3^{(1,1)} & S_3^{(1,2)} \\ & S_3^{(2,1)} & S_3^{(2,2)} + S_4 \end{bmatrix}$$

where the submatrix S_i is the Schur-Complement matrix corresponding to the subdomain Ω_i . For instance,

$$S_2 = \begin{bmatrix} S_2^{(1,1)} & S_2^{(1,2)} \\ S_2^{(2,1)} & S_2^{(2,2)} \end{bmatrix}$$

and $S_2^{(i,j)}$ is the S-C corresponding to Ω_2 and γ_i and γ_j . Here, we may write

$$S = \tilde{S}_1 + \tilde{S}_2 + \tilde{S}_3 + \tilde{S}_4$$

where \tilde{S}_i is just the extension of S_i by zero elements. Now, in terms of the norm equivalence we have

$$S_1 \approx \Sigma_1, \qquad S_2 \approx \begin{bmatrix} \Sigma_1 & & \\ & \Sigma_2 \end{bmatrix}, \qquad S_3 \approx \begin{bmatrix} \Sigma_2 & & \\ & \Sigma_3 \end{bmatrix}, \qquad S_4 \approx \Sigma_3$$

Note that $(\Sigma_i \phi_i, \phi_i) \approx \|\phi\|_{H^{1/2}_{00}(\gamma_i)}^2$. Hence, we have

$$S \approx \begin{bmatrix} \Sigma_1 & & \\ & \Sigma_2 & \\ & & \Sigma_3 \end{bmatrix}$$

Given a vertical interface -line segment, we introduce an artificial uniform domain and consider the problem with zero boundary condition on three side except Γ_1 on the left. And consider the Schur complement of this problem, denote it by S.

For given γ_i interface suppose we have mapping from γ_i onto one side of rectangular domain with uniform mesh of size h=1/n, thus now we can consider our interface problem as the rectangular model. The Shur-Complement of this model satisfies

$$(S\phi,\phi) \approx \|\phi^h\|_{H_{00}^{1/2}(\Gamma_1)}^2$$

In the rectangular domain, we have

$$A_{\Omega} = \begin{bmatrix} A_0 + 2I & -I & & & & \\ -I & A_0 + 2I & -I & & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -I & A_0 + 2I & -I \\ & & & & -I & \frac{1}{2}A_0 + I \end{bmatrix}$$

$$:= \begin{bmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{bmatrix}$$

where

$$A_0 = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix},$$

and

$$\bar{A}_{12} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & -I \end{bmatrix}^t = (\bar{A}_{21})^t, \qquad \bar{A}_{22} = \frac{1}{2}A_0 + I$$

Now we have

$$S = \bar{A}_{22} - \bar{A}_{21}(\bar{A}_{11})^{-1}\bar{A}_{12}$$

and

$$(S\phi, \phi) = \inf_{u^h|_{\Gamma_1} = \phi^h, u^h|_{\partial\Omega\backslash\Gamma_1} = 0} \|u^h\|_{H^1(\Omega)}^2$$
$$= \inf_{u^h|_{\Gamma_1} = \phi^h, u^h|_{\partial\Omega\backslash\Gamma_1} = 0} (A_{\Omega}u, u)$$

By the diagonalization, we decompose A_0 as

$$A_0 = Q\Lambda Q^t$$

where $Q=\begin{bmatrix}q_1 & q_2 & \dots & q_{n-1}\end{bmatrix}$, Λ is the diagonal matrix with the diagonal entries $\lambda_1,\lambda_2,\dots,\lambda_{n-1}$, and $A_0q_i=\lambda_iq_i$. Note that it is known that the eigenvalue $\lambda_i=4sin^2\frac{\pi}{2n}$, the jth component of the eigenvector q_i is $\sqrt{\frac{2}{n}}sin(\frac{i\pi}{n}j)$, and $QQ^t=I$. Using this, we get

$$(\bar{A}_{11})^{-1} = \begin{bmatrix} Q & & & & \\ & Q & & & \\ & & \ddots & & \\ & & & Q \end{bmatrix} \begin{bmatrix} \Lambda + 2I & -I & & & \\ -I & \Lambda + 2I & -I & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -I & \Lambda + 2I \end{bmatrix}^{-1} \begin{bmatrix} Q^t & & & & \\ & Q^t & & & \\ & & \ddots & & \\ & & & Q^t \end{bmatrix}$$

and

$$\bar{A}_{21}(\bar{A}_{11})^{-1}\bar{A}_{12} = \begin{bmatrix} 0 & 0 & \dots & -Q \end{bmatrix} \begin{bmatrix} \Lambda + 2I & -I & & & \\ -I & \Lambda + 2I & -I & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -I & \Lambda + 2I \end{bmatrix}^{-1} \begin{bmatrix} 0 & & \\ 0 & & \\ \vdots & & \\ -Q^t \end{bmatrix}$$

$$= QB_{22}Q^t$$

where

$$B := \begin{bmatrix} \Lambda + 2I & -I & & & \\ -I & \Lambda + 2I & -I & & & \\ & \ddots & \ddots & \ddots & \\ & & -I & \Lambda + 2I \end{bmatrix}^{-1} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Now let's compute the matrix B_{22} . Let $e_i = \begin{bmatrix} 0 & \cdots & 1 & \cdots & 0 \end{bmatrix}^T$, where 1 is in the *i*-th position. Consider the following matrix equation.

$$\begin{bmatrix} \Lambda + 2I & -I \\ -I & \Lambda + 2I & -I \\ & \ddots & \ddots & \ddots \\ & & -I & \Lambda + 2I \end{bmatrix} \begin{bmatrix} x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_{n-1}^{(i)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ e_i \end{bmatrix}$$

Then the (n-1)-th solution vector of the above matrix equation is the *i*-th column of the matrix B_{22} , that is,

$$B_{22} = \begin{bmatrix} x_{n-1}^{(1)} & x_{n-1}^{(2)} & \cdots & x_{n-1}^{(n-1)} \end{bmatrix}$$

Denote the vector $x_k^{(i)}$ by

$$x_k^{(i)} = \begin{bmatrix} x_k^{(i)}(1) \\ x_k^{(i)}(2) \\ \vdots \\ x_k^{(i)}(n-1) \end{bmatrix}$$

Consider j-th component. Then we obtain the following matrix equation

$$\begin{bmatrix} \lambda_j + 2 & -1 & & \\ -1 & \lambda_j + 2 & -1 & \\ & \ddots & \ddots & \ddots \\ & & -1 & \lambda_j + 2 \end{bmatrix} \begin{bmatrix} x_1^{(i)}(j) \\ x_2^{(i)}(j) \\ \vdots \\ x_{n-1}^{(i)}(j) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \delta_{ij} \end{bmatrix}$$

(Some detail) Consider the vector equation with i fixed:

First block corresponds to

$$\begin{array}{lll} (\lambda+2)x_1^{(i)}(1) & -x_2^{(i)}(1) & = 0 \\ +(\lambda+2)x_1^{(i)}(2) & -x_2^{(i)}(2) & = 0 \\ & \cdots \\ +(\lambda+2)x_1^{(i)}(n-1) & -x_2^{(i)}(n-1) & = 0 \end{array}$$

Collect j-th line. Then when i=j Hence

$$x_{n-1}^{(i)} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ x_{n-1}^{(i)}(i) \\ \vdots \\ 0 \end{bmatrix}$$

Combining the vectors $x_{n-1}^{(i)}$, we can obtain the matrix B_{22}

$$B_{22} = \begin{bmatrix} x_{n-1}^{(1)}(1) & 0 & \cdots & 0 \\ 0 & x_{n-1}^{(2)}(2) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & x_{n-1}^{(n-1)}(n-1) \end{bmatrix}$$

Then

$$\tilde{S} = \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{-1}\bar{A}_{12} = \frac{1}{2}A + I - QB_{22}Q_T = Q(\frac{1}{2}\Lambda + I - B_{22})Q_T$$

and the i-th eigenvalue of S is

$$\lambda_i(\tilde{S}) = \frac{1}{2}\lambda_i + 1 - x_{n-1}^{(i)}(i).$$

To compute $x_{n-1}^{(i)}(i)$, we have to solve the following matrix equation.

$$\begin{bmatrix} \lambda_i + 2 & -1 & & \\ -1 & \lambda_i + 2 & -1 & \\ & \ddots & \ddots & \ddots \\ & & -1 & \lambda_i + 2 \end{bmatrix} \begin{bmatrix} x_1^{(i)}(i) \\ x_2^{(i)}(i) \\ \vdots \\ x_{n-1}^{(i)}(i) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Let $\alpha_i = \frac{1}{2}\lambda_i + 1$. By using Gauss-elimination technique, (multiply $2\alpha_i$ to j-th row and add j-1-th to j-th row) we obtain the following

$$\begin{bmatrix} d_1 & -d_0 & & 0 \\ & d_2 & -d_1 & \\ & & \ddots & -d_{n-3} \\ 0 & & & d_{n-1} \end{bmatrix} \begin{bmatrix} x_1^{(i)}(i) \\ x_2^{(i)}(i) \\ \vdots \\ x_{n-1}^{(i)}(i) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ d_{n-2} \end{bmatrix}$$

where $d_0 = 1$, $d_1 = 2\alpha_i$, and $d_{j+1} = 2\alpha_i d_j - d_{j-1}$, for $j = 1, 2, \dots, n-2$. Let $U_n(x)$ be the second kind Chebyshev polynomial of degree n, that is,

$$U_n(x) = \frac{1}{2\sqrt{x^2 - 1}}((x + \sqrt{x^2 - 1})^{n+1} - (x + \sqrt{x^2 - 1})^{-(n+1)}).$$

(Note the first kind is determined by the same condition with different I.C. $d_0 = 1, d_1 = \alpha_i$)

Then $d_j = U_j(\alpha_i)$ and

$$x_{n-1}^{(i)}(i) = \frac{d_{n-2}}{d_{n-1}} = \frac{U_{n-2}(\alpha_i)}{U_{n-1}(\alpha_i)}.$$

Hence

$$\begin{split} \lambda_i(\tilde{S}) &= \alpha_i - \frac{d_{n-2}}{d_{n-1}} \\ &= \alpha_i - \frac{U_{n-2}(\alpha_i)}{U_{n-1}(\alpha_i)} \\ &= \alpha_i - \frac{(\alpha_i + \sqrt{\alpha_i^2 - 1})^{n-1} - (\alpha_i + \sqrt{\alpha_i^2 - 1})^{-n+1}}{(\alpha_i + \sqrt{\alpha_i^2 - 1})^n - (\alpha_i + \sqrt{\alpha_i^2 - 1})^{-n}} \\ &= \sqrt{\alpha_i^2 - 1} \, \frac{(\alpha_i + \sqrt{\alpha_i^2 - 1})^n + (\alpha_i + \sqrt{\alpha_i^2 - 1})^{-n}}{(\alpha_i + \sqrt{\alpha_i^2 - 1})^n - (\alpha_i + \sqrt{\alpha_i^2 - 1})^{-n}} \\ &= \sqrt{\alpha_i^2 - 1} f(x) \end{split}$$

where

$$f(x) = \frac{x+1/x}{x-1/x}, \quad x = \left(\alpha_i + \sqrt{\alpha_i^2 - 1}\right)^n$$

Using $\sqrt{\alpha_i^2 - 1} = \sqrt{\lambda_i} \sqrt{1 + \frac{\lambda_i}{4}}$, we have the following estimates for $\lambda_i(\tilde{S})$.

$$\sqrt{\lambda_i} \le \lambda_i(\tilde{S}) \le \sqrt{\lambda_i} C(\lambda_{min}, \lambda_{max})$$

where

$$C(\lambda_{min}, \lambda_{max}) = \sqrt{1 + \frac{\lambda_{max}}{4} \cdot \frac{\beta^n + \beta^{-n}}{\beta^n - \beta^{-n}}},$$
$$\beta = 1 + \frac{1}{2}\lambda_{min} + \sqrt{\lambda_{min} + \frac{1}{4}\lambda_{min}^2}$$

Since $\lambda_{min} = 4\sin^2(\frac{\pi}{2n}) \simeq \frac{1}{n^2}$,

$$\beta^n \ge (1 + \sqrt{\lambda_{min}})^n \simeq O(1).$$

Hence by letting $\Sigma := A^{\frac{1}{2}} = Q\Lambda^{\frac{1}{2}}Q^T$, we have the following inequality

$$(\Sigma \phi, \phi) \le (\tilde{S}\phi, \phi) \le C(\Sigma \phi, \phi)$$

Thus

$$\tilde{S} = QJQ^T \approx A^{1/2}, \quad J = diag(\lambda_i(\tilde{S}))$$

$$\Sigma^{-1} = Q\Lambda^{-\frac{1}{2}}Q^T, \quad Q = (q_1, \dots, q_{n-1}), q_i(j) = \sqrt{\frac{2}{n}}\sin\frac{i\pi j}{n}$$

Since $\lambda_{max} \leq 4$, we have $C \leq \frac{5\sqrt{2}}{3}$. If we use FFT algorithm, then the cost to compute $\Sigma^{-1}\phi$ is of order $h^{-1}\log(h^{-1})$. What is $\|\phi^h\|_{H^{\frac{1}{2}}}^2$? Since(as a discrete inner product on Γ)

$$(\phi^h, \psi^h)_{L_{2,h}} = h(\phi, \psi),$$

Figure 1: Domain and Grid Numbering

where the right hand side is vector inner product.

$$\|\phi^h\|_{H^1}^2 = (\frac{1}{h^2}A\phi, \phi)_{L_{2,h}} = \frac{1}{h}(A\phi, \phi),$$

we have

$$\|\phi^h\|_{H^{\frac{1}{2}}}^2 \simeq \left(\left(\frac{1}{h^2} A \right)^{1/2} \phi, \phi \right)_{L_{2,h}} = (A^{\frac{1}{2}} \phi, \phi).$$

So we are done with Dirichlet B.C. Next we consider Mixed B.C. For Dirichlet boundary conditions we have

$$S(\varphi,\varphi) \approx \sum_{l} (\Sigma_{l}\varphi,\varphi), \qquad \Sigma_{l} = \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 \end{bmatrix}^{1/2}.$$

For mixed boundary conditions we have

$$S(\varphi, \varphi) \approx \sum_{l} \|\varphi^{h}\|_{\check{H}^{\frac{1}{2}}(\gamma_{l})}^{2},$$

where a_l is the endpoint of the interface γ_l lying on the Dirichlet boundary, and

$$\|\varphi\|_{\check{H}^{\frac{1}{2}}(\gamma_{l})}^{2} = \|\varphi\|_{H^{\frac{1}{2}}(\gamma_{l})}^{2} + \int_{\gamma_{l}} \frac{\varphi^{2}(x)}{|x - a_{l}|} dx.$$

