LECTURE NOTES
Domain Decomposition Methods

Sergey Nepomnyaschikh

1 Domain Decomposition

Let  be L-shaped domain. Decompose §2 into two rectangles €27 and Qo with
the common boundary 7. Consider the following p.d.e.

—Au=f inQ,

u=0 onl.

Let H}(Q) = {u € HY(Q)|u(z) = 0, x € T'}. Then the weak formulation is :
Find v € Hj(9) such that

/(vu,vu)dQ = / fodQ Vv € Hy(Q).
Q Q

Assume that Q" be uniform triangulation. Let Hp,(Q) = {u" € H}(Q)|u" =
PW-linear}. For the function u" € H,(Q), it can be identified as a vector
Ui

= | : |, where u; = u"(z).

un
Define a bilinear form A by

A(a,v) = /Q(Vuh, Vo) dQ.

Then the weak formulation can be expressed as a algebraic(matrix) form.

Au = f.
Ug
The vector u can be decomposed into three groups, that is, w = |41 |, where
Uz

U, 41, and Uy are corresponding to v, 1, and €2, respectively.

Ao Aot Aoa| |uo fo

Au= A0 A 0 uy| = f1 :f_

AQO 0 A2 ’ITLQ f2

Observe that A; corresponds to the Dirichlet problem in ;, that is, A; «—
—Aq,, for i =1,2.
From the second and the third equation, we obtain

_ 17 1 _
up = A7 fi — A7 " Asoto,



Uy = Ayl fo — Ay Aggig.
Substitute into the first equation to get
(Ao — Ao AT Arg — A2 Ay M Ago)ti = fo — A AT i — A Ay fo.

Let

S =Ayg— Ap A7 Ay — Aga Ay P Ay

¢ = g

¥ = fo— A AT fi — A Ay fo
S is called by Schur-complement matrix and we have to solve the equation

S¢ = ).

If we can find a preconditioner X for S, then the solution ¢ is obtained by a
iterative method, e.g.

(oM = ¢F) = —(S¢F — ).

Lemma 1.1 If [|¢" — ¢[|s = € and uf = ¢", uf = A7 (f1 — Aioo"), u =
AN (fo — Agd™), then ||a"™ — illa = e.

Proof.
—n =112 _ —n =\ =N —
[a" —all3 = (AU — u), " —u)

Ay Ag1 Age ﬂg — Up ﬂg — Ug

= Ag A 0 ﬂ? —u |, 1711 — Uy
_A20 0 A2 17,717' — Us I_L? — U
Aoty + Aoruy + Aoty — fo| |Ug — Uo

= Aloﬂg + Alﬂ? — ]il R 12711 — U
L Agoﬂg + Agﬂg — f2 l_lﬂf — U
fQan =T m =N n
Suf — Uy — Uo Sug —v, " —

= 0 , Ul — = 0, 0
0 @ — i 0, 0

O
There are some interesting facts about S. The first is that though, S is an
interface problem, it is closely related to the entire problem. The second is that

the quadratic form (S¢, ¢) is equivalent to some trace norm.
(Au,u) = / |V dQ
Q

:/ \vuh|2d91+/ |V [ dQy
Ql QZ

= (ol ) - (o ] =)



. (4) ,
where A = [f‘lﬁo 1?4072}

A® =1,2, is just the discrete Laplacian —Agq,, which satisfies the Dirichlet
condition on 9€; \ v and the Neumann condition on .
Let S; = AY) — AjpA; ' Ayjg. Then S = S + S5 and Ay = A + AP

A CHMAN)
uy (25} U1
:iq?lf((Aél)(b’ @) + (Arur, ur) + 2(A109, u1))

=(A ¢, 0) + inf((Arur, ur) = 2(= A0, u1)).

The quadratic form (Ajui,uy) — 2(—Aj0¢,u1) has its minimum at Aju; =
_A10¢7 that iS, uy = —A;1A10¢. So

e (42 2])
uy (75} (1
(4676, 6) + (4106, AT A109) — 2(A106, A7 A19)

(AV ¢, 6) — (A AT Ao, 9)
:(S1¢a ¢)

Hence we obtain the following.

S = inf ul|? + inf ul|? .
(59,¢) un€Hp (1), un|y=9¢n | |H1(Ql) ur €Hp (Q2),unly=0¢n | |H1(522)

In fact, the infimum occurs at u which solves the discrete Laplacian problem :
—Apu =0, in Q;
uh =0, on 00\ v
u =¢" on ~

Then we obtain the following theorem.

Theorem 1.1 Suppose that there exist c¢; and co such that for any ul' € Hy(Q;)
with uf =¢" on 7,
< el |l o)

h
19113
holds and for any ¢" € Hh% (082;), there exist ul € Hy () with ul = ¢" such
that

h N < h )
Il < eall6*l 3 00

Then
(Sip,0) ~ [|¢" % .

HE (09)

Here ¢ is matriz representation of ¢".



We treated just the Laplacian equation. For the general elliptic case, S is more
complicated so that it is difficult to find a precondioner for S. But the following
lemma shows that it is enough to find a precondioner for the Laplacian equation.

Lemma 1.2 Let A = [jz ﬁ;j and B = [gi g;j Assume that A =

AT >0, B= BT >0, A > 0, and B11 > 0. Let Sa = Ay — A21A;11A12 and
Sp = Bay — Bo1 B! Bra. If

Cl(Auvu) < (BU, U) < CQ(AU7U)7 Y

then
c1(Sau,u) < (Spu,u) < co(Sau,u), Y.
Proof.
s =t (1] [1])
_ vi| |01 .
= <B LJ , [UJ) (for some 1)
>c | A U1 U1
- C1 Us ) us
s (2] )
w1 (15) Ug
= c1(Saug, uz).
0
Let

Lu— z;<<>§;> T ao(w)u = f(x), z € 9.