Let

$$A_{1} = \begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{bmatrix}, \qquad D = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & \ddots & & \\ & & & \ddots & \\ & 0 & & 1 & \\ & & & & 1/2 \end{bmatrix},$$

and

$$A_{\Omega} = \begin{bmatrix} A_1 + 2D & -D & & & \\ -D & A_1 + 2D & -D & & & \\ & \ddots & \ddots & \ddots & & \\ & & -D & A_1 + 2D & -D & \\ & & & -D & \frac{1}{2}A_1 + D \end{bmatrix}.$$

We note that A_1 corresponds to the first right vertical block

$$(A_{\Omega}u, u) = \sum_{x(i,j)\in\Omega} \{(u_{i,j} - u_{i-1,j})^2 + (u_{i,j} - u_{i,j-1})^2\}$$
$$+ \frac{1}{2} \sum_{i=1}^n (u_{n,j} - u_{n,j-1})^2 + \frac{1}{2} \sum_{i=1}^n (u_{i,n} - u_{i-1,n})^2$$

where the third sum corresponds to the left vertical and fourth sum corresponds to top horizontal line.

$$\approx \sum_{x(i,j)\in\Omega} ()^2 + \sum_{j=1}^n ()^2 + \sum_{i=1}^n ()^2$$
$$= (B_{\Omega}u, u),$$

where

$$B_{\Omega} = \begin{bmatrix} A_1 + 2I & -I & & & & \\ -I & A_1 + 2I & -I & & & \\ & \ddots & \ddots & \ddots & & \\ & & -I & A_1 + 2I & -I \\ & & & -I & \frac{1}{2}A_1 + I \end{bmatrix}.$$

Lemma 3.1 $A \sim B \Longrightarrow S_A \sim S_B$

$$\lambda_{\min}(A_1) = O(h^2)$$
$$\lambda_{\max}(A_1) = O(1)$$

$$S \approx \begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & -1 & & & & \\ & \ddots & \ddots & \ddots & & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{bmatrix}^{1/2} .$$

In this case the eigenvectors are not easy constructed. So consider

$$S = \left(\frac{1}{2}A_{1} + D\right) - [0 \cdots 0 - D] \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ -D & A_{1} + 2D & -D \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ -D \end{bmatrix}$$

$$= D\left(\frac{1}{2}D^{-1}A_{1} + I\right) - D[0 \cdots 0 - I] \begin{bmatrix} D & \vdots \\ 0 & \ddots & \ddots \\ D & \ddots & D \end{bmatrix} \begin{bmatrix} D^{-1}(A_{1} + 2I) & -I \\ -I & \ddots & \ddots \\ D & \ddots & \ddots & \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ -D \end{bmatrix}$$

$$= D\left(\frac{1}{2}D^{-1}A_{1} + I\right) - D[0 \cdots 0 - I] \begin{bmatrix} D^{-1}(A_{1} + 2I) & -I \\ -I & \ddots & \ddots \\ \vdots & \ddots & \ddots & \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ -I \end{bmatrix}$$

The following matrix corresponds to the finite difference version for Neumann problem by Samarsky:

$$A_2 = D^{-1}A_1 = \begin{bmatrix} 2 & -1 & & & \\ -1 & \ddots & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -2 & 2 \end{bmatrix}.$$

We obtain

$$A_2 = Q_2 \Lambda_2 Q_2^{-1} = Q_2 \Lambda_2 Q_2^T D,$$

where

$$Q_2 = [q_1, q_2, \cdots], \qquad q_i(j) = \sqrt{\frac{2}{n}} \sin \frac{(2i-1)\pi j}{2n}, \qquad \lambda_i = 4\sin^2 \frac{(2i-1)\pi}{2n},$$

for $i, j = 1, \dots, n$. Here $\tilde{\Lambda}_2$ is obtained from Chebysheff polynomial.

$$S = DQ_2\tilde{\Lambda}_2Q_2^TD \approx DQ_2\Lambda_2^{1/2}Q_2^TD = \Sigma_{DN}, \qquad \Sigma_{DN}^{-1} = Q_2\Lambda_2^{-1/2}Q_2^T.$$

For implementation, use FFT for Q_2 .

Fact: D-orthogonal basis

$$\begin{pmatrix}
A_2q = D^{-1}A_1q = \lambda q & \Longrightarrow & A_1q = \lambda Dq \\
(Dq_i, q_j) = \delta_{ij} \\
(D^{-1/2}A_1D^{-1/2})D^{1/2}q = \lambda D^{1/2}q \\
\tilde{q} = D^{1/2}q \\
(Dq_i, q_j) = (\tilde{q}_i, \tilde{q}_j) = \delta_{ij} & \Longrightarrow Q_2^T DQ = I & \Longrightarrow Q_2^{-1} = Q^T D.
\end{pmatrix}$$

Figure 2: Two possibilities

Neumann B.C. both on top and bottom of boundary

In this case, we have

$$A_3 = \begin{bmatrix} 1 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{bmatrix}, \qquad Q_3 = \begin{bmatrix} 1/2 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 & \\ & & & & 1/2 \end{bmatrix}$$

Repeat the same analysis and we have two possibilities:

$$\Sigma_{NN} = A_3^{1/2} + \frac{1}{n} I, \qquad \Sigma_{NN}^{(N)} = A_3^{1/2}$$

$$\begin{split} &\Omega_1 &\longrightarrow S^{(1)} \approx \Sigma_{DD}^{(1)}, \\ &\Omega_2 &\longrightarrow S^{(2)} = \begin{bmatrix} S_{11}^{(2)} & S_{12}^{(2)} \\ S_{21}^{(2)} & S_{22}^{(2)} \end{bmatrix} \approx \begin{bmatrix} \Sigma_{DD}^{(1)} & \\ & \Sigma_{DD}^{(2)} \end{bmatrix} \\ &\Omega_3 &\longrightarrow S^{(3)} = \begin{bmatrix} S_{11}^{(3)} & S_{12}^{(3)} \\ S_{21}^{(3)} & S_{22}^{(3)} \end{bmatrix} \approx \begin{bmatrix} \Sigma_{DN}^{(1)} & \\ & \Sigma_{DN}^{(3)} \end{bmatrix} \\ &\Omega_4 &\longrightarrow S^{(4)} \approx \Sigma_{DN}^{(3)}, \end{split}$$

$$\Sigma = \begin{bmatrix} \Sigma_{DD}^{(1)} & & & \\ & \Sigma_{DD}^{(2)} + \Sigma_{DN}^{(2)} & & \\ & & \Sigma_{DN}^{(3)} + \Sigma_{ND}^{(3)} \end{bmatrix} \approx \begin{bmatrix} \Sigma_{DD}^{(1)} & & \\ & \Sigma_{DD}^{(2)} & \\ & & \Sigma_{DD}^{(3)} \end{bmatrix}$$

Figure 3: Domain partition with B.C.

Here $\Sigma_{DN}^{(2)}$ is smaller than $\Sigma_{DD}^{(2)}$ and $\Sigma_{ND}^{(3)} = \Sigma_{ND}^{(3)} \approx \Sigma_{DD}^{(3)}$.

$$\Sigma_{DD}^{(2)} \leq \Sigma_{DD}^{(2)} + \Sigma_{DN}^{(2)} \leq c\Sigma_{DD} \quad \text{on } \gamma_{2}$$

$$\Sigma_{DN}^{(3)} + \Sigma_{ND}^{(3)} \approx \Sigma_{DD}^{(3)} \quad \text{on } \gamma_{3}$$

$$\text{Note } (\Sigma_{DN}^{(3)})^{-1} + (\Sigma_{ND}^{(3)})^{-1} \neq (\Sigma_{DN} + \Sigma_{ND})^{-1}.$$

$$(\Sigma_{DN}\varphi,\varphi) \approx \|\varphi^h\|_{H^{1/2}}^2 + \int \frac{(\varphi^h(x))^2}{x - a_3} dx$$

$$\Sigma = \begin{bmatrix} \Sigma_{DD}^{(1)} & & \\ & \Sigma_{NN}^{(2)} & \\ & & \Sigma_{DD}^{(3)} \end{bmatrix} \not\approx S$$

This is only semi norm. What to do in this case? Use $-\Delta \approx -\Delta + I$ and construct a preconditioner for $-\Delta u + u$. Hence we have $\Sigma_{NN}^{(2)}$ in the second block of above expression.

Lemma 3.2 Let

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \qquad A^{-1} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}.$$

Then $B_{11}^{-1} = A_{11} - A_{12}A_{22}^{-1}A_{21}$.

Figure 4: Another B.C.

Proof.

$$\begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I_1 & 0 \\ 0 & I_2 \end{bmatrix}$$

$$\Longrightarrow \qquad B_{11}A_{11} + B_{12}A_{21} = I_1, \ B_{11}A_{12} + B_{12}A_{22} = 0$$

$$B_{21}A_{11} + B_{22}A_{21} = 0, \ B_{21}A_{12} + B_{22}A_{22} = I_2$$

$$\Longrightarrow \qquad B_{12} = -B_{11}A_{12}A_{22}^{-1}, \ B_{11}A_{11} - B_{11}A_{12}A_{22}^{-1}A_{21} = I_1$$

$$\Longrightarrow \qquad B_{11}^{-1} = A_{11} - A_{12}A_{22}^{-1}A_{21}$$

Note: Similar result holds for B_{22} . On artificial domain before,

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

$$\begin{bmatrix} 0 & I \end{bmatrix} A^{-1} \begin{bmatrix} 0 \\ I \end{bmatrix} = S^{-1}$$

$$u = \begin{bmatrix} 0 \\ \varphi \end{bmatrix}, \ \psi = \tilde{S}^{-1}\varphi \implies v = A^{-1}u = \begin{bmatrix} \times \\ \psi \end{bmatrix},$$

$$\varphi^{k+1} = \varphi^k - \tau_k \Sigma^{-1} (S\varphi^k - \psi), \qquad \Sigma^{-1} = \tilde{S}^{-1}$$

$$\Sigma \longleftarrow \text{Neumann}, \qquad S \longleftarrow \text{Dirichlet}$$

$$S\varphi = (A_{22} - A_{21}A_{11}^{-1}A_{12})\varphi \longleftarrow \text{Orignal problem}$$

$$\Sigma = \begin{bmatrix} \Sigma_{**}^{(1)} & & \\ & \Sigma_{**}^{(2)} & \\ & & \Sigma_{**}^{(3)} \end{bmatrix} \approx S$$

Figure 5: Cross Point

$$\Sigma^{-1} = \begin{bmatrix} (\Sigma_{**}^{(1)})^{-1} & & \\ & (\Sigma_{**}^{(2)})^{-1} & \\ & & (\Sigma_{**}^{(3)})^{-1} \end{bmatrix}$$

$$\Sigma_{**}^{(l)} \approx \tilde{S}_{**}^{(l)}, \qquad (\tilde{S}_{**}^{(l)})^{-1} = \begin{bmatrix} 0 & I_l \end{bmatrix} \tilde{A}_l^{-1} \begin{bmatrix} 0 \\ I_l \end{bmatrix}$$

Domain Decomposition: Cross-point Case

$$S = S^{(1)} + S^{(2)} + S^{(3)} + S^{(4)} \approx \Sigma^{(1)} + \Sigma^{(2)} + \Sigma^{(3)} + \Sigma^{(4)} = \Sigma$$

On each angle, construct preconditioner. Inversion of each $\Sigma^{(i)}$ is meaningless. Problem: What is Σ^{-1} ?

$$\Sigma^{-1} \not\approx (\Sigma^{(1)})^+ + (\Sigma^{(2)})^+ + (\Sigma^{(3)})^+ + (\Sigma^{(4)})^+$$

Trace theorem is not enough. We need ASM.

4 Schwarz alternating method (H.A.Schwarz,1870)

$$\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2$$

$$\begin{cases}
-\Delta u = f & \text{in } \Omega \\
u(x) = 0 & x \in \Gamma
\end{cases}$$
(9)

$$u^{2k+1} = u^{2k} + u_{2k+1}$$

$$\begin{cases}
-\Delta u^{2k+1} = f & \text{in } \Omega_1 \\
u_{2k+1} = 0 & \text{on } \Gamma_1 = \partial \Omega_1
\end{cases}$$
(10)