Assume that
(Lu,u) = [Jull 3 o)
Let Sp and S; be Schur-complement matrices for L and -A, respectively. The

above lemma implies that it is enough to construct a precondtioner for Sj in
place of Sy,.

2 Finite Element Trace Theorem

Theorem 2.1 Let Q be a bounded domain with the piecewise smooth boundary
T, and let Q" ( Q" is a polygonal approrimation of Q whose vertex may not lie
on T') be a shape-regqular triangulation of Q such that

i) we have
dla@ Ti < elh),

Ti
where r; denotes the radius of the largest ball inscribed in T;,




ii) there exists a mapping T : T, — T; such that T(z;) = Z; (z; and Z; are the
vertices of T; and T;, respectively) and

o T(7;) = 7; is also shape reqular,
o z,eTh—= 3 €T (ThemameoveszZ-EFh to z; €T'.

° E|C1,C2 #C(h), Cl|Zi 72’]“ S |21 72]“ S 62|Zi 7Zj|.
Then

(1) There exists c3 # c3(h) such that

H‘F’hHH}lm(Fh) < C3||uh||H1(Qh,), vul € Hh(Qh) with Uhll"h = Lph.

(2) There exists ¢4 # ca(h) such that for any given ©" € Hy(T"), a uh €
Hy,(Q") exists satisfying u" = o on Ty, and

”uhllHl(Qh) < C4||<,0hHH1/2(Fh).
Remark 2.1 Such T'’s exist if I ~ T in O(h?).

In the paper of Korneev (1970) the special finite element space 4" € H, h(ﬁh)
on the curvehnear tirangulation Q" was suggested that @"(;) = u”(z;) where
a" € Hy(Q") u" € Hy(Q") and the following lemma holds

Lemma 2.1 There exists c5,cq # c(h) such that

esl|@| L2z < L2y < coll@|| L2,
esl@ gz < Wiy < @iz,

esll@" | 27,y < "2y < coll@™ll 2z,

cs /1 /[ (@h(xi : y@(; Y) dady < / / |x - y|2(y))2 ddy

2
<66// - 2(y)) dzdy,
Iw Y|

and

where T" = J, I; and T = J, ;.

Proof. (Existence of c3) There exists c; such that for any given u" €
Hy(Q") there is a 4" € H'(Q") satisfying 1@ | g1 eny < erllu[|mrny-

Letting " = @"|r € H},(T), define " € H(T},) as a linear combinations of
vertex values of ¢". We have from the trace theorem

||95hHH1/2(F) < csl|a"|| (o)



By Lemma 2.1 it follows that
||(ph||H}]]:/2(F}L) S C9H¢h||H1/2(F).

We remark that this is immediate in the case Q" = Q. 0
Proof. (Existence of c;) For a given " € Hy,(T'"), let ¢" € H,(T') be
such that ¢"(Z;) = ¢"(z;). Then we have by Lemma 2.1

16" L1720y < €l 272 my-

By inverse trace theorem, there exists u € H'(Q) such that u|r = @" and
ull 1) < cll @™ g1/2(ry. But u ¢ Hy(Q). How can we construct @ € Hp(2)?
It’s enough to have values at Z;. Let
@h(éi), if z; e T,
o z:) = 1
() — u(z) dx, otherwise,
i JB(z,r:)

where r; is the radius of the largest ball B(Z;,r;) inscribed in the union of all
elements sharing the vertex Z; which is denoted by K;. Then we take u" €
Hp(Q") with u"(z;) = @"(%). By Lemma 2.1 it follows that [[u”[|g1(qn) <

clla"|| g o)
It remains to show that [|@"|| 1) < c||@" || g1/2ry. (Note " — @ — u —

h — wP.) By Friedrich’s inequality we obtain

U
1@ |20y < (@) + 18" L2r))
and since [|[" || 2(r)) < Cll@ll gra/2(ry it is enough to estimate @] 41 (q). Note

|ah|§{1(£2) <c Z (ah<'§i1) - ﬂh(éiz))2a
1,€Qh

where Z;, and Z;, are the vertices of the edge I;. We consider the following three
cases separately:

Case 1) z;,,2, €T
Y@z - @"(2) =) (@ (E) — 9" (5))
<y EEZZEN,,

< C|§Z’h|i]1/2(r)

Case 2) Z;,, 2, € Q



Lemma 2.2 Let 0 < hy < hy. Then we have for all uw € H'(B(0, hy))

2
—5 u(z)de — — u(z)de | < —=—|ul?
<7Th% B(0,h2) ( ) 71-]7/% B(0,h1) ) 7rh H1(B(0,h2))"

Proof. Let (r,0) be the radial coordinate system given by
x = (z1,22) = (rcosf,rsind).

Then we obtain

2
1 / 1 /
—s u(z)dr — —= u(z)dz
(Whg B(0,h2) (=) Wh% B(0,hy) (@) )
ho 27 hy 27
( / / u(r,0) rdddr — — / u(r, ) Tder)
7Th
1 ha 27 2
= 72/ / (u(r,0) —u(r/a,0)) rdodr (a=hy/hy > 1)
mhs Jo 0

1 hy p2m [ pr 172 Qu(t, 0) 1/2 i
_7T2h4</ / l/ &dtlr d@dr)
ho 27T 2
/ / uf(t, ) rdtdddr  (by C-B inequality)
ﬂhQ ot
h 27 2
2 Ou(t,0)
t dtdbd wr<at
th / /< ( ) r (or<at)
ha 2w pho (
th / / ( - ) t dtdodr
21 ha 2
/ / (3“ > t dtdo

- |U|H1(B(O.,hz))'

2

| /\

| /\

| /\

| /\

The last inequality follows from the fact that (3%)% < ( 6?;1 )2+ (%)2. 0

Does there exist ¢4 such that V¢, € Hp(I'") Ju" € Hy(Q") such that
u'(z) = ¢"(z), xeT™and [[u"|giqr) < cald”| 1/ ?
h

(Th)
¢ — ¢ € H,(T) — u € H'(Q) — a" € Hy(Q)

hos 1 /

h

a"(Z) = u(x)dx (1)
(&) 7”"iz B(Z:i,75)

1) 21‘,5]‘ el
2) éi,gj e

There are two cases:



Let r denote the radius satisfying the following inclusion:
B(x,V2r) C K;, UK;,, z€l;.

Now we estimate (4" (Z;,) — a"(%;,))>.
2
(ﬂh(ém) uh(z“))2 <3 (ﬂh(222) — W /B(ziz,r) ’U,(CE)diC)

2 2
1 / ho e 1 / 1
+ | — u(z)dx — u"*(Z; + | — u(z)de — —= u(x)dx
(7.”42 - (x) ( J) (71'7“2 - () 7 o €9 >

For the first two terms we can use Lemma 6.2 Now we will have the estimation
for the third term.

2
1 / 1
— de — — u(x)dx
<7T’1"2 B(Ziy,) w@) ™% Jp(z, ) (@) )

1 2
m2rd /B(Z,il,r) (u(@ +y) —u(@))- 1d9€>

(uz +y) — u())*de

IN

1
mr? B(Zi,,r)
1

< /_ /_ (s + hot) — (s, £))2dsdt
s LA () e
[ (0 e

- 71'1"2 /4 /T+h <8u < ) et

< p— 2|U\H1(K UKy)*
Case 3) z;, €T, %, € Q

Next, let 21'1 = (0,0),2 (hl,O)7 ( h2,0),2i2 = (0, h3), and r: B(EZ,T) C
S, where S = {(s,h)| — h2 <s<h,0 § h < 2hg}.

2 2
i (z,) —a"(%,))? ah (% L u(z)dx 1 u(z)de — a" (3
(@ (2i) — (1) s2< G <>d> +<W2 [, ue m)



The the second term is estimated as follows:

2
21 (/B( )(u(x)—uh(zw))dx> <CB< # B(gilm)(u(z)—uh(zZQ))Zdz

< — /}; /2h3 (s,t) — ¢"(0))%dtds
< 4 ( [ }; /0 M s 1) — 6 (s))Pdtds + / / " (0)) dtds)
(L e >

nr 0 0

- ( [ (00 - éh<o>)2 wsi [ (36 -30) d))
< O (JuBpgs + @) — 8 Ga) + (@)~ 8 )
We have

Il oy < Cald 2oy
O

Theorem 2.2 (Sobolev) Let 1: H'(2) — R be a linear bounded functional such
that [(c) = 0 and c is constant = c¢ = 0. Then |ul| g1 () = |[u|g1 (o) + [[(u)].

For example of this theorem, Poincaré inequality.

2
lullsey < © (|u|%,1<m n ( / u(x)dx) )

If [, udz = 0 we have usual Poincaré inequality.

Lemma 2.3 (Poincaré inequality in H'/?(T))

/F¢2(x)dx <C </F/chzxdy+ (/F ¢(x)dm>2> 2)

Proof. Let z,y € I' and = # y then

(9(0) — ofu))? < € L2

)

where Cy = diamf). So we have

//(bx dxdy<Co//|x_jl(2))dydy



But,
/F/Fw(:v)—¢>(y))2da:dy:/F/Fqs(x)?dxdy—Q/F/F¢(x)¢(y)2dxdy+/F/F¢(y)2dxdy

= 2-meas(T) /F ¢*(z)dx — 2 (/F ¢(x)dw>2 :

Substituting the integral into above equation we have the result. O

Theorem 2.3 (Trace theorem with semi-norm) There are two positive con-
stant C1 and Cy satisfying the following conditions: There exists Cy such that
Vu e HY(Q),¢(z) = u(z), =z €T exists and

1Dl 12y < Ctlulp(qy.-

There exists Cy such thatVé € H/?(T),3u € H'(Q) such that u(x) = ¢(z) = €
I' and
|U|H1(Q) < C2\¢|H1/2(r)

Proof. For the first proof: Let u € H!(Q). Then u can be split into two
parts as follows:

1
U =ug+uy, uUg= constant = 7/ udf, / u1dQ) =0
meas() Jq Q

Let us split ¢ as following:
¢o =uolr, ¢ =wlr, ¢=¢o+ 1.

Then we have
19l 2y = 1|2y < Csllui|mr o

< Culur| gy = Calulg o)

For the second proof: Let ¢ € H'/?(I") be decomposed as

¢ = ¢o+ ¢1, ¢o= constant = uyg, / ¢1dl’ =0
r

By Theorem 3.1(Trace theorem), there exists u1 s.t. uj(z) = ¢1(z) and
luillmr @) < Cslloallgirz
Set u = ug + u1. Then u(z) = ¢(z), x €T and
ulFr1 ) = uilfn o) < C5H¢1H§{1/2(p) < 06|¢|§{1/2(F)
where the last one by Poincaré. 0

Remark 2.2 We have the same theorem for finite element space because FEM
space contains constant function.