(10) is equivalent to solving

$$\begin{cases} -\Delta u_{2k+1} = f - \Delta u^{2k} \\ u_{2k+1} = 0 & \text{in } \Gamma_1 \end{cases}$$

and set

$$u^{2k+1} = u^{2k} + u_{2k+1}$$

In subdomain Ω_2

$$u^{2k+2} = u^{2k+1} + u_{2k+2}$$

$$\begin{cases} -\Delta u^{2k+2} = f & \text{in } \Omega_2 \\ u_{2k+2} = 0 & \text{on } \Gamma_2 = \partial \Omega_2 \end{cases}$$

$$k = 0, u^{1} = u^{0} + u_{1}$$

$$\begin{cases}
-\Delta u^{1} = f & \text{in } \Omega \\
u^{1}|_{\Gamma_{1} \cup \Gamma} = 0 \\
u^{1}|_{\Gamma_{1} \setminus \Gamma} = u^{0}|_{\Gamma_{1} \setminus \Gamma}
\end{cases}$$

$$\iff \begin{cases}
-\Delta u^{1} = f & \text{in } \Omega, \\
u_{1} = 0 & \text{on } \Gamma_{1}.
\end{cases}$$

$$a(u,v) = \int_{\Omega} (\nabla u, \nabla v) \, d\Omega$$

$$l(v) = \int f v \, d\Omega$$

 $u \in H_0^1(\Omega) : a(u, v) = l(v) \quad \forall v \in H_0^1(\Omega)$ (Considered by S.L. Sobolev, 1936)

$$u_{2k+1} \in H_0^1(\Omega_1) :$$

$$a(u^{2k} + u_{2k+1}, v) = l(v) \quad \forall v \in H_0^1(\Omega_1)$$

$$u^{2k+1} = u^{2k} + u_{2k+1}$$

$$u_{2k+2} \in H_0^1(\Omega_2) :$$

$$a(u^{2k+1} + u_{2k+2}, v) = l(v) \quad \forall v \in H_0^1(\Omega_2)$$

$$u^{2k+2} = u^{2k+1} + u_{2k+2}$$

$$\begin{split} H &= H^1_0(\Omega) \quad H_1 = H^1_0(\Omega_1), \quad H_2 = H^1_0(\Omega_2) \\ P_i &: H \to H_i \quad \text{, orthogonal projection in } a(u,v) \end{split}$$

$$a(u_{2k+1}, v) = l(v) - a(u^{2k}, v) = a(u, v) - a(u^{2k}, v)$$

= $a(u - u^{2k}, v) \quad \forall v \in H_1$

$$\begin{cases} u_{2k+1} = P_1(u - u^{2k}) \\ u^{2k+1} = u^{2k} + P_1(u - u^{2k}) \\ u^{2k+2} = u^{2k+1} + P_2(u - u^{2k+1}) \end{cases} \Leftarrow = \begin{cases} u^{2k+1} - u \\ = u^{2k} - u + P_1(u - u^{2k}) \\ = (I - P_1)(u - u^{2k}) \end{cases}$$

$$\psi^k = u^k - u$$

$$Q_i : H \to H_1^{\perp}, \quad Q_i = I - P_i$$

$$\psi^{2k+1} = (I - P_1)\psi^{2k} = Q_1\psi^{2k}$$

$$\psi^{2k+2} = (I - P_2)\psi^{2k+1} = Q_2\psi^{2k+1}$$

$$\begin{array}{lll} k \geq 1 \\ a(\psi^{2k+1},\psi^{2k+1}) & = & \|\psi^{2k+1}\|_a^2 = \|Q_1\psi^{2k}\|_a^2 \\ & = & \|Q_1Q_2\psi^{2k}\|_a^2 = a(Q_1Q_2\psi^{2k},Q_1Q_2\psi^{2k}) \\ & = & a(Q_2Q_1Q_1Q_2\psi^{2k},\psi^{2k}) = a(Q_2Q_1Q_2\psi^{2k},\psi^{2k}) \\ & = & a((I-(P_1+P_2)+P_1P_2+P_2P_1-P_2P_1P_2)\psi^{2k},\psi^{2k}) \\ & = & a(\psi^{2k},\psi^{2k}) - a((P_1+P_2)\psi^{2k},\psi^{2k}) + a(P_1P_2\psi^{2k},\psi^{2k}) \\ & & + a(P_2P_1\psi^{2k},\psi^{2k}) - a(P_2P_1P_2\psi^{2k},\psi^{2k}) \\ & = & a(\psi^{2k},\psi^{2k}) - a((P_1+P_2)\psi^{2k},\psi^{2k}) \end{array}$$

Assume $\alpha a(u, u) \le a((P_1 + P_2)u, u) \quad \forall u \in H$

$$\begin{cases} \|\psi^{2k+1}\|_a \le (1-\alpha)^{1/2} \|\psi^{2k}\|_a \\ \|\psi^{2k+2}\|_a \le (1-\alpha)^{1/2} \|\psi^{2k+1}\|_a \end{cases}$$
$$\implies \|\psi^{2k+2}\|_a < (1-\alpha) \|\psi^{2k}\|_a$$

5 Additive Schwarz Method (A.Matsokin, SN 1985)

$$\alpha a(u, u) \le a((P_1 + P_2)u, u) \le 2a(u, u) \quad \forall u \in H$$

$$u^0 \in H$$

$$u^{k+1} = u^k - \tau_k (P_1 + P_2)(u^k - u)$$
 $k = 0, 1, 2, \cdots$

Theorem 5.1 Let H be a Hilbert space with (u, v)

$$H = H_1 + H_2 + \dots + H_m$$
$$A: H \to H \quad 0 < A = A^* < \infty$$
$$a(u, v) = (Au, v)$$

 $P_i: H \to H_i$ orthogonal projection in a(u, v)

 $a) \exists \alpha : \forall u \in H \quad \exists u_i \in H_i$

$$u_1 + u_2 + \dots + u_m = u$$

$$\alpha(a(u_1, u_1) + a(u_2 + u_2) + \dots + a(u_m, u_m)) \le a(u, u)$$

b)
$$\alpha a(u, u) \le a((P_1 + P_2 + \dots + P_m)u, u) \quad \forall u \in H$$

Then a) is equivalent to b)

Proof. b)
$$\Longrightarrow$$
 a)

$$P = P_1 + P_2 + \dots + P_m$$
$$\infty > P = P^* > 0$$

 $\forall u, \exists v \text{ s.t. } u = Pv = \sum_{i=1}^{m} P_i v$

Let $u_i = P_i v$

$$\sum_{i=1}^{m} a(u_i, u_i) = \sum_{i=1}^{m} a(P_i v, P_i v) = \sum_{i=1}^{m} a(P_i v, v) = a(\sum_{i=1}^{m} P_i v, v)$$
$$= a(u, v) = a(u, P^{-1} u) \le \frac{1}{\alpha} a(u, u)$$

 $a) \Longrightarrow b)$

Lemma : $||u||_a = \sup_{v \in H} \frac{a(u,v)}{||v||_a}$

(proof):

$$\sup_{v \in H} \frac{a(u,v)}{\|v\|_a} \leq \mathrm{C.B} \leq \sup_{v \in H} \frac{\|u\|_a\|v\|_a}{\|v\|_a} = \|u\|_a$$

Take
$$v = u$$

$$\sup \frac{a(u,v)}{\|v\|_a} \ge \frac{a(u,u)}{\|u\|_a} = \|u\|_a \quad \Box$$

$$\begin{split} \|u\|_{a} &= \sup_{v \in H} \frac{a(u,v)}{\|v\|_{a}} = \sup_{v \in H} \frac{a(u,\sum_{i=1}^{m}v_{i})}{\|v\|_{a}} \\ &= \sup_{v \in H} \sum_{i=1}^{m} \frac{a(u,P_{i}v_{i})}{\|v\|_{a}} = \sup_{v \in H} \sum_{i=1}^{m} \frac{a(P_{i}u,v_{i})}{\|v\|_{a}} \\ &\leq \operatorname{C.B.} \leq \sup_{v \in H} \frac{\sum_{i=1}^{m} \|P_{i}u\|_{a}\|v_{i}\|_{a}}{\|v\|_{a}} \leq \operatorname{C.B.} \\ &\leq \sup_{v \in H} \frac{\sqrt{\sum_{i=1}^{m} \|P_{i}u\|_{a}^{2} \cdot \sqrt{\sum_{i=1}^{m} \|v_{i}\|_{a}^{2}}}{\|v\|_{a}} \\ &\leq \leq \frac{1}{\sqrt{\alpha}} \sqrt{\sum_{i=1}^{m} \|P_{i}u\|_{a}^{2}} \end{split}$$

by (a). \square

We want to show for any $u \in H_0^1(\Omega)$ there exists $u_i \in H_0^1(\Omega)$: such that $u_1 + u_2 = u$ and

$$\begin{split} \|u_1\|_{H^1(\Omega_1)}^2 + \|u_2\|_{H^1(\Omega_2)}^2 &\leq \frac{1}{\alpha} \|u\|_{H^1(\Omega)}^2 \\ u_1(x) &= \begin{cases} u(x), & x \in \Omega_1 \backslash \Omega_2 \\ \text{extension} & x \in \Omega_1 \cap \Omega_2 \end{cases} \\ \|u_1\|_{H^1(\Omega_1)} &\leq C \|u\|_{H^1(\Omega)} & u_1 \in H^1_0(\Omega_1) \\ u_2 &= u - u_1, \quad u_2 \in H^1_0(\Omega_2) \\ \|u_2\|_{H^1(\Omega_2)} &\leq \|u\|_{H^1(\Omega)} + \|u_1\|_{H^1(\Omega_1)} \leq (1 + C) \|u\|_{H^1(\Omega)} \\ &\text{convergence depends on the extension.} \end{split}$$

$$a(Pu, u) \le ? \le m \cdot a(u, u)$$
 $m : \sharp \text{ of subspace}$

Theorem 5.2 a)
$$a(Pu, u) \leq \beta a(u, u)$$
 , $\forall u$
b) $a(u, u) \leq \beta \inf_{u_1 + \dots + u_m = u, u_i \in H_i} \sum_{i=1}^m a(u_i, u_i)$
Then $a) \iff b$.

Proof. Let $u \in H$.

Put $u_i = P_i P^{-1} u$.

$$u_1 + \dots + u_m = P_1 P^{-1} u + \dots + P_m P^{-1} u = u$$

Let

$$v_i \in H_i : v_1 + \dots + v_m = u$$

be another decomposition with $v_i = u_i + w_i$ then

$$\sum_{i=1}^{m} w_i = 0$$

$$\sum_{i=1}^{m} a(v_i, v_i) = \sum_{i=1}^{m} a(u_i, u_i) + 2a(u_i, w_i) + a(w_i, w_i)$$

$$= \sum_{i=1}^{m} a(u_i, u_i) + 2a(P_i P^{-1} u, w_i) + a(w_i, w_i)$$

$$= \sum_{i=1}^{m} a(u_i, u_i) + 2a(P^{-1} u, \sum_{i=1}^{m} w_i) + \sum_{i=1}^{m} a(w_i, w_i)$$

$$\inf_{u=v_1+\dots+v_m, v_i \in H_i} \sum_{i=1}^m a(v_i, v_i) = \sum_{i=1}^m a(u_i, u_i) = \sum_{i=1}^m a(P_i P^{-1} u, P_i P^{-1} u)$$

$$= \sum_{i=1}^m a(P^{-1} u, P_i P^{-1} u) = a(P^{-1} u, P P^{-1} u) = a(P^{-1} u, u)$$

$$a(Pu, u) \le \beta a(u, u), \forall u \iff a(u, u) \le \beta a(P^{-1}u, u), \forall u$$
(proof: Take $u = P^{1/2}v$)

Lemma 5.1 With

$$a(u, v) = A(u, v)$$

 $de \mathit{fine}$

$$A_i: H_i \to H_i, \quad (A_i u_i, v_i) = A(u_i, v_i) \quad u_i, v_i \in H_i$$

and

$$Q_i: H \to H_i \quad in \ (\cdot, \cdot)$$

Then $P_i = A_i^{-1} Q_i A$

Proof. $\forall u \in H, u_i = P_i u$

Denote
$$w_i = A_i^{-1}Q_iAu$$
 , i.e., $Aw_i = Q_iAu$
$$\forall v_i \qquad (A_iw_i, v_i) = (Q_iAu, v_i) = (Au, v_i) = a(u, v_i)$$

$$\parallel$$

$$(Aw_i, v_i) = a(w_i, v_i)$$

Hence $w_i = u_i \square$

$$a(u, v) = (u, v)_{H^1}$$

 $(u, v) = (u, v)_{L_2}$

The previous Lemma gives the relation between the projection P_i corresponding to the given bilinear form $a(\cdot,\cdot)$ and L_2 projection Q_i .

That is, we began with

$$H = H_1 + H_2 + \dots + H_m$$

$$a(u, v) = (Au, v)$$

$$P_i : H \to H_i$$

$$\alpha a(u, u) \le a(Pu, u) \le \beta a(u, u) \quad , \forall u \in H$$

$$P = P_1 + P_2 + \dots + P_m$$

and then we have proved that

$$P_i = A_i^{-1} Q_i A$$

where $Q_i: H \to H_i$ in (\cdot, \cdot) . Now, we have

$$\alpha(Au, u) \le \left(A\left(\sum_{i=1}^{m} A_i^{-1} Q_i A\right) u, u\right) \le \beta(Au, u)$$

and this is equivalent to

$$\alpha(Au, u) \le (AB^{-1}Au, u) \le \beta(Au, u) \quad \forall u \in H$$

where $B^{-1} = \sum_{i=1}^{m} Q_{i} A_{i}^{-1} Q_{i}$. Putting Au = v,

$$\alpha(A^{-1}v, v) \le (B^{-1}v, v) \le \beta(A^{-1}v, v) \quad \forall v \in H$$

or

$$\alpha(Bu, u) \le (Au, u) \le \beta(Bu, u) \quad \forall v \in H$$

Thus, we constructed B so far, which is equivalent to A and we now use B as a preconditioner so that

$$u^{k+1} = u^k - \tau_k B^{-1} (Au^k - f)$$

Example 5.1 (Simple 1 dim'l example)

Simply consider the equation -u'' = f in Ω with the boundary condition u(0) = u(1) = 0. Then we have

$$Au = f$$

with

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

Note that A is $(n-1) \times (n-1)$ matrix and $H = \mathbb{R}^{n-1}$. As above figure we define

$$H = H_1 + H_2 \quad \Omega = \Omega_1 \cup \Omega_2$$

$$u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

where

$$H_1 = \{(u_1, u_2, u_3, 0, 0)^t\}, H_2 = \{(0, 0, u_3, u_4, u_5)^t\}$$

Here we can take $\beta=2$ by the property of the projection. For $u\in H$, we want to find α such that

$$\alpha \sum_{i=1}^{2} a(u_i, u_i) \le a(u, u), \quad u = u_1 + u_2$$

where $u_i \in H_i$. From the figure,

$$(Au_1, u_1) \le c(Au, u),$$
 c is independent of h

Letting $u_2 = u - u_1$, then we have such α independent of h. In this case

$$Q_1 = \begin{bmatrix} I_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 0 & 0 \\ 0 & I_2 \end{bmatrix}$$

and

$$Q_1 \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ 0 \\ 0 \end{bmatrix}, \quad Q_1 \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix}$$

and

$$A_{1} = \begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & 0 \\ & & & 0 & 0 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 0 & 0 & & & \\ 0 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & & -1 & 2 \end{bmatrix}$$

Note that A_1 has zero entries that correspond to u_4, u_5 -multiplication and A_2 do to u_1, u_2 -multiplication. Now, we obtain the preconditioner as following

$$B^{-1} = Q_1 A_1^+ Q_1 + Q_2 A_2^+ Q_2 = A_1^+ + A_2^+$$

where A_i^+ is the pseudo-inverse of A_i .

Theorem 5.3

$$H = H_1 + H_2 + \dots + H_m$$
$$a(u, v) = (Au, v)$$

Let $P_i: H \longrightarrow H_i$ be the orthogonal projection w.r.t $a(\cdot, \cdot)$ and A is symmetric and positive definite. Furthermore, we have following three conditions:

(1)
$$\alpha(a(u_1, u_1) + \dots + a(u_m, u_m)) \le a(u, u), \quad u_1 + \dots + u_m = u$$

($it \ is \iff \alpha a(u, u) \le a(Pu, u), \quad P = P_1 + \dots + P_m$)

(2)
$$a(Pu, u) \le \beta a(u, u)$$
 (it is $\iff a(u, u) \le \beta \inf_{u_1 + \dots + u_m = u} \sum_{i=1}^m a(u_i, u_i)$)

(3) There are local preconditioners $B_i: H \longrightarrow H_i$ with $B = B^*$ satisfying that for some constant c_1 and c_2

$$c_1(B_iu, u) < (Au, u) < c_2(B_iu, u), \quad \forall u \in H_i$$

Then, we have

$$\alpha c_1(A^{-1}u, u) \le (B^{-1}u, u) \le \beta c_2(A^{-1}u, u), \quad \forall u \in H$$

where $B^{-1} = B_1^+ + \cdots + B_m^+$. (For matrix $C, C^+ := pseudo-inverse of <math>C$).