10



Let Hy C H be two Hilbert spaces and a : H X H be a semi positive symmetric
bilinear form. Assume a is positive definite only on Hy. For a given v € H
consider the problem of finding © € H s.t.

inf a(vy + u, vy + u)
vo€Ho

Define ug € Hy by
a(u + ug,wo) =0, Ywy € Hy

Let H = H',Hy = H{ and consider the problem: Find v € H(Q) s.t
v(xz) = ¢(z), x €T and

vl = inf [Jw|gq).
w|r=¢

a(u,v) :/Vu-Vv—i—uvdx
ue€ HY ulp =¢

inf |[u+w = inf ||w
voeHé” oll 1 () w|r:¢>” |z ()

v = u ~+ ug, a(u + ug, ug) = 0 Solves
—Av+v = 0
vp = ¢
Remark 2.3 Let a/(u,v) = [ Vu-Vudz Then

v = min o (w,w)
wlr=¢

is equivalent to(Harmonic extension)
—-Av = 0
v = ¢
lvllar ) < V') because left hand side is extension with minimal norm.
[Vl < Wl +IIVIZ < vlfng) + 112
< o) + OV [ F gy + ||¢||§11/2(r))
< (14Ol g + C||¢Hi[l/2(r) < Clvllin 0y < ClIY 1 0
So extension by min with semi norm is equivalent to min with norm.

Now FEM. With Hj,(Q"), H}lb/2 ("), The solution of the minimization prob-
lem

"4 = inf "
nf

11



is the solution of

—Avh =0
’Uh‘r _ ¢h.
In variational form
0
a(hwl) = 0, whe Hy(Q")
ohp = ¢t

a form can be written as

o= (4 (5] [2])

Solution is equivalent to

(A Az [vo, wo) _
- <A21 A ) \¢, 0) (Ar1vo + A126,wo), Vo
This implies
Anvg = —A1é, v = Ay Ao
Then consider
inf a(w", w")

where a(w", w") is

(Au A12) ([—Aﬁl/hzﬂ [—Al_llAlzﬂ)

Agp Agp ¢ ’ o)

= (—A1¢+ A2p, — A7 A12¢) + (—As1 AT} A12¢ + A, @)
= ((A22 — A2 AR 412)6, 0) = [|9ll571/2(r)

Here the S = (Aas — AglAﬁlAlg) is the Schur complement. How to construct
an equivalent norm 7

Note ||@|| gr1/2(ry is very complicated.
If ¢ € H'(—1,1) then
||¢||%1(—1,1) = ||¢||§1(—1,0) + ||¢H%I(o,1)
This is only true for H*, 0 < a <1, a # 1/2.
11 2
2 2 (o(z) — o(y))
o« = —
lolfge = e+ [ [ ST

Lemma 2.4 There exist c1,co such that

1 2
(¢(x) — ¢(=x))
Cl||¢||§{1/2(_1,1) < ||¢||%{1/2(_170)+||¢||§{1/2(0,1)+/0 dx < CQHQS”?{I/?(_LQ

x
(3)
We denote the third term as I(¢).

12



Proof.

/1 dy 2_/1-‘,-.'L'dt_ 1
o (+y) /. 2 x2(1+1x)
1 2
L</ dy = _1
2= )y Wiy S
Consider

Thus

< / / (2) (’b dydx
(:C
3 IV
< d dx + 4 d d
- / (sc+y yar =+ a?+y ver
< (|¢|H1/2(0,1 + |¢|H1/2 —1,1))

So (5 is proved. For C; we only need to consider semi norm. Since

|¢\H1/2(01)—// ¢ dydx
e = [ [ dydx+// SAL,

= ]+II+II]+IV

Since I = |¢|i11/2(0 ) IV = |¢|?{1/2(71 o) only IT = I1I matters. So consider
P(y)

L=
- (L L)

< 2/( (- x>—¢<y>>2

0 (95+Z/)

Use the estimate of the integral

1 /1 dy 2 1
— < < -
20 — Jg (e+y) T2

to see the third term is less than

dydzx

(y—> )

|¢|i]1/2(_1,0)

13



The whole thing is less than

2(1(e) + |¢|?{1/2(—1,o))
a
Now divide the boundary(like circle) by two point a,b on I' and left hand
side is called I'y Consider
H /Q(Fl)
Assume ¢ is equal to zero on I’y = T'\I'; and equivalent to harmonic extension
into interior, i.e,

160300y = N6l + 16050, (= 0) + Al / ally
H/2(T") H/2(T'y) H'/2(Tg) I, |£E _ b|2

r, |z — af?

With this motivation, define

) ) ¢2 ¢2
gy =1+ [ oot [ poe @
Similarly define

L 1 ¢2
lollgs = Velion + | 75 (5)

)

Meanwhile a function in H'/2(0,1) does not have anything to do with the value
outside (0, 1).

Now a FEM case. Let Q be triangularized by Q". Some part of it is denoted
by ' some other by T'? define

h h1
1z = 18" ey + Z G+ Z e

Let H},(T%) = {¢" € H}/*(T%)| ¢"(a) = 6"(B) = 0}.
P — ¢ € R"

(S(bv ¢) ~ ||¢h||H1/2(1"h) ~ ‘|¢h‘|001/2 ~ H(E)hHool/2
H () H (I)

1

Here I is straightened boundary. Now ¢"(z;) = qg(él) by mapping and extend
into the unit square and consider on uniform grid

||§Z~Sh||001/2 ~ (S(ba ¢)
H ()

Finally, we have ~
(5,¢) = (56,9)
Hence a preconditioner for S suffices for the original problem. In summary,
Schur complement S is equivalent to the interface norm which is in turn equiv-
alent to Schur complement S. On good domain, Schur complement S can be
found analytically.