Proof

Note that $P_i = Q_i A_i^{-1} Q_i A$. We have a pseudo-inverse

$$(Q_i A Q_i)^+ = Q_i A_i^{-1} Q_i$$

since $(Q_iAQ_i)Q_iA_i^{-1}Q_i=Q_iAQ_iA_i^{-1}Q_i=Q_i$. From (1) and (2) we have

$$\alpha(A^{-1}v, v) \le (((Q_1AQ_1)^+ + \dots + (Q_mAQ_m)^+)v, v) \le \beta(A^{-1}v, v)$$

and from (3)

$$c_1((Q_i A Q_i)^+ u, u) \le (B_i^+ u, u) \le c_2(c(Q_i A Q_i)^+ u, u), \quad \forall u \in H_i$$

Combining above two inequalities, we get the result of the theorem. \Box

Lemma 5.2 Let $\varphi \in H^{1/2}(-1,0)$. Define

$$\varphi = \begin{cases} (1-x)\varphi(-x), & x \in [0,1] \\ 0, & x \in [1,2] \end{cases}$$

Then, $\exists C \text{ such that } \|\varphi\|_{H^{1/2}(-1,2)} \leq C \|\varphi\|_{H^{1/2}(-1,0)}$.

Proof.

By previous lemma 6.4, we have

$$\|\varphi\|_{H^{1/2}(-1,2)}^2 \le C_1(\|\varphi\|_{H^{1/2}(-1,0)}^2 + \|\varphi\|_{H^{1/2}(0,1)}^2 + \|\varphi\|_{H^{1/2}(1,2)}^2 + I_1(\varphi) + I_2(\varphi))$$

Note that $\|\varphi\|_{H^{1/2}(1,2)} = 0$. Now

$$\|\varphi\|_{L^2(0,1)} \le \|\varphi\|_{L^2(-1,0)}$$

$$\begin{split} |\varphi|^2_{H^{1/2}(0,1)} &= \int_0^1 \int_0^1 \frac{|\varphi(-x)(1-x) - \varphi(-y)(1-y)|^2}{|x-y|^2} \, dx dy \\ &\leq 2 \int_0^1 \int_0^1 \frac{|\varphi(-x)(1-x) - \varphi(-x)(1-y)|^2}{|x-y|^2} \, dx dy \\ &\quad + 2 \int_0^1 \int_0^1 \frac{|\varphi(-x) - \varphi(-y)|^2|(1-y)|^2}{|x-y|^2} \, dx dy \\ &\leq 2 \left(\int_0^1 \int_0^1 \frac{|\varphi(-x)(x-y)|^2}{|x-y|^2} \, dx dy + \int_{-1}^0 \int_{-1}^0 \frac{|\varphi(x) - \varphi(y)|^2}{|x-y|^2} \, dx dy \right) \\ &= 2 (|\varphi|^2_{H^{1/2}(-1,0)} + ||\varphi||^2_{L^2(-1,0)}) \end{split}$$

On the other hand,

$$I_1(\varphi) = \int_0^1 \frac{(\varphi(-x) - \varphi(-x)(1-x))^2}{x} dx$$

$$\leq \int_0^1 \varphi^2(-x) \frac{x^2}{x} dx \leq \|\varphi\|_{L^2(-1,0)}^2$$

and

$$I_2(\varphi) = \int_0^1 \frac{(\varphi(-x)(1-x))^2}{1-x} dx \le \|\varphi\|_{L^2(-1,0)}^2$$

Gathering all inequalities complete the proof.

Our Goal is to construct Schur-complement on the lines(sub-boundaries) of the interior of the given domain.

$$\Lambda = \bigcup_{i=1}^{n} \partial \Omega_i = \bigcup_{i=1}^{m} \lambda_i$$
 For crossing points,

$$k_i = O(1/h), \quad i = 1, \dots, m_1$$

and for usual lines,

$$k_i = O(1/h), \quad i = m_1 + 1, \dots, m$$

Assume $\exists r$ independent of h such that $\forall p \in \Lambda$ there exists λ_i :

$$B(p,r) \bigcap \Lambda \subset \lambda_i$$

Let $H = H_h(\Lambda)$ and $H = H_1 + H_2 + \cdots + H_m$ with

$$H_i = H_h(\lambda_i) = \{ \varphi^h \in H_h(\Lambda) | \varphi(x) = 0, \exists x \notin \lambda_i \}$$

By previous Lemma 9.2, we have $\forall \varphi^h \in H, \exists \varphi_i^h \in H_i$,

$$\|\varphi_1^h\|_{00^{1/2}}^2 + \dots + \|\varphi_m^h\|_{00^{1/2}}^2 \le C\|\varphi^h\|_{H^{1/2}(\Lambda)}^2$$

Define

$$\tilde{H}_1 = H_1 + \dots + H_{m_1}, \quad \tilde{H}_2 = H_{m_1+1} + \dots + H_m$$

Then $H = \tilde{H}_1 + \tilde{H}_2$. So far we have constructed the space satisfying the conditions (1) and (2) in the previous theorem 9.3. Now, we'll construct a preconditioner for the Schur-complement by an additive form of pseudo-inverses such

$$\Sigma^{-1} = \Sigma_1^+ + \dots + \Sigma_m^+$$

as followings: For $i = m_1 + 1, \ldots, m$,

$$\Sigma_i = R_i \begin{bmatrix} 0 & 0 & 0 \\ 0 & X^{1/2} & 0 \\ 0 & 0 & 0 \end{bmatrix} R_i^t$$

where R_i is the permutation matrix and X is the matrix corresponding to the 1 dim'l Laplacian. i. e.

$$X = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & & -1 & 2 \end{bmatrix}$$

Hence

$$\Sigma_i^+ = R_i \begin{bmatrix} 0 & 0 & 0 \\ 0 & X^{-1/2} & 0 \\ 0 & 0 & 0 \end{bmatrix} R_i^t$$

For the cross point, we introduce the following lemma.

Lemma 5.3 Symmetric and positive definite matrices

$$\Sigma: \mathbb{R}^m \longrightarrow \mathbb{R}^m, \quad S: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

are given. Let $t: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ such that

$$\alpha(\varphi,\varphi)_{\Sigma} \le (t\varphi,t\varphi)_{S} \le \beta(\varphi,\varphi)_{\Sigma}, \quad \forall \varphi \in R^{m}$$

$$(t^{T}u,\varphi)_{R^{n}} = (u,t\varphi)_{R^{n}}$$

where $(\cdot,\cdot)_{R^i}$ is the Euclidian inner product. Denote $C=t\Sigma^{-1}t^T$. Then we have

$$\alpha(C^+u, u) \le (u, u)_S \le \beta(C^+u, u), \quad \forall u \in Im(t)$$

Remark 5.1 $m \le n$ should be hold and t can be interpreted a kind of extension operator.

Proof.

 $\exists (t^T t)^{-1}$ by assumption. We note that

$$C^{+} = t(t^{T}t)^{-1}\Sigma(t^{T}t)^{-1}t^{T}$$

, which is easily verified from the following observation

$$C^{+}C = t(t^{T}t)^{-1}\Sigma(t^{T}t)^{-1}t^{T}(t\Sigma^{-1}t^{T}) = t(t^{T}t)^{-1}t^{T}$$

Now it's sufficient to check $t(t^Tt)^{-1}t^T$ is a projection. If $u \in Im(t)$, then $u = t\varphi$ for some φ . Thus

$$C^+Cu = t(t^Tt)^{-1}t^Tu = t\varphi = u$$

Also, for all $v_0 \in (Im(t))^{\perp}$,

$$0 = (v_0, t\varphi) = (v_0, t(t^T t)^{-1} t^T t\varphi) = (t(tTt)^{-1} t^T v_0, t\varphi), \quad \forall \varphi$$

Hence we have

$$C^+Cv_0 = 0, \quad \forall v_0 \in (Im(t))^{\perp}$$

Now, $\forall u \in Im(t)$

$$\begin{split} (C^+u,u) &= (C^+t\varphi,t\varphi) = (t(t^Tt)^{-1}\Sigma(t^Tt)^{-1}t^Tt\varphi,t\varphi) \\ &= (t^Tt(t^Tt)^{-1}\Sigma\varphi,t\varphi) \\ &= (\Sigma\varphi,\varphi) \end{split}$$

Hence the proof is completed. \square

In the Additive Schwartz Method, we need to define B_i^+ . Now we'll try to set

$$B_i^+ = (C_i^+)^+ = C_i = t\Sigma^{-1}t^T$$

where $Im(t) := H_i$ by using certain proper extension operator t.

6 Additive Schwarz Method on interfaces

Let z_0 be a fixed cross point. Let λ be the union of branches emerging from z_0 . Let L_i , for $i=1,\dots,m$ be each branch. Let $L_{m+1}=L_1$. Define a trace norm on λ by

$$\|\phi^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2 = \sum_{i=1}^m \|\phi^h\|_{H_{00}^{\frac{1}{2}}(L_i \cup L_{i+1})}^2$$

Let $x_{i,j}$ be the point on the branch L_i which has distance jh from z_0 . Let

$$H_h(\lambda) = H_0 + H_1 + \dots + H_m$$

$$H_i = \{ \phi^h \in H_h(\lambda) | \phi^h(x) = 0, x \notin L_i \}$$

$$H_0 = \{ \phi^h \in H^h(\lambda) | \phi^h(x_{1,j}) = \dots = \phi^h(x_{m,j}), j = 1, 2, \dots, k \}$$

Here we assume that each L_i has the same number k of nodes.

Lemma 6.1 There exists c independent of h such that for each $\phi^h \in H^h(\lambda)$, there exist $\phi_i^h \in H_i$ which satisfy

$$\phi_0^h + \phi_1^h + \dots + \phi_m^h = \phi^h$$

$$\|\phi_0^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2 + \|\phi_1^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2 + \dots + \|\phi_m^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2 \le c\|\phi^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2$$

Proof. Let $\phi \in H_h(\lambda)$. Define $\phi_0^h(x_{i,j}) = \phi^h(x_{1,j})$, for $j = 1, \dots, k$ and $i = 1, \dots, m$.(Fix first branch and rotate it). It is clear that $\phi_0^h \in H_0$. Let $\psi^h = \phi^h|_{L_1}$ Since

$$\|\phi_0^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2 = m\|\phi^h\|_{H_{00}^{\frac{1}{2}}(L_1 \cup L_2)}^2 \simeq \|\psi^h\|_{\check{H}^{\frac{1}{2}}(L_1)}^2 \simeq (\Sigma_{ND}\psi, \psi),$$

there exists c_1 independent of h such that

$$\|\phi_0^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2 \le c_1 \|\phi^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2.$$

Let $\xi^h = \phi^h - \phi_0^h$. Define $\phi_i^h(x_{i,j}) = \xi^h(x_{i,j})$. Then

$$\|\xi^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2 \le c_2 \|\phi^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2$$

$$\|\phi_i^h\|_{H_{00}^{\frac{1}{2}}(\lambda)}^2 \simeq \|\phi_i^h\|_{H_{00}^{\frac{1}{2}}(L_i)}^2 \simeq (\Sigma_{DD}\phi_i, \phi_i).$$

Hence we obtain

$$\|\phi_i^h\|_{H^{\frac{1}{2}}_{00}(\lambda)}^2 \le \|\xi^h\|_{H^{\frac{1}{2}}_{00}(\lambda)}^2$$

Continuing the above processes , we can prove the lemma.

The lemma shows that

$$\frac{1}{c}a(\phi^h,\phi^h) \le a((P_0 + \dots + P_m)\phi^h,\phi^h) \le (m+1)a(\phi^h,\phi^h)$$

Let t be the extension operator such that for each $\psi^h = \begin{bmatrix} \psi_0 & \psi_1 & \cdots & \psi_m \end{bmatrix}^T$,

$$t\phi^h = \begin{bmatrix} \psi_0 & \eta & \cdots & \eta \end{bmatrix}^T$$

where $\eta = \begin{bmatrix} \psi_1 & \cdots & \psi_m \end{bmatrix}^T$. $H_0 = t \cdot F$, $F = H_h(L_1)$. And we have

$$\|\psi^h\|_{\check{H}^{\frac{1}{2}}(\dot{\mathbf{L}}_1)} \leq \|t\psi^h\|_{\dot{H}^{\frac{1}{2}}_{00}(\lambda)} \leq C\|\psi^h\|_{\check{H}^{\frac{1}{2}}(L_1)}$$

So

$$B_i^+ = t \Sigma_{ND}^{-1} t^T$$

Now decompose the whole interface space $H_h(\Lambda)$ into subspaces. Let

$$H_h(\Lambda) = H_1^{(N)} + \dots + H_{m_1}^{(N)} + H_{m_1+1}^{(0)} + \dots + H_m^{(0)}$$

where $H_i^{(N)}$, for $i=1,\cdots,m_1$ are the subspace corresponding to cross points

$$H_i^N = \{ \varphi^h \in H_h(\Lambda) \mid \varphi^h(x) = t_i \psi^h(x), x \in \lambda_i, \varphi^h(x) = 0, x \notin \lambda_i \}$$

and $H_i^{(0)}$, for $i=m_1+1,\cdots,m$ are the subspace corresponding to intervals between cross points

$$H_i^0 = \{ \varphi^h \in H_h(\Lambda) \mid \varphi^h(x) = 0, x \notin \lambda_i \}$$

Let

$$B^{-1} = B_{N,1}^+ + \dots + B_{N,m_1}^+ + B_{0,m_1+1}^+ + \dots + B_{0,m}^+,$$

where

$$B_{0,i}^{+} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & X^{-1/2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

X is one dimensional Laplacian operator and

$$B_{N,i}^+ = t_i \Sigma_{ND}^{-1} t_i^T.$$

Then B is a preconditioner of $S = A_0 - \sum_{i=1}^n A_{0i} A_i^{-1} A_{i0}$. Here A_i^{-1} is expensive. With a local preconditioner on Ω_i how to construct a global preconditioner? We can use ASM.

6.1 Non-exact Solvers

Let
$$\overline{\Omega} = \bigcup_{i=1}^n \overline{\Omega_i}$$
, $\Omega_i \cap \Omega_j = \emptyset$, if $i \neq j$. Let

$$H_h(\Omega) = H_0 + H_1$$

where

$$H_0 = H_{h,0}(\Omega_1) \oplus \cdots \oplus H_{h,0}(\Omega_n)$$

$$H_{h,0}(\Omega_i) = \{ \phi^h \in H_h(\Omega) | \phi^h(x) = 0, x \notin \Omega_i \}.$$

Assume that we have the followings.

A)
$$\exists B_i, \ c_1 \|u^h\|_{H^1(\Omega)}^2 \le (B_i u, u) \le c_2 \|u^h\|_{H^1(\Omega)}^2, \forall u^h \in H_{h,0}(\Omega_i)$$

$$B) \exists t, t: H_h(\Gamma_i) \to H_h(\Omega_i), s.t.$$

$$||t\phi^h||_{H_1(\Omega_i)} \le c_3 ||\phi^h||_{H^{\frac{1}{2}}(\Gamma_i)}$$

where
$$H_1 = tH_h(\lambda)$$

C)
$$c_4 \|\phi^h\|_{H^{\frac{1}{2}}(\lambda)}^2 \le (\Sigma \phi, \phi) \le c_5 \|\phi^h\|_{H^{\frac{1}{2}}(\Lambda)}^2, \forall \phi^h \in H_h(\Lambda)$$

Theorem 6.1 Let

$$B^{-1} = \begin{bmatrix} 0 & & & & \\ & B_1^{-1} & & & \\ & & \cdots & & \\ & & & B_n^{-1} \end{bmatrix} + t\Sigma^{-1}t^T.$$

Then there exist $\alpha, \beta = \alpha, \beta(c_1, c_2, \dots, c_5)$ such that

$$\alpha(Bu, u) \le (Au, u) \le \beta(Bu, u), \ \forall u.$$

Proof. a) Let $u^h \in H_h(\Omega^h)$ and $\phi^h \in H^h(\Lambda)$ such that $\phi^h(x) = u^h(x), x \in$ Λ . Then there exists c_6 independent of h such that

$$\|\phi^h\|_{H^{\frac{1}{2}}(\Lambda)} \le c_6 \|u^h\|_{H^1(\Omega)}^2.$$

Let $u_1^h = t\phi^h$. Then

$$||u_1^h||_{H^1(\Omega)}^2 \le c_3 ||\phi^h||_{H^{\frac{1}{2}}(\Lambda)} \le c_3 c_6 ||u^h||_{H^1(\Omega)}^2$$

Let $u_0^h=u^h-u_1^h$. We have the similar inequalities using triangle inequality. b) $a((P_1+P_2)u,u)\leq 2a(u,u), \forall u$

- A), B), C) and the lemma completes the proof.

6.2**Explicit Extension Operators**

One simple extension operator is harmonic extension. But consider another one: Let (s,n) be a near boundary coordinate system. Using this we will construct a extension operator t. Let ϕ be a given function defined on boundary Γ of domain Ω For continuous case, we can define $u = t\phi$ by

$$u(s,n) = \xi(n) \frac{1}{n} \int_{s}^{s+n} \phi(t)dt.$$

where $\xi(n) = 1 - \frac{n}{D}$. For discrete case, we can define u by the following three steps.

Step 1)

$$V(z_{ij}) = \sum_{l=0}^{j} \phi(i+l).$$

Step 2)

$$V(z_{ij}) = \frac{1 - \frac{j}{n}}{j+1} V(z_{ij}).$$

Step 3)

$$u^h(z_l) = \begin{cases} V(z_{ij}) & \text{if } z_l \in D_{ij} \\ 0 & \text{if } z_l \notin \cup_{ij} D_{ij} \end{cases}$$

Then $u = t\phi = P_3 P_2 P_1 \phi$.

$$P_3 = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ & I \end{bmatrix}$$

where lower identity matrix corresponds to D. Then

$$||u^h||_{H_h^1(\Omega^h)} \le c||V||_{H_h^1(D^h)}.$$

Let
$$P_2 = \operatorname{Diag}\{\cdots, \frac{1-\frac{j}{n}}{j+1}, \cdots\}$$
.
Let

$$V(z_{i,0} = \phi(i), i = 0, \cdots, N-1$$

$$P_1\phi = V(z_{i,j+1}) = V(z_{i,j}) + \phi(i+j+1), 0 \le i \le N-1, \quad 0 \le j \le M$$

Cost of P_2 is $O(h^{-2})$. Let

$$t^T = P_1^T P_2^T P_3^T$$

For any given function V, define W by

$$W(z_{i,M}) = V(z_{i,M}), i = 0, \cdots, M$$

and for $i = 0, \dots, N$ and $j = M, M - 1, \dots, 1$,

$$W(z_{i,j-1}) = W(z_{i,j}) + V(z_{i,j-1})$$

If we let
$$\phi_i = \sum_{j=0}^N \sum_{l=i-j}^i V(z_{l,j}),\, W(z_{i,M}) = V(z_{i,M})$$

$$W_1(t_{i,j-1}) = W_1(z_{i,j}) + V(z_{i,j-1})$$

then $\phi_i = \sum_{j=0}^M W(z_{i-j})$. Cost of t^T is again $O(h^{-2})$.

7 Domain Decomposition with Many Subdomains (n >> 1)

Let Ω be a domain of diameter O(1) with boundary Γ , and set

$$\Omega_{\varepsilon} = \{(x, y) : x = \varepsilon s, \ y = \varepsilon t, \ (x, y) \in \Omega\}$$

with boundary Γ_{ε} .

Lemma 7.1 There exists $c_1 \neq c_1(\varepsilon)$ such that for all $u \in H^1(\Omega_{\varepsilon})$,

$$\varphi(x) = u(x), \ x \in \Gamma_{\varepsilon}, \qquad |\varphi|_{H^{\frac{1}{2}}(\Gamma_{\varepsilon})} \le c_1 |u|_{H^1(\Omega_{\varepsilon})}.$$

There exists $c_2 \neq c_2(\varepsilon)$ such that for every $\varphi \in H^{\frac{1}{2}}(\Gamma_{\varepsilon})$, there exists $u \in H^1(\Omega_{\varepsilon})$ satisfying

$$\varphi(x) = u(x), \ x \in \Gamma_{\varepsilon}, \qquad |u|_{H^{1}(\Omega_{\varepsilon})} \le c_{2}|\varphi|_{H^{\frac{1}{2}}(\Gamma_{\varepsilon})}.$$

Proof.

$$|u|_{H^{1}(\Omega_{\varepsilon})}^{2} = \int_{\Omega_{\varepsilon}} \left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2}$$
$$= \int_{\Omega} \left(\frac{\partial \tilde{u}}{\partial s}\right)^{2} + \left(\frac{\partial \tilde{u}}{\partial t}\right)^{2} = |\tilde{u}|_{H^{1}(\Omega)}^{2}.$$

$$\begin{split} |\varphi|^2_{H^{\frac{1}{2}}(\Gamma_\varepsilon)} &= \int_{\Gamma_\varepsilon} \int_{\Gamma_\varepsilon} \frac{(\varphi(x) - \varphi(y))^2}{|x - y|^2} \, dx dy \\ &= \int_{\Gamma} \int_{\Gamma} \frac{(\tilde{\varphi}(s) - \tilde{\varphi}(t))^2}{|s - t|^2} \, ds dt = |\tilde{\varphi}|^2_{H^{\frac{1}{2}}(\Gamma)} \end{split}$$

Now we define

$$\|\varphi\|_{H_\varepsilon^{\frac{1}{2}}(\Gamma_\varepsilon)}^2 = \varepsilon \|\varphi\|_{L_2(\Gamma_\varepsilon)}^2 + |\varphi|_{H^{\frac{1}{2}}(\Gamma_\varepsilon)}^2.$$

Lemma 7.2 There exists $c_1 \neq c_1(\varepsilon)$ such that for all $u \in H^1(\Omega_{\varepsilon})$,

$$\varphi(x) = u(x), \ x \in \Gamma_{\varepsilon}, \qquad \|\varphi\|_{H^{\frac{1}{2}}(\Gamma_{\varepsilon})} \le c_1 \|u\|_{H^{1}(\Omega_{\varepsilon})}.$$

There exists $c_2 \neq c_2(\varepsilon)$ such that for every $\varphi \in H^{\frac{1}{2}}(\Gamma_{\varepsilon})$, there exists $u \in H^1(\Omega_{\varepsilon})$ satisfying

$$\varphi(x) = u(x), \ x \in \Gamma_{\varepsilon}, \qquad \|u\|_{H^1(\Omega_{\varepsilon})} \le c_2 \|\varphi\|_{H^{\frac{1}{2}}(\Gamma_{\varepsilon})}.$$

Proof.

$$\begin{split} \|u\|_{H^{1}(\Omega_{\varepsilon})}^{2} &= \int_{\Omega_{\varepsilon}} u^{2} + \int_{\Omega_{\varepsilon}} |\nabla u|^{2} \\ &= \varepsilon^{2} \|\tilde{u}\|_{L_{2}(\Omega)}^{2} + |\tilde{u}|_{H^{1}(\Omega)}^{2} \approx \varepsilon^{2} \|\tilde{\varphi}\|_{L_{2}(\Gamma)}^{2} + |\tilde{u}|_{H^{1}(\Omega)}^{2}, \\ \varepsilon \|\varphi\|_{L_{2}(\Gamma_{\varepsilon})}^{2} + |\varphi|_{H^{\frac{1}{2}}(\Gamma_{\varepsilon})}^{2} &= \varepsilon^{2} \|\tilde{\varphi}\|_{L_{2}(\Gamma)}^{2} + |\varphi|_{H^{\frac{1}{2}}(\Gamma)}^{2}. \end{split}$$

Γ

Lemma 7.3 There exists $c_1 \neq c_1(\varepsilon)$ such that if $\int_{\Gamma'_{\varepsilon}} \varphi(x) dx = 0$, meas $(\Gamma'_{\varepsilon}) \approx \varepsilon$, then

$$\frac{1}{\varepsilon} \|\varphi\|_{L_2(\Gamma_\varepsilon)}^2 + |\varphi|_{H^{\frac{1}{2}}(\Gamma_\varepsilon)}^2 \le c_1 |\varphi|_{H^{\frac{1}{2}}(\Gamma_\varepsilon)}^2.$$

Proof.

$$\frac{1}{\varepsilon} \|\varphi\|_{L_{2}(\Gamma_{\varepsilon})}^{2} + |\varphi|_{H^{\frac{1}{2}}(\Gamma_{\varepsilon})}^{2} = \|\tilde{\varphi}\|_{L_{2}(\Gamma)}^{2} + |\tilde{\varphi}|_{H^{\frac{1}{2}}(\Gamma)}^{2}$$

$$\leq c_{2} \|\tilde{u}\|_{H^{1}(\Omega)}^{2} \leq \text{Sobolev}$$

$$\leq c_{3} |\tilde{u}|_{H^{1}(\Omega)}^{2}$$

$$\leq c_{1} |\varphi|_{H^{\frac{1}{2}}(\Gamma_{\varepsilon})}^{2}$$

П

Let
$$t: H^{\frac{1}{2}}(\Gamma_{\varepsilon}) \to H^1(\Omega_{\varepsilon})$$
 be given by

$$u = t\varphi = \xi v, \qquad \xi(n) = 1 - \frac{n}{D}.$$

Then

$$|u|_{H^1(\Omega_{\varepsilon})}^2 \cong |\xi'|^2 ||v||_{L_2(\Omega_{\varepsilon})}^2 + |\xi| |v|_{H^1(\Omega_{\varepsilon})}^2, \qquad |\xi'| = \frac{1}{\varepsilon}.$$

For $\varphi \in H^{\frac{1}{2}}(\Gamma_{\varepsilon})$, let

$$\varphi = \varphi_0 + \varphi_1, \qquad \varphi_0 \equiv \text{ const}, \qquad \int_{\Gamma_{\varepsilon}} \varphi_1(x) \, dx = 0,$$

$$u_0 \equiv \text{ const} = \varphi_0,$$

$$u_1 = t\varphi_1 = \xi v,$$

$$\|u_0\|_{L_2(\Omega_{\varepsilon})} \le c_2 \varepsilon \|\varphi_0\|_{L_2(\Gamma_{\varepsilon})},$$

$$\left(\frac{1}{\varepsilon}\right)^2 \|v\|_{L_2(\Omega_{\varepsilon})}^2 + |v|_{H^1(\Omega_{\varepsilon})}^2 \le c_3 |\varphi_1|_{H^{\frac{1}{2}}(\Gamma_{\varepsilon})}^2 = c_3 |\varphi|_{H^{\frac{1}{2}}(\Gamma_{\varepsilon})}^2$$

We have(Lemma 9.2)

Lemma 7.4 Let

$$\varphi(x) = \begin{cases} (1-x)\varphi(-x), & x \in [0,1] \\ 0, & x \in [1,2]. \end{cases}$$

Then there exists c such that $\|\varphi\|_{H^{-\frac{1}{2}}(-1,2)} \leq c\|\varphi\|_{H^{\frac{1}{2}}(-1,0)}$.