14



1
A detailed study on the space H3)(I')

A review on the Schur complement as norm:
Since

(Se.0) = int " ey = I oy (6)
Here u" satisfying u”|r = ¢ is the minimizer. Then
" 31/2r) < Callu® 13 () = (S, @)
(™)
For ¢", there exists ¢ such that
10" |31y < C4||<Ph||§{1/2(r)
Thus

(Se,0) = h‘infsah lw™ 1 ) = Il 7 ) < 10" 17 @) < Calle" /2y
wh e h

We see that Schur complement norm is equivalent to H Y2(I') norm. Let
C>(0,1) be the subspace of C*°(0,1) with compact support. Then it is well
known that for L? case

(C>=(0,1)),> = L*(0,1) and (C>°(0,1)),. = L*(0,1)
However, for H'
(C>(0,1)) 10,1y = H'(0,1) and (C>(0, D))oy = Ho(0,1)

For H® for a < 1/2 follows from L? case and for o > 1/2 follows H! case:

1 1 2
(p(x) —»(v))
Def. H(PH%IQ(OJ) = ||S0||%2(0,1) +/0 /0 |z — y[iF+2e dx dy

If a <

N[

(000(071))Ha = H"(0,1) (000(071)) = Ha(071) (7)

When o < 1/2, for u € H*(0, 1), its extension by zero outside (0,
H®(—1,2) like L? space. But for a = 1/2, a function in H'/?(0,

1
extended by zero. (Note: HZ = Hz(0,1))

) belongs to
) cannot be

1
1

Ifa>1, (C>=(0,1)) o = H*(0,1) (C>=(0,1)) o = Hg(0,1)

15



Let o = 3. If we extend C*(0,1) by the norm || - ||H%7 then we obtain

00
1 1
HE (0,1) and we can extend the function in HZ (0,1) to a function in H2 (—1,2)
by zero.

Hence . ,
H-> (07 1) 2 HOEO(Oa ]-)

1 2
(p(a) — o)
Note: el gy % 19l g+ Il )+ dr

Hz( 1,1) -1 x

1
For ¢ € H%(0,1)

1 2
2 2 (p(z))
= + | ——dx
oty o =Wl |
Hence ¢ — 0 as z — 0, 1.
Define ¢ € H?(—1,2)

0 x € (—1,0),

Plx) = { e(z) =€ (0,1),
0 z € (1,2)
1 ~ 2 1/~ ~ 2
2 < llll? — ¢(=x)) (P(r) = (2 7))
160125 gy =13+ [ EEEE oy [ Z2CD)
1 2
2 o(x (z)
= d
||¢||H2(01)+/0 L
1
~ 2 80(93
o000+ | 7
~ ol , 0.1
HOO
where in the first equivalence, we omitted [|@[|? ; and ||p]? . because
H2(—-1,0) H?2(1,2)

they are zero by extension
pe Ha(ov 1)a a > §7 limg . 4, @(m) = 90(370)
(H*(a > 3) = €°(0,1))

Example 2.1 Let the boundary T' of Q2 be divided by three points a,b,c and call
the resulting pieces I'1, T, 'y
Consider the problem:

inf wll2
weH(Q),w|r, =¢,w|r,=0 || ||H1(Q)

16



The above problem is equivalent to

—Aw+w=0
wlr, = ¢
w|[‘0:0
ow,

on T

What is correct norm of Hz(T'y) =7

. , (p(x))?
1 = 1 761
Il gy = Wl + S s

1t is like Hé({Q(Fl), but only one side norm because integral near the point b
18 MISSINg.
FEM case, we use discrete norm.:

Hy (), Hy(T),  Hp(T1)

): ||(Ph||2 . + Z ((ph(zi))th

h 2
Pl 1 1
|| HH}% (F Hh? (Fl) z€l; ‘Z’L —_ a| T

1

3 Domain Decomposition Method : *Strip Case

*It does not have any cross point

Q=U,Q, v = Uiz 0\,

vinNy =0, v=Uly
{—Au =f(x) zeQ,

u(z) =0 zel
= Au=f

Ftt = % — 7B (SP — ) where C1 (S, ) < (Sp, ) < Ca(Ze, ¢)

17



Ay Ann - - - A uo fO
AlO Ay Uy f1

A'U, = . ' . : =
AnO An Unp fn
Ajoug + Agu; = fi,
U; = —Ai_lAiouo + Ai_lfi
Substitute and get

(Ag — Z Agi A7 Aio)ug = fo — ZAOiAi_lfi

=1 =1

We get

Consider an iterative method
@kJrl — SOIC o Tszl(swk‘ o ,17[})
where ¥ is a preconditioner satisfying

c1(Zp, @) < (Sp,p) < Ca(Xp, ¢)

Split ug as
¥1
ug =
Qpnfl

where ¢; corresponds to ;. Then
S=8+ - +5_1

0 0 0
S ﬁ) S &) ol
S s m

0 0 0

= (%0
= (4 2)

Qi — Sin =

18



Problem: Exnted by mini norm with ¢;, 0 on v, Y- (Z101,01) = |l@ill? 1+ (1)
H020

(Zm@m; ©m) = lemll? 1 (vm)
H2

00

Ty
" Qi Tm
I'o
S (P, (¥ = inf w3,
( ' <<‘0m Pm whEHh(Qi)vwth =1, Wh |y, =P m wh Fr‘|697:=0| |H1(Ql)
el s Flleml? s
20 " Hozo(’Ym)

by previous analysis. Hence we have preconditioner for global Schur complement
as block diagonal. Consider some one substructure v, and omit the subindex £.

2, = S 30 3 EI A m,, L 5 R,

Zi €Y ZiAF£] Zj zi €y
Z; €5
=" ,
020(;?)

where in the second equation, we have everything replaced by its ”tilde” (map
it onto [0, 1]) which is for a curved boundary.

Hence consider the square domain. For example, consider the domain with 4
subdomains(€;, i=1,2,3,4) whose interfaces(~;, i=1,2,3) do not meet each other.
Then, we have

S, +Sé1,1) 551,2)
S = S§2,1) 552,2) + S:gl,l) S§1,2)
sv 8P s,

where the submatrix S; is the Schur-Complement matrix corresponding to the
subdomain €2;. For instance,

S =
2 552,1) 5,52,2)

55171) Sé1,2)1

and Séi’j ) is the S-C corresponding to 2, and 7; and ;. Here, we may write

S:§1+§2+§3+§4

19
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where S; is just the extension of S; by zero elements. Now, in terms of the norm
equivalence we have

~ |21 P2 N
Sy~ ¥4, Sy ~ { 22}’ S3 =~ { 23], Sy~ X3
Note that ($;¢;,¢i) ~ ||¢]|% .., .. Hence, we have
Hoo (’Yz)

D
S ~ 22
23

Given a vertical interface -line segment, we introduce an artificial uniform do-
main and consider the problem with zero boundary condition on three side
except I'; on the left. And consider the Schur complement of this problem,
denote it by S.

For given ~; interface suppose we have mapping from 7; onto one side of
rectangular domain with uniform mesh of size h = 1/n, thus now we can consider
our interface problem as the rectangular model. The Shur-Complement of this
model satisfies

~ h| 2
(S¢a (b) ~ ||¢ ||H352(F1)

In the rectangular domain, we have

[Ag + 21 —I
—I Ag+2I -1
AQ = .. ..
—I Ag+21 -1
i -1 FAo+1I
_ _/:111 14:112
| A21 Az
where
2 -1
-1 2 -1
AO: ’
-1 2 -1
-1 2
and
_ t . — 1
Au:[O 0 0 ... 0 —I] :(Agl), A22:§A0+I

Now we have

20



and

So, = inf ul||?
(5S¢, ) uh|r1=¢h,uh\ag\r1=0H [72ree)
= inf (Aqu,u)

ul|py =¢" ul|sq\r, =0

By the diagonalization, we decompose A, as

Ao = QAQ

where @Q = [ql q2 ... qn,l], A is the diagonal matrix with the diagonal
entries A1, Ag, ..., An_1, and Agq; = \;q;. Note that it is known that the eigen-
value \; = 4sin2% ,the jth component of the eigenvector ¢; is \/%sin(%j),
and QQ! = I. Using this, we get

-1

Q A+21 -1 Q!
B Q -1 A+2I -1
(A) ! = S
Q —I A+21
and
A+21 -1
- 1+ -1 A+2I -1
An(Ap) A = [0 0 ... —Q] _ .
—I A+21
= @Bx»Q'
where L
A+2I -1 B
B —I A+2I -1 _ [Bu 312}
By B
—I A+21
Now let’s compute the matrix Bos. Let e; = [O R O]T, where 1 is in

the i-th position. Consider the following matrix equation.

A+2l -1 z{)
I A+20 -I s 0
I A+21 xSll €;

21
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Then the (n — 1)-th solution vector of the above matrix equation is the i-th
column of the matrix Bso, that is,

By = [mle—)1 53512—)1 955:1—711)}
Denote the vector x,(f) by
10
2 = Ty, .(2)
xg)(n -1

A2 -1 21 (j) 0
-1 N+2 -1 25 (5) 0
B I P ] I

(Some detail) Consider the vector equation with ¢ fixed:

(A+ QI)x(li) fzgi) =0
—z{V +(A + 21zl —z) =0
*xg)fs +(A + 21)@32 *zgzl =0

~2i HA+2D)), =

First block corresponds to

(A +2)28” (1) 21 =0
+(A+2)27(2) —2@2) =0

+A+22Pm-1) —2l?m—-1) =0
Collect j-th line. Then when ¢ = j Hence

S
0

—
S

RS

i1 (i)

22



Combining the vectors 2" we can obtain the matrix Boo

n—1»
2 (1) 0 0
B - (,) mffjll(z) 9
0 0 xfln_ll).(n -1)

Then
T | 1
S = Ay — A21A111A12 = §A +1—QB»Qr = Q(ﬁA + 1 — B22)Qr
and the i-th eigenvalue of S is
a1 G .
/\1(5) = 5)\2 +1-— xn_l(z).

To compute mifll(z), we have to solve the following matrix equation.

Ai+2 0 -1 zy (i) 0
-1 N+2 -1 257 (d) 0
-1 XN +2 l‘s)—l(z) 1

Let o = %)\,; + 1. By using Gauss-elimination technique, (multiply 2a; to j-th
row and add j — 1-th to j-th row) we obtain the following

dl —do 0 J?gz)(l) 0
dy —dy xg) (7) 0
_dn73 a

0 b @] L

where dy = 1, di = 20, and dj41 = 2a;d; — dj—q, for j =1,2,--- ,n — 2. Let
U, (z) be the second kind Chebyshev polynomial of degree n, that is,

Un(e) = 5 (o VAT =D = (o VR = 1)),

(Note the first kind is determined by the same condition with different I.C.
do=1,d1 = ;)
Then dj = Uj(ai) and

23



Hence

. d,_
Ai(S) = ai — _j
Unﬂ(%‘)
= —
Un—1(a;)
(i + /a2 = 1)" 1 — (a; + /a2 — 1)+
= a,, —
(@i +vai =1 — (0 +/af —1)™
_ et Vel D"+ (@it e D)7
' (i + /o = 1) — (i + /i — 1)~
=y/a? —1f(z)

where

Using \/a? — 1 = v/A\;1/1 + 2, we have the following estimates for \;(S).

\/)Ti S )\'L(S) S \/)Tic()\min7)\maz>

where
)\maw ﬂn + ﬁ_n
4 ﬁn _ ﬁfn’

1 / 1
Since Apin = 4sin?(X) ~ L

2n
g = (1 + v )‘min)n = O(l)-
Hence by letting 3 := Az = QA2QT, we have the following inequality

(26, ¢) < (S¢,¢) < C(X¢,9)

C()\minz )\maw) = 1+

Thus

S=QJQ" = A2, J =diag(\i(95))

E_leA_%QTa Q:(QM >CIn—1)7Qi(j)=\/%sin?
Since Amaz < 4, we have C < % If we use FFT algorithm, then the
cost to compute X714 is of order h='log(h~!). What is H(bhHiIl? Since( as a
2

discrete inner product on T")

(¢h7 ¢h)L2,h = h(¢a w)a

24
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Figure 1: Domain and Grid Numbering

where the right hand side is vector inner product.

(A9, 9),

S

1
H(bhH%ﬂ = (ﬁA¢’ ¢)L2,h =

l6M2 , ~ ((IA)1/2¢ ¢> = (AY4,¢)
H% — h2 ) - ) .

L2,h

So we are done with Dirichlet B.C. Next we consider Mixed B.C.
For Dirichlet boundary conditions we have

we have

1/2

S, ) = Y (Tip, ),  Ti=
l

For mixed boundary conditions we have

S(e,0) = > _lle"I12
l

1 ’
Hz ()
where a; is the endpoint of the interface 7; lying on the Dirichlet boundary, and

P @)

z) v |:L'70,l‘ ’

el ., = el

25



Let

2 -1 1

-1 2 -1 0
Al = : s D = s
-1 2 -1 0 1
-1 1 1/2
and
A1 +2D -D
-D A +2D —-D
Aq = .. .
-D Ay +2D -D

-D 3A1+ D

We note that A; corresponds to the first right vertical block.

(Agu,u) = Y {(wiy —uim1y)” + (wiy —uij1)*}
z(1,j)EQ

n

1 1
+3 j;(un,j —up,j-1) + 3 D (Wi =i 1,0)?

i=1

where the third sum corresponds to the left vertical and fourth sum corresponds
to top horizontal line.

~ > )+

n

(P

z(1,5)EQ j=1
= (Bquu)»
where
Ay +21 —I
-1 A +2I -1
BQ = .. ..
—I A +2I —I
-1 1A +1
Lemma 3.1 A~ B=— S, ~ Spg
Amin(41) = O(h2)
Amax(41) = O(1)
9 1 1/2
-1 2 -1
S~ L
-1 2 -1
-1 1

26



In this case the eigenvectors are not easy constructed. So consider

0
s—(ia,+D) =00 D - N :
=gt P)-0--0 = D] -D Ay +2D -D 0
. . -D
D D_l(A1+2I) -1
:D<;D1A1+I> —D[0---0 — 1] —I
D
[DY(Ay, +21) —I “tfo
1 :
:D(QD‘lAl +I> —D[0---0 —1] I :
0
I —I

The following matrix corresponds to the finite difference version for Neu-

mann problem by Samarsky:

2 -1
-1
Ay, =D714, = .
-1 2 -1
-2 2
We obtain
Ay = Q2A00Q5 " = Q2A2Q5 D,
where
. 2 . (2i— 1wy . 2i — )7
QQZ[qla q27"']7 Qi(j)_\/781n()‘77 Ai:481n2!
n 2n 2n

fori,j=1,--- ,n. Here A, is obtained from Chebysheff polynomial.
S = DQ2AsQI D~ DQ:A?QID =Sy,  Spiy = QaA; Q.

For implementation, use FFT for Q.
Fact: D-orthogonal basis.

Asq = D_lAlq = \q = Ayq = A\Dgq
(Dgi, q;) = dij

(D—1/2A1D—1/2)D1/2q — )\D1/2q

g=D"?q

(Dai, q5) = (Gi» @j) = i = QIDQ =1 = Q' =Q"D.

27
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Fl FD Fl 1—‘N
PN FN
N
XNN E%&

Figure 2: Two possibilities

Neumann B.C. both on top and bottom of boundary
In this case, we have

1 -1 1/2
-1 2 -1 1

-1 1 1/2

Repeat the same analysis and we have two possibilities:

1
Swy =47+ -1 S = 4

Q — SOxx®

DD»
2 2 1
[
S317 S Xbp
3 3 1
Sy1” Sao XpN
Q — SWax@®
1 1
25333 (2) (2) 25333 (2)
- R N 0D
Ypn TEND Xbp



I'p I'p 'y I'p

0 Qo Qs Q

I'p I'p I'p I'n
Figure 3: Domain partition with B.C.

Here Egz\, is smaller than Zgg and Eg{q,’g = ES?D R E(DS)D.

Eg%) < E(DQ)D + E(D23V <cXpp on vy
SN +EG, A28, onns
Note (230) 71 + (@)™ # (Spwy + Swp)

h T 2
(Sone, @) = 1" 1512 + / Mdﬂ?
Tr — as

1
Shp
%= DI %S
3
b
This is only semi norm. What to do in this case 7 Use —A ~ —A + I and

construct a preconditioner for —Awu + u. Hence we have 2533\, in the second
block of above expression.