Lemma 7.5 If $\varphi \in H^{\frac{1}{2}}(0,3\varepsilon)$, and we have $(c \neq c(\varepsilon))$

$$\frac{1}{\varepsilon} \|\varphi\|_{L_2(0,3\varepsilon)}^2 + |\varphi|_{H^{\frac{1}{2}}(0,3\varepsilon)}^2 \le c \|\varphi\|_{H^{\frac{1}{2}}(0,3\varepsilon)}^2.$$

Let $\varphi = \varphi_1 + \varphi_2$ with

$$\varphi(x) = \begin{cases} \varphi_1(x), & x \in (0, \varepsilon) \\ \varphi_2(x), & x \in (2\varepsilon, 3\varepsilon) \end{cases}$$

where φ_1, φ_2 are defined on $[0, 3\epsilon]$ according to Lemma 11.4. Then

$$\frac{1}{\varepsilon}\|\varphi_1\|_{L_2(0,3\varepsilon)}^2 + |\varphi_1|_{H^{\frac{1}{2}}(0,3\varepsilon)}^2 + \frac{1}{\varepsilon}\|\varphi_2\|_{L_2(0,3\varepsilon)}^2 + |\varphi_2|_{H^{\frac{1}{2}}(0,3\varepsilon)}^2 \leq c_1\|\varphi\|H^{\frac{1}{2}}(0,3\varepsilon)^2.$$

Proof

$$\int_0^{3\varepsilon} \int_0^{3\varepsilon} \frac{(\varphi(x) - \varphi(y))^2}{|x - y|^2} dx dy = \int_0^3 \int_0^3 \frac{(\tilde{\varphi}(s) - \tilde{\varphi}(t))^2}{|s - t|^2} ds dt$$
$$\frac{1}{\varepsilon} \int_0^{3\varepsilon} \varphi^2(x) dx = \int_0^3 \tilde{\varphi}(s)^2 ds$$

Lemma 7.6 Let $\varphi^{\varepsilon} \in H^{1/2}(0,3\epsilon)$ be continuous piecewise linear with $\varphi^{\varepsilon}(i\varepsilon) = \varphi_i$, $i = 0, \dots, 3$. Then

$$\|\varphi^{\varepsilon}\|_{H_{\varepsilon}^{\frac{1}{2}}(0,3\varepsilon)}^{2} \approx \sum_{i=0}^{3} \varepsilon^{2} \varphi_{i}^{2} + \sum_{i=0}^{3} \sum_{j=0}^{3} (\varphi_{i} - \varphi_{j})^{2}.$$

Proof.

$$\varepsilon \|\varphi^{\varepsilon}\|_{L_{2}(0,3\varepsilon)}^{2} \approx \sum_{i=0}^{3} \varepsilon^{2} \varphi_{i}^{2},$$
$$|\varphi^{\varepsilon}|_{H^{\frac{1}{2}}(0,3\varepsilon)}^{2} \approx \sum_{i=0}^{3} \sum_{j=0}^{3} (\varphi_{i} - \varphi_{j})^{2}.$$

Lemma 7.7 There exists $c \neq c(h, \varepsilon)$ such that for every $\varphi^h \in H_h(0, 3\varepsilon)$, there are $\varphi^{\varepsilon}, \varphi_1^h, \varphi_2^h$ satisfying

$$\varphi^{h} = \varphi^{\varepsilon} + \varphi_{1}^{h} + \varphi_{2}^{h},$$

$$\varphi^{\varepsilon} - piecewise linear,$$

$$\varphi_{1}^{h}(x) = 0, \qquad x \in (2\varepsilon, 3\varepsilon),$$

$$\varphi_{2}^{h}(x) = 0, \qquad x \in (0, \varepsilon),$$

and

$$\|\varphi^{\varepsilon}\|_{H^{\frac{1}{2}}(0,3\varepsilon)}^{2} + \|\varphi_{1}^{h}\|_{H^{\frac{1}{2}}(0,3\varepsilon)}^{2} + \|\varphi_{2}^{h}\|_{H^{\frac{1}{2}}(0,3\varepsilon)}^{2} \le c\|\varphi^{h}\|_{H^{\frac{1}{2}}(0,3\varepsilon)}^{2}.$$

Proof. Define φ^{ε} by the values

$$\varphi_0 = \varphi_1 = \frac{1}{\varepsilon} \int_0^{\varepsilon} \varphi^h(x) \, dx,$$
$$\varphi_2 = \varphi_3 = \frac{1}{\varepsilon} \int_{2\varepsilon}^{3\varepsilon} \varphi^h(x) \, dx.$$

Then

$$(\varphi_i)^2 = \left(\frac{1}{\varepsilon} \int_{x_i}^{x_{i+1}} \varphi(x) \, dx\right)^2 \le \frac{1}{\varepsilon^2} \varepsilon \int_{x_i}^{x_{i+1}} \varphi^2(x) \, dx$$
$$\sum_{i=0}^3 \varepsilon^2(\varphi_i)^2 \le \varepsilon \|\varphi\|_{L_2(0,3\varepsilon)}^2$$

$$(\varphi_{i} - \varphi_{j})^{2} = \left(\frac{1}{\varepsilon} \int_{x_{i}}^{x_{i+1}} \varphi^{h}(x) dx - \frac{1}{\varepsilon} \int_{x_{j}}^{x_{j+1}} \varphi^{h}(x) dx\right)^{2}$$

$$= \frac{1}{\varepsilon^{2}} \left(\frac{1}{\varepsilon} \int_{x_{i}}^{x_{i+1}} \int_{x_{j}}^{x_{j+1}} \varphi^{h}(x) dy dx - \frac{1}{\varepsilon} \int_{x_{i}}^{x_{i+1}} \int_{x_{j}}^{x_{j+1}} \varphi^{h}(x) dx dy\right)^{2}$$

$$\leq \frac{4}{\varepsilon^{2}} \left(\int_{x_{i}}^{x_{i+1}} \int_{x_{j}}^{x_{j+1}} \frac{\varphi^{h}(x) - \varphi^{h}(y)}{|x - y|} dx dy\right)^{2}$$

$$\leq 4 \int_{x_{i}}^{x_{i+1}} \int_{x_{j}}^{x_{j+1}} \frac{(\varphi^{h}(x) - \varphi^{h}(y))^{2}}{|x - y|^{2}} dx dy$$

$$\psi^{h} = \varphi^{h} - \varphi^{\varepsilon},$$

$$\int_{0}^{\varepsilon} \psi^{h}(x) dx = \int_{2\varepsilon}^{3\varepsilon} \psi^{h}(x) dx = 0$$

Lemma 7.8 Let $\overline{\Omega} = \bigcup_{i=1}^n \overline{\Omega_i}$, where Ω_i is polygonal and diam $\Omega_i = O(H)$, and let $\Lambda = \bigcup_{i=1}^m \lambda_i$. Then there exists $c \neq c(h, H)$ such that for every $\varphi^h \in H_h(\Lambda)$, there are $\varphi^H, \varphi_1^h, \cdots, \varphi_m^h$ satisfying (i) φ^H - piecewise linear on the coarse grid $\bigcup_{i=1}^n \partial \Omega_i$, (ii) $\varphi_i^h(x) = 0$, $x \notin \lambda_i$, $i = 1, \cdots, m$. Then

$$\|\varphi^{H}\|_{H^{\frac{1}{2}}(\Lambda)} \leq c_{1} \|\varphi^{h}\|_{H^{\frac{1}{2}}(\Lambda)}$$

$$\sum_{i=1}^{m} \|\varphi_{i}^{h}\|_{H^{1/2}(\Lambda)}^{2} \leq C_{1} \|\varphi^{h}\|_{H^{1/2}(\Lambda)}^{2}$$

$$\Sigma^{-1} = \Sigma_{H}^{+} + \Sigma_{1}^{+} \cdots + \Sigma_{m}^{+}, \qquad (\Sigma_{i}\varphi, \varphi) \simeq \|\varphi^{h}\|_{00^{1/2}}$$

$$(\Sigma_{H}\varphi, \varphi) = H^{2} \sum_{i} \varphi_{i}^{2} + \sum_{i} \sum_{j} (\varphi_{i} - \varphi_{j})^{2}$$

$$(\Sigma\varphi, \varphi) \simeq \|\varphi^{h}\|_{H^{1/2}(\Lambda)}$$

8 Additive Schwarz Method(ASM) and Multilevel Decomposition

Let Ω be a domain in R^2 , Ω_i , i = 1, ..., n be a disjoint subdomain of Ω and $\Lambda = \bigcup_{i=1}^n \partial \Omega_i$. In addition,

$$B_i \longleftrightarrow -\Delta_{\Omega_i}$$

 $\Sigma \longleftrightarrow H^{1/2}(\Lambda).$

Let $t: H^{1/2}(\Lambda) \to H(\Omega)$ be an extension operator. Then

$$B^{-1} = \begin{bmatrix} 0 & & & & \\ & B_1 & & & \\ & & \ddots & & \\ & & & B_n \end{bmatrix} \begin{matrix} \Lambda \\ \Omega_1 \\ \vdots \\ \Omega_n \end{matrix} + t \Sigma^{-1} t^T.$$

Let us fix the subdomain Ω_i and omit the index i. First consider the case when Ω is polygonal. Let $\Omega_0^h, \Omega_1^h, \ldots, \Omega_J^h$ be a sequence of grids on Ω and $W_0 \subset W_1 \subset \ldots \subset W_J = W$ be a sequence of nested spaces respectively. We denote the set $\{\phi_i^{(k)}\}_{i=1,2,\ldots,n_k}$ be the nodal basis in W_k and $\Phi_i^{(k)} = \{\alpha \cdot \phi_i^{(k)} | \alpha \in R\}$ be the spanned vector space of this basis. Then we have

$$W_k = \Phi_1^{(k)} + \dots + \Phi_{n_k}^{(k)}$$

$$W = \sum_{k=0}^{J} \sum_{i=1}^{n_k} \Phi_i^{(k)}.$$
(11)

Let $P_i^{(k)}: W \to \Phi_i^{(k)}$ be an orthogonal projection with respect to $a(\cdot, \cdot)$.

Theorem 8.1 We have the two followings with α, β independent of h:

(1) For every $u^h \in W$, there exists $u_i^{(k)} \in \Phi_i^{(k)}$ such that

$$\sum_{k=0}^{J} \sum_{i=1}^{n_k} u_i^{(k)} = u^h \tag{12}$$

and

$$\sum_{k=0}^{J} \sum_{i=1}^{n_k} \|u_i^{(k)}\|_{H^1(\Omega)}^2 \le \frac{1}{\alpha} \|u^h\|_{H^1(\Omega)}$$

$$\Longrightarrow \alpha \|u^h\|_{H^1(\Omega)}^2 \le a(\sum_{k=0}^{J} \sum_{i=1}^{n_k} P_i^{(k)} u^h, u^h) \le \beta(u^h, u^h)$$

(2)
$$\|u^h\|_{H^1(\Omega)}^2 \le \beta \inf_{\sum_{k=0}^{J} \sum_{i=1}^{n_k} v_i^{(k)} = u^h} \|v_i^{(k)}\|_{H^1(\Omega)}^2$$

We use the following fundamental result.

Lemma 8.1 Let $Q_k: W \to W_k$ be an orthogonal projection in $L_2(\Omega)$. Then there exist constants C_1, C_2 (independent of h and J) such that

$$C_1 \|u^h\|_{H^1(\Omega)}^2 \le \|h^h\| := \|Q_0 u^h\|_{L^2(\Omega)}^2 + \sum_{k=1}^J h_k^{-2} \|(Q_k - Q_{k-1}) u^h\|_{L^2(\Omega)}^2$$

$$\le C_2 \|u^h\|_{H^1(\Omega)}^2$$

and

$$C_1|||u^h||| \le \inf_{\substack{u^h = u_0^h + \dots + u_J^h \\ u_k^h \in W_k}} \sum_{k=0}^J h_k^{-2} ||u_k^h||_{L_2(\Omega)}^2 \le C_2|||u^h|||.$$

Here $Q_k: W \to W_k$ is L_2 -orthogonal projection.

Proof. (of (1)) Let $u^h \in W$, then

$$u^{h} = Q_{0}u^{h} + \sum_{k=1}^{J} (Q_{k} - Q_{k-1})u^{h} = v_{0}^{h} + v_{1}^{h} + \dots + v_{J}^{h},$$

where $v_k^h \in W_k$. Note that $Q_J u^h = u^h$. On the other hand, since $v_k^h \in W_k$,

$$v_k^h = \sum_{i=1}^{n_k} \alpha_i^{(k)} \phi_i^{(k)} = \sum_{i=1}^{n_k} v_i^{(k)}$$

where $v_k^h \in \Phi_i^{(k)}$. Thus

$$u^{h} = \sum_{k=0}^{J} \sum_{i=1}^{n_{k}} v_{i}^{(k)}.$$

$$\sum_{k=0}^{J} \sum_{i=0}^{n_{k}} \|v_{i}^{(k)}\|_{H^{1}(\Omega)}^{2} \approx \sum_{k=0}^{J} \sum_{i=0}^{n_{k}} h_{k}^{-2} \|v_{i}^{(k)}\|_{L_{2}(\Omega)}^{2}$$

$$\approx \sum_{k=0}^{J} h_{k}^{-2} \|v_{k}^{h}\|_{L_{2}(\Omega)}^{2}$$

$$\leq \|u^{h}\|_{H^{1}(\Omega)}^{2}.$$

Note that we used Lemma and the fact $v_k^h = (Q_k - Q_{k-1})u^h$. \square **Proof**. (of (2))

$$\begin{aligned} \|u^h\|_{H^1(\Omega)}^2 &\leq \beta \inf \sum_{k=0}^J \sum_{i=1}^{n_k} h_k^{-2} \|v_i^{(k)}\|_{L_2(\Omega)}^2. \\ &\inf_{\substack{v_i^{(k)} \in \Phi_i^{(k)} \\ \sum_{k=0}^J \sum_{i=1}^{n_k} v_i^{(k)} = u^h}} \sum_{k=0}^J \sum_{i=1}^{n_k} h_k^{-2} \|v_i^{(k)}\|_{L_2(\Omega)}^2 &= \inf_{\alpha_i^{(k)}} \sum_{k=0}^J \sum_{i=1}^{n_k} h_k^{-2} \|\alpha_i^{(k)} \phi_i^{(k)}\|_{L_2(\Omega)}^2 \\ &\geq C \inf_{\alpha_i^{(k)}} \sum_{k=0}^J h_k^{-2} \|v_k^h\|_{L_2(\Omega)}^2 \\ &= C \inf_{v_k^h \in W_k} \sum_{k=0}^J \|v_k^h\|_{L_2(\Omega)}^2 \\ &\geq C \cdot C_1 \|u^h\|_{H^1(\Omega)}^2 \end{aligned}$$

 \square Let us give an example of the above theorem. Let $A_i^{(k)}:\Phi_i^{(k)}\to\Phi_i^{(k)}$. Let us define L_2 orthogonal projection $Q_i^{(k)}:W\to\Phi_i^{(k)}$ as follows:

$$Q_i^{(k)}u^h = \frac{(u^h, \phi_i^{(k)})_{L_2(\Omega)}}{(\phi_i^{(k)}, \phi_i^{(k)})_{L_2(\Omega)}} \phi_i^{(k)}.$$

Define $P_i^{(k)}: W \to \Phi_i^{(k)}$ by setting

$$P_i^{(k)} = (A_i^{(k)})^{-1} Q_i^{(k)}$$

and $a(\cdot,\cdot)$ by

$$a(u^h, v^h) = (Au, v).$$

Then

$$(A_i^{(k)}\phi_i^{(k)},\phi_i^{(k)}) = (A\phi_i^{(k)},\phi_i^{(k)}) = a(\phi_i^{(k)},\phi_i^{(k)}) = (\alpha_i^{(k)}\phi_i^{(k)},\phi_i^{(k)})_{L_2(\Omega)},$$

where

$$\alpha_i^{(k)} = \frac{a(\phi_i^{(k)}, \phi_i^{(k)})}{(\phi_i^{(k)}, \phi_i^{(k)})_{L_2(\Omega)}}.$$

We have the following equalities:

$$A_i^{(k)}\phi_i^{(k)} = \frac{a(\phi_i^{(k)}, \phi_i^{(k)})}{(\phi_i^{(k)}, \phi_i^{(k)})_{L_2(\Omega)}} \phi_i^{(k)},$$
$$(A_i^{(k)})^{-1}\phi_i^{(k)} = \frac{(\phi_i^{(k)}, \phi_i^{(k)})_{L_2(\Omega)}}{a(\phi_i^{(k)}, \phi_i^{(k)})} \phi_i^{(k)}.$$

So we have the following equality for the preconditioner B

$$B^{-1}u^{h} = \sum_{k=0}^{J} \sum_{i=0}^{n_{k}} (A_{i}^{(k)})^{-1} Q_{i}^{(k)} u^{h}$$
$$= \sum_{k=0}^{J} \sum_{i=0}^{n_{k}} \frac{(u^{h}, \phi_{i}^{(k)})_{L_{2}(\Omega)}}{a(\phi_{i}^{(k)}, \phi_{i}^{(k)})} \phi_{i}^{(k)}.$$

Remark 8.1

$$a(\phi^h, \phi^h) = O(1)$$

$$B_{BPX}^{-1} u^h = \sum_{k=0}^{J} \sum_{i=0}^{n_k} (u^h, \phi_i^{(k)})_{L_2(\Omega)} \phi_i^{(k)}.$$

9 Fictitious Space Method

Theorem 9.1 Let H_0 and H be Hilbert spaces with $(\cdot, \cdot)_{H_0}, (\cdot, \cdot)_H$. Let $A: H_0 \to H_0$ and $B: H \to H$ be self adjoint positive definite operators, i.e., $A^* = A > 0$ and $B^* = B > 0$. Assume that there exists $R: H \to H_0$ such that

$$(ARv, Rv)_{H_0} \le C_R(Bv, v)_H, \quad \forall v \in H$$

and $T: H_0 \to H$ such that

$$RTu_0 = u_0, \quad \forall u_0 \in H_0,$$

and

$$C_T(BTu_0, Tu_0)_H \le (Au_0, u_0)_{H_0}, \quad \forall u_0 \in H_0.$$

Set $C^{-1}=RB^{-1}R^*$ where $R^*:H\to H_0$ and $(R^*u_0,v)_H=(u_0,Rv)_{H_0}$. Then we have

$$C_T(A^{-1}u_0, u_0)_{H_0} \le (C^{-1}u_0, u_0) \le C_R(A^{-1}u_0, u_0) \quad \forall u_0 \in H.$$

Lemma 9.1 Let $A = A^* > 0$ in Hilbert space. Then

$$(A^{-1}u, u)^{1/2} = \sup_{v \in H} \frac{(u, v)}{(Av, v)^{1/2}}$$

Proof.

$$(u, v) = (A^{-1/2}u, A^{1/2}v) \le \text{ C. B. } \le ||A^{-1/2}u|| ||A^{1/2}v||$$

= $(A^{-1}u, u)^{1/2}(Av, v)^{1/2}$

and

$$v = A^{-1}u \Rightarrow (A^{-1}u, u)^{1/2} = \sup_{v \in H} \frac{(u, v)}{(Av, v)^{1/2}}$$

Proof. (of Theorem) The first inequality follows from

$$(RB^{-1}R^*u_0, u_0)^{1/2})_{H_0} = (B^{-1}R^*u_0, R^*u_0)_H = \sup_{v \in H} \frac{(R^*u_0, v)_H}{(Bv, v)_H^{1/2}}$$

$$\geq \sup_{v_0 \in H_0} \frac{(R^*u_0, Tv_0)_H}{(BTv_0, Tv_0)_H^{1/2}} \geq \sqrt{C_T} \sup_{v_0 \in H_0} \frac{(R^*u_0, Tv_0)_H}{(Av_0, v_0)^{1/2}}$$

$$= \sqrt{C_T} \sup_{v_0 \in H_0} \frac{(u_0, v_0)_{H_0}}{(Av_0, v_0)^{1/2}} = \sqrt{C_T} (A^{-1}u_0, u_0)^{1/2}.$$

For the second one,

$$(RB^{-1}R^*u_0, u_0)^{1/2})H_0 = \sup_{v \in H} \frac{(u_0, Rv)_{H_0}}{(Bv, v)_H^{1/2}} = \sup_{v \in H} \frac{(A^{-1/2}u_0, A^{1/2}Rv)_{H_0}}{(Bv, v)_H^{1/2}}$$

$$\leq C. B. \leq (A^{-1}u_0, u_0)_{H_0}^{1/2} \sup_{v \in H} \frac{(ARu_0, Rv)_{H_0}^{1/2}}{(Bv, v)^{1/2}}$$

$$\leq \sqrt{C_R}(A^{-1}u_0, u_0)^{1/2}.$$

10 Application to Fictitious Domain Method

10.1 Neumann Boundary Condition

Let us consider the following model problem:

$$\begin{cases} -\Delta u + u &= f \text{ in } \Omega\\ \frac{\partial u}{\partial n} &= 0 \text{ on } \Gamma. \end{cases}$$

where Ω is not regular (not polygonal) and Γ is its boundary.

Let $H_0 = H^1(\Omega)$ and $H = H_0^1(\Pi)$. Let A and B be the differential operators according to the domain Ω and Π , i.e.,

$$A \longleftrightarrow -\Delta_{\Omega} + I$$
$$B \longleftrightarrow -\Delta_{\Pi}$$

Let $R: H^1_0(\Pi) \to H^1(\Omega)$ be a restriction operator. In this case, we define it by $R = I_{\Omega}$. Then we have

$$(Ru, Ru)_{H^1(\Omega)} \le C_R(\nabla u, \nabla u)_{L_2(\Pi)}.$$

Let $T: H^1(\Omega) \to H^1_0(\Pi)$ be an extension operator. Then

$$u \in H^1(\Omega) \to ||u||_{H^1(\Omega)} \ge C_1 ||\phi||_{H^{1/2}(\Gamma)} \ge C_2 ||Tu||_{H^1(\Pi)}$$

and

$$RTu_0 = u_0 \quad \forall u_0 \in H^1(\Omega).$$

We obtain preconditioner for the domain Ω by setting

$$C^{-1} = RB^{-1}R^*.$$

In matrix notation,

$$C^{-1} = \begin{bmatrix} I & 0 \end{bmatrix} (-\Delta_\Pi^{-1}) \begin{bmatrix} I \\ 0 \end{bmatrix} \text{ and } Ru = u_{\bar{\Omega}}$$

where

$$R = \begin{bmatrix} I & 0 \end{bmatrix}$$
 and $u = \begin{bmatrix} u_{\bar{\Omega}} \\ u_{\Pi \setminus \Omega} \end{bmatrix}$

and I is an identity block.

10.2 Dirichlet Boundary Condition(1-D case)

Let us first consider Dirichlet Boundary condition for 1-D problem:

$$\begin{cases} -\frac{d^2u}{dx^2} = f \text{ in } (a,b) \subset (0,1) \\ u(a) = u(b) = 0. \end{cases}$$

Let $H_0 = H_0^1(a, b)$ and $H = H_0^1(0, 1)$ with $\Pi = (0, 1)$ and $\Omega = (a, b)$. Let $A = -\Delta_{\Omega}$ and $B = -\Delta_{\Pi}$. In order to extend u from Ω to u on Π , we define an extension operator $T : H_0^1(a, b) \to H_0^1(0, 1)$ by

$$Tu = \begin{cases} u(x) & x \in (a, b) \\ 0 & x \in \Pi \setminus (a, b). \end{cases}$$

Then

$$(Tu_0, Tu_0)_{H^1(\Pi)} = (u_0, u_0)_{H^1(\Omega)} \Longrightarrow C_T = 1.$$

Next, we consider the restriction operator $R: H^1_{0,h}(\Pi) \to H^1_{0,h}(\Omega)$. There are many ways to define R. Here we consider two R and compare them.

1) The first one is defined as follows:

$$Ru^{h} = \begin{cases} u^{h}(x) & x_{i} \in (a, b) \\ 0 & x_{i} = a \text{ or } b. \end{cases}$$

 $||R|| \to \infty$ as $h \to 0$. So $C_T \to \infty$. This is not a good choice of restriction. 2) So we introduce another restriction operator. Let $I_{\Omega}: H_0^1(\Omega) \to H^1(\Omega)$ be natural restriction defined as follows:

$$(I_{\Omega}u)(x) = u(x), x \in \Omega, \quad \forall u \in H_0^1(\Omega)$$

and $I_{\Gamma}: H^1_0(\Pi) \to \mathbb{R}^2$ be the trace operator defined by

$$I_{\Gamma}u = \begin{bmatrix} u(a) \\ u(b) \end{bmatrix}, \quad \forall u \in H_0^1(\Pi).$$

Let $t: \mathbb{R}^2 \to H^1(\Omega)$ be the extension operator defined by

$$t\left(\begin{bmatrix} u(a) \\ u(b) \end{bmatrix}\right) = u(a) + \frac{u(b) - u(a)}{b - a}(x - a).$$

Now we define the restriction operator $R: H_0^1(\Pi) \to H_0^1(\Omega)$ by

$$R = I_{\Omega} - tI_{\Gamma}.$$

Clearly, we have

$$|u(a)| \le C||u||_{H^1(\Pi)},$$

 $|u(b)| \le C||u||_{H^1(\Pi)},$

and

$$|tI_{\Gamma}u|_{H^1}^2 = \int_a^b \frac{(u(b) - u(a))^2}{(b-a)^2} dx \le C||u||_{H^1(\Pi)}^2.$$

Thus

$$||Ru||_{H^1(\Omega)} \le ||I_{\Omega}u||_{H^1(\Omega)} + ||tI_{\Gamma}u||_{H^1(\Omega)} \le C_R ||u||_{H^1(\Pi)}$$

since $||I_{\Omega}u||_{H^1(\Omega)} \leq ||I_{\Omega}u||_{H^1(\Pi)}$. Note that C_R is independent of h in this case(FEM). It is easy to see that $RTu_0 = u_0 - 0 = u_0$, $\forall u_0 \in H^1_0(\Omega)$.

10.3 Dirichlet Boundary Condition(2-D case)

Let $H_0 = H_0^1(\Omega)$, $H = H_0^1(\Pi)$, $A = -\Delta_{\Omega}$ and $B = -\Delta_{\Pi}$. Let $T : H_0^1(\Omega) \to H_0^1(\Pi)$ be an extension operator defined by

$$Tu = \begin{cases} u(x) & x \in \Omega \\ 0 & x \in \Pi \backslash \Omega \end{cases}$$

as in the case of 1-D. Then $C_T = 1$. Let $R = I_{\Omega} - tI_{\Gamma}$, where t is the extension operator from subsection 10.2, then we obtain constant C_R (independent of h).

10.4 Mixed Boundary Condition(2-D case)

Let $\check{H}^1(\Omega)=\{u\in H^1(\Omega)|u(x)=0,x\in\Gamma_D\}$. Let $H=H^1_0(\Pi),\ A=-\Delta_\Omega$ and $B=-\Delta_\Pi$. We see,

$$\overline{\Pi \backslash \Omega} = \overline{G}_N \cup \overline{G}_D.$$

Let $T_{ND}u_0 = T_N T_D u_0$. Define $T_D : \check{H}_\Omega^1 \to H^1(\bar{\Omega} \cup G_D)$ for Dirichlet data by

$$T_D u_0 = \begin{cases} u_0(x) & x \in \Omega \\ 0 & x \in G_D. \end{cases}$$

Next, by trace theorem, there exists $T_N: H^1(\bar{\Omega} \cup G_D) \to H^1(\Pi)$. Now, we define a restriction operator R by $R = I_{\Omega} - t_{\Gamma}t_N \cdot I_D$ where $I_{\Omega}: H^1_0(\Pi) \to H^1(\Omega)$ and $I_D: H^1_0(\Pi) \to H^{1/2}(\Gamma_D)$. We define $t_N: H^{1/2}(\Gamma_D) \to H^{1/2}(\Gamma)$ by

$$(t_N\phi)(-s) = (1 - \frac{s}{D})\phi(s)$$
 for $\phi(s) \in H^{1/2}(\Gamma_D)$.

Here (1 - s/D) is a linear cut-off function. Note that D is independent of h. We get the following estimation for t_N

$$||t_N\phi||_{H^{1/2}(\Gamma)} \le C_1 ||\phi||_{H^{1/2}(\Gamma_D)}.$$

Let $t_{\Gamma}: H^{1/2}(\Gamma) \to H^1(\Omega)$ be the extension operator, then we have the following estimation for R

$$||Ru|| \le ||I_{\Omega}|| + ||t_{\Gamma}|| \cdot ||t_{N}|| \cdot ||I_{D}u||$$

 $\le C_{R}||u||_{H^{1}(\Pi)}.$

Here C_R is independent of h in FEM case.

10.5 Unstructured and nonuniform grid(2-D case)

Here we consider the case of unstructured and nonuniform grid of Ω . In the case of structured grid Ω , there is no problem. In other words, we can design a preconditioner for the differential operator on Ω from that on Π . In the case when Ω is not polygonal, though, we want to design a preconditioner from the

uniform grid differential operator on Π . Let $Q^{h_{\sharp}}$ denote the uniform grid on Π and h_{\sharp} be the mesh size of $Q^{h_{\sharp}}$ satisfying

$$h_{\sharp} < \frac{1}{\sqrt{2}} r_{\min}$$

where

$$r_{\min} = \min_{z_l \in \Omega^h} r_l.$$

Let $H_0 = H_h(\Pi^h)$ and $H = H_h(Q^{h_{\sharp}})$. Let $A = -\Delta_{\Pi^h}$ and $B \approx -\Delta_{Q^{h_{\sharp}}}$ be defined as previously. Now, we construct $R_Q : H_h(Q^{h_{\sharp}}) \to H_h(\Pi^h)$. Let $U^{h_{\sharp}} \in H_h(Q^{h_{\sharp}})$, then how can we define $u^h \in H_h(\Pi^h)$? Let z_l denote nodal point of Π^h and Z_{ij} is the node of some Q_{ij} . We set $u^h(z_l) = U^{h_{\sharp}}(Z_{i,j})$ i.e., $RU^{h_{\sharp}} = u^h$ is a simple restriction. Next, we define the extension operator $T: H_h(\Pi^h) \to H_h(Q^{h_{\sharp}})$ by the following way:(See Figure ??.)

$$\begin{cases} U^{h_{\sharp}}(z_{ij}) = u^h(z_l) \text{ if } z_l \text{ belongs to some } Q_{ij} \\ U^{h_{\sharp}}(z_{ij}) = \frac{1}{3}(u^h(z_1) + u^h(z_2) + u^h(z_3)) \text{ otherwise} \end{cases}$$

With the condition on mesh size that there are only two cases.(See Figure ??.) That is, there is a one-to-one correspondence between Π^h and some subset $\tilde{Q}^{h_{\sharp}}$ of $Q^{h_{\sharp}}$. Then we can see that

$$RTu^h = u^h \qquad \forall u^h \in H_h(\Pi^h).$$

Assume that $c_1 r_{\min} \leq h_{\sharp}$, i.e h_{\sharp} is of order h.