Lemma 3.2 Let

A11 A12 -1 Bll BlQ
|:A21 A22:| ’ BQl BQQ

Then Bl_ll = A11 — A12A2_21A21.
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I'p 'y 'y I'p

—Au+u —Au+u

Figure 4: Another B.C.

Proof.

[Bn 312} {An A12:| _ [11 0}

Bsy  Bag| |Aa1  Aa 0 I

= Bi1 Ay + Bi2Aoy = I, BiiAig + BiaAz =0
Bo1A11 + BagAo1 =0, Ba1 A1z + BagAss = Ip

= By = —Bi1A12As;, BiiAy — BiiAsAy Ay = 1)

= By = An — A1p A3 Ay

Note: Similar result holds for Bas.
On artificial domain before,

Ay Agp
A =
{Am A22}
1|0 _ o1
0 i) =
0 -1 -1 |:X:|
= R = S s = = y
U L"} P %) v u "
§0k+1 _ QDk . Tszl(swk o w)7 271 _ S*l
> «— Neumann, S «— Dirichlet

S = (A — AglAilAlg)(p «— Orignal problem
=i
s= el ~ S
A
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Figure 5: Cross Point

(D)
2—1 = (Z,(ki))_l
(£42)!
0

S S, (ST =10 LA [zl

Domain Decomposition: Cross-point Case

S=80 453 1 90 4 g~ x4 5@ L 53 L x® =%

On each angle, construct preconditioner. Inversion of each £() is meaningless.
Problem: What is X717

DI (2(1))+ + (2(2))+ + (2(3))+ n (2(4))+

Trace theorem is not enough. We need ASM.

4 Schwarz alternating method (H.A.Schwarz,1870)

Q=0 UQ
—Au=f inQ (9)
u(z)=0 =xzel
W = 2% g

A2kl _ :
{ Auy f in{y (10)

Ugg+1 = 0 on Iy =90

(10) is equivalent to solving

{Au2k+1 = f— Au**

ugg41 =0 in Iy

31



and set

2 1 2
WL = 26 gy

In subdomain Q5
2k+2 2%+1
w2 = T fuggs

—Aut2 = in Q,
u2k:+2 = O on FQ = 8(22

E=0,u! =u’ 4w
—Aut=f inQ
u*|r,ur =0

1 0
U |F1\F =u |F1\F

—Aut = in Q
(:}{ U f inQ,

up =0 on I'y.

u € HY(Q) : alu,v) =1(v) Yoe HY(Q)
(Considered by S.L. Sobolev, 1936)

Ugk+1 € Hg(Ql) :
a(u® + ugpy1,v) =1(v) Yo € Hi ()

W = 2 g

Ugk+2 € H& (Qz) :
a(u? T fugpy0,v) = 1(v) Yo € HY(Q2)

2k+2 2k+1
u ket = U b+ +u2k+2

H=H(Q) Hy=H(Q), Hy=H(Q)

P,: H— H; , orthogonal projection in a(u,v)
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a(ugg1,v) = l(v) —alu

Ugpt1 = Py (u — u?*) ut =y
W = 2k 4P (4 — 42k = =u2 —u+ P(u—u?)
WERF2 — 2L Py (g g 264
wk _ uk: —u

Qi:H—H{", Q=I-P

w2k’+l — (I _ Pl)’(/)Qk _ Q1w2k
,lp2k'+2 — (I _ Pz)’(/)2k+1 —_ Q2¢2k+1

k>1
a(W?F PRy = P2 = QR 2
= [|@1Q20%%|2 = a(Q1Q29*", Q1Q21*")

= a(Q2Q1Q1Q29*, %) = a(Q2Q1 Q29" , ")

= a((I — (P14 P) + PPy + PPy — Po P Py)yp*F ")

= a@®,9*) — a((Py + Po)y** 4%%) + a(PL Py, 4)
+a(PyPLp*F ) — a(PyPL Py )

= a(@,*) — a((Py + Py)y** %)

Assume aa(u,u) < a((Py + Po)u,u) Yu € H

92 o < (1= @)y,
9242 < (1= @) 221

= [ *2]la < (1= )9

5 Additive Schwarz Method (A.Matsokin,SN 1985)

aa(u,u) < a((Py + P)u,u) < 2a(u,u) Yu € H
ue H
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ub T =k — (P + P)(u® —u) k=0,1,2,---

Theorem 5.1 Let H be a Hilbert space with (u,v)
H=H +Hy+ -+ Hp
A:H—H 0<A=A"<x
a(u,v) = (Au,v)
P, : H — H,; orthogonal projection in a(u,v)
a) Ja:Yue H Fu; € H;
U+ U2+ -+ Uy = U
a(a(ur,ur) + alug +uz) + -+ + a(tpm, um)) < alu, u)
b) aa(u,u) <a((Py+ P+ -+ Pp)u,u) Yue H
Then a) is equivalent to b)

Proof. b)= a)
P=P+P+ -+ P,

co>P=P*>0

Vu, Just. u=Pv=>" Puv

Let u; = Pv
m m m m
a(ug,u;) = a(Pv, Pw) = Za(Piv,v) = a(z Pv,v)
i=1 i=1 i=1 i=1
1
= a(u,v) = a(u, P~ u) < —a(u,u)
«
a)= D)
Lemma : |lullq = sup,cpy %
(proof) :
sup a(u, v) < C.B < sup [ullalivlla = |lull,
ver |[v]la ver  |[v]la
Take v =u
a(u,v) _ alu,u
up 40D > A