Lemma 10.1 There exist two constants C_R^Q and C_T^Q (independent of h) such that

$$||R_Q U^{h_{\sharp}}||_{H^1(\Pi)} \le C_R^Q ||U^{h_{\sharp}}||_{H^1(\Pi)}$$

and

$$||T_Q u^h||_{H^1(\Pi)} \le C_T^Q ||u^h||_{H^1(\Pi)}.$$

Proof. Let $u^h = RU^{h_{\sharp}}$, then

$$\begin{aligned} \|u^h\|_{H^1(\Pi)} &\approx \sum_{\tau_i \subset \Pi^h} (h^2\{(u^h(z_{i_1}))^2 + (u^h(z_{i_1}))^2 + (u^h(z_{i_1}))^2\} \\ &+ (u^h(z_{i_1}) - u^h(z_{i_2}))^2 + (u^h(z_{i_2}) - u^h(z_{i_3}))^2 + (u^h(z_{i_3}) - u^h(z_{i_1}))^2) \\ &= \sum_{\tau_i \subset \Pi^h} h^2((U^{h\sharp}_{i_1,j_1})^2 + \dots + (U^{h\sharp}_{i_k,j_k})^2) \\ &+ \sum_{\tau_i \subset \Pi^h} ((U^{h\sharp}_{i_1,j_1} - U^{h\sharp}_{i_2,j_2})^2 + (U^{h\sharp}_{i_2,j_2} - U^{h\sharp}_{i_3,j_3})^2 + (U^{h\sharp}_{i_3,j_3} - U^{h\sharp}_{i_1,j_1})^2). \end{aligned}$$

Clearly,

$$\sum_{\tau_i \subset \Pi^h} h^2((U_{i_1,j_1}^{h_{\sharp}})^2 + \dots + (U_{i_k,j_k}^{h_{\sharp}})^2) \le ||U^{h_{\sharp}}||_{L_2,h}(Q^{h_{\sharp}}).$$

Next,

$$\begin{split} (U_{i_1,j_1}^{h_{\sharp}} - U_{i_2,j_2}^{h_{\sharp}})^2 & \leq \text{ some differences of neighbors} \\ & \leq (U_{i_1,j_1}^{h_{\sharp}} - U_{i_2,j_2}^{h_{\sharp}})^2 + \dots + (U_{i_k',j_k'}^{h_{\sharp}} - U_{i_2,j_2}^{h_{\sharp}})^2. \end{split}$$

So there exists a constant C_1 such that

$$\begin{split} \sum_{\tau_i \subset \Pi^h} ((U_{i_1,j_1}^{h_\sharp} - U_{i_2,j_2}^{h_\sharp})^2 + (U_{i_2,j_2}^{h_\sharp} - U_{i_3,j_3}^{h_\sharp})^2 + (U_{i_3,j_3}^{h_\sharp} - U_{i_1,j_1}^{h_\sharp})^2) \\ & \leq C_1 |U^{h_\sharp}|_{H^1(Q^{h_\sharp})}^2. \end{split}$$

This completes the proof of the existence of C_R . The existence of C_T is the same as the case of C_R . \square

Theorem 10.1 We have the preconditioner for the problem on Ω^h with $C_R(\neq C(h))$ and $C_T(\neq C(h))$ by letting $(-\Delta_{\Omega_h})^{-1} \approx RR_Q(-\Delta_{Q^{h_\sharp}})^{-1}R_Q^TR^T$.

11 Fictitious Space Method and Multilevel ASM

We consider the following mixed boundary value problem:

$$\begin{split} \sum_{i,j=1} -\frac{\partial}{\partial x_i} a_{ij} \frac{\partial u}{\partial x_j} + a_0(x) u &= f(x), \quad x \in \Omega \\ u(x) &= 0 \quad \text{ on } \Gamma_D \\ \frac{\partial u}{\partial n} + \sigma(x) u &= 0 \quad \text{ on } \Gamma_N \end{split}$$

Then, we have

$$a(u,v) = \int_{\Omega} \left(\sum \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} + a_0(x) uv \right) dx dy + \int_{\Gamma_N} \sigma(x) uv ds$$

with

$$a(u, v) = a(v, u)$$
$$a(u, u) \approx ||u||_{H_{\Omega}^{1}}^{2}$$

We assume that $\Omega^h = \bigcup_{i=1}^M \tau_i$ is quasi-uniform and shape regular with $\partial \Omega^h = \Gamma_D^h \bigcup \Gamma_N^h$ and $\Gamma_D^h \subset \overline{\Omega}, \Gamma_N^h \subset \overline{(R^2 \setminus \Omega)}$. Also suppose that $h_\sharp \leq r_{min}/2\sqrt{2}$. Define Q^h by the minimum collection of Q_{ij} enclosing Ω^h . Let $\partial Q^h = S^h$ with $S^h = S_D^h \bigcup S_N^h$ such that, if

$$\overline{Q_{ij}} \bigcap \Gamma^h \neq \varnothing$$

then

$$S^h \bigcap \overline{Q_{ij}} \in S_D^h$$
 and $S_N^h = S^h \setminus S_D^h$

We have

$$(Au, v) = a(u^h, v^h)$$
$$(BU, U) \approx ||U^h||^2_{H^1(Q^h)}, \forall U^h \in H_h(Q^h)$$
$$R_Q : H_h(Q^h) \to H_h(\Omega^h)$$

Theorem 11.1 There exist C_1 and C_2 , independent of h, such that

$$C_1(A^{-1}u, v) \le (RB^{-1}R^Tu, v) \le C_2(A^{-1}u, u), \quad \forall u$$

Proof. The proof is same as one in the previous theorem of the FSM. \square

Remark 11.1 The condition $h_{\sharp} \leq r_{min}/2\sqrt{2}$ instead of $h_{\sharp} < \frac{r_{min}}{\sqrt{2}}$ is needed in the mixed boundary case.

Assume $h_{\sharp} = l \cdot 2^{-J}$, $h_k = l \cdot 2^{-k}$, $k = 0, 1, \dots, J$, and $h_J = h_{\sharp}$ and we have a sequences of triangulations and spaces

$$\Pi_0^h, \Pi_1^h, \dots, \Pi_J^h$$

$$W_0^h \subset W_1^h \subset \cdots \subset W_J^h = \check{H}_h(Q^h)$$

where $W_k^h = \{u_k^h = \sum_i \alpha_i^{(k)} \phi_i^{(k)}\}$ and $\phi_i^{(k)}$ is a nodal basis. Let $S^h = S_N^h$. Now,

$$B_N^{-1} U^h = \sum_{k=0}^J \sum_{\substack{\{supp\phi_i^{(k)} \cap Q^h \neq \phi\}}} (\tilde{U}^h, \phi_i^{(k)})_{L_2(Q^h)} \tilde{\phi}_i^{(k)} \quad \text{- part of BPX in } \Pi$$

where

$$\tilde{U}^h = \begin{cases} U^h(Z_{i,j}) & Z_{i,j} \in Q^h \\ 0 & \text{otherwise} \end{cases}$$

Theorem 11.2 There exist C_1, C_2 , independent of h, such that

$$C_1 \|U^h\|_{H^1(Q^h)}^2 \le (B_N U, U) \le C_2 \|U^h\|_{H^1(Q^h)}^2$$

Proof. Note that

$$B_{\Pi}^{-1}(U_{\Pi}^{h}) = \sum_{k=0}^{J} (U_{\Pi}^{h}, \Phi_{i}^{(k)})_{L_{2}(\Pi)} \Phi_{i}^{(k)}$$
 - BPX in Π ,

$$R_N U_{\Pi}^h = \begin{cases} U_{\Pi}^h(Z_{i,j}) & Z_{i,j} \in Q^h \\ 0 & \text{otherwise} \end{cases}$$

and

$$R_N = \begin{bmatrix} I & 0 \end{bmatrix}$$

Then $R_N B_N^{-1} R_N^T = B_N^{-1} \square$

Drichlet Condition $(S^h = S_D^h)$

$$B^{-1}U^h = \sum_{k=0}^{J} \sum_{supp\Phi_i^{(k)} \subset Q^h} (U_{\Pi}^h, \Phi_i^{(k)})_{L_2(\Pi)} \Phi_i^{(k)}$$

Theorem 11.3 There exists C_1, C_2 such that

$$C_1 \|U^h\|_{H^1(Q^h)}^2 \le (B_D U, U) \le C_2 \|U^h\|_{H^1(Q^h)}^2 \forall U \in H_h(Q^h)$$

Proof. The proof is postponed and let us assume temporarily that the theorem was proved already. \square

<u>Mixed Condition</u> $(S_D^h \neq \phi, S_N^h \neq \phi)$

$$B_M^{-1}U = \sum_{k=0}^J \sum_i (U^h, \Phi_i^{(k)})_{L_2(\Pi)} \Phi_i^{(k)}$$

where the second summation is taken on the set $supp(\Phi_i^{(k)} \cap Q^h) \neq \phi$ and

 $supp(\Phi_i^{(k)} \cap S_D^h) = \phi.$ **Proof.** Note that $\Pi^h \setminus Q^h = \bar{G}_D^h \bigcup \bar{G}_N^h$ and $G_D^h \cap G_N^h = \phi$. From the figure we observe that $\partial G_D^h \cap S^h = S_D^h$ and $\bar{G}^h = \bar{Q}^h \bigcup \bar{G}_N^h$. Now define

$$\dot{H}_h(G^h) = \{u^h | u^h(x) = 0, x \in \partial G^h\}$$

Then we have by previous case

$$B_{D,G}^{-1}U_G^h = \sum_{k=0}^J \sum_{supp\Phi_i^{(k)} \subset G^h} (U_G^h, \Phi_i^{(k)})_{L_2(G)} \Phi_i^{(k)}$$

and

$$C_1 \|G_G^h\|_{H^1(G)}^2 \le (B_{D,G}U_G, U_G) \le C_2 \|U_G^h\|_{H^1(G)}^2$$

Also define $R_{N,G}: \dot{H}_h(G^h) \to \check{H}_h(Q^h)$ by

$$R_{N,G}U_G^h(Z_{i,j}) = \begin{cases} U_G^h(Z_{i,j}) & Z_{i,j} \in Q^h \\ 0 & \text{otherwise} \end{cases}$$

Then, finally we have

$$R_{N,G} = \begin{bmatrix} I & 0 \end{bmatrix}$$

and

$$R_{N,G}B_{D,G}^{-1}R_{N,G}^{-1}=B_{M}^{-1}$$

Now, we'll show the Theorem for Dirichlet condition. Define $\dot{W}_k = W_k \cap \dot{H}_h(Q^h)$. Then, the proof of the theorem is completed if the following conditions are satisfied:

(a) For all $u^h \in \dot{W}_J, \exists u_i^{(k)} = \alpha_i^{(k)} \Phi_i^{(k)}$ such that

$$\sum_{k=0}^{J} \sum_{\substack{supp(u^{(k)}) \subset Q^h}} u_i^{(k)} = u^h$$

and

$$\alpha \sum_{supp(u_i^{(k)}) \subset Q^h} \|u_i^{(k)}\|_{H^1(Q^h)}^2 \le \|u^h\|_{H^1(\Omega)}^2$$

(b) For all $u^h \in \dot{W}_J$,

$$\|u^h\|_{H^1(Q^h)}^2 \leq \beta \inf \sum_{supp(u_i^{(k)}) \subset Q^h} \|u_i^{(k)}\|_{H^1(Q^h)}^2$$

where the infimum is taken on $u_i^{(k)}$ decomposition satisfying

$$\sum_{k=0}^{J} \sum_{supp(u_i^{(k)}) \subset Q^h} u_i^{(k)} = u^h$$

with α, β are independent of h.

Now, to prove the above condition (a) and (b), we need 3 lemmas. The proof of each lemma is easy, so omitted. The first and second lemmas imply the condition (b) and the last lemma with BPX in Π implied the condition (a). Now, we'll state the three lemmas.

Lemma 11.1 There exists C, independent of h, such that

$$(\nabla v^h, \nabla w^h)_{L_2(\tau_i)} \le C(1/\sqrt{2})^{l-k} |v|_{H^1(\tau_i)} 2^l ||w||_{L_2(\tau_i)}$$

for all triangles τ_i of the triangluation $\Pi_k^h \cap Supp W_k$, $v^h \in \dot{W}_k$, $w^h \in \dot{W}_l$ (l > k).

Lemma 11.2 $\forall u^h = u^h_0 + \sum_{k=1}^J u^h_k, \quad u^h_k \in \dot{W}_k, \text{ we have }$

$$|u^h|^2 \le C(|u_0^h|_{H^1(Q^k)}^2 + \sum_{k=1}^J 4^k ||u_k^h||_{L_2(Q^h)}^2)$$

Lemma 11.3 For given $u^h \in \dot{W}_J$, we define $\tilde{u}^h(x) = u^h(x)$ if $x \in Q^h$, otherwise, $\tilde{u}^h = 0$. Then, for a given decomposition

$$\tilde{u}^h = \tilde{u}_0 + \sum_{k=1}^J \tilde{u}_k, \quad \tilde{u}_k \in W_k,$$

 $\exists \ decomposition$

$$u^h = u_0 + \sum_{k=1}^J u_k, \quad u_k \in \dot{W}_k$$

such that

$$4^k \|u_k\|_{L_2(Q^h)}^2 \le C(|\tilde{u}_0| + \sum_{k=1}^J \|\tilde{u}_k\|_{L_2(\Pi)}^2)$$

 $for \ some \ constant \ C, \ independent \ of \ h.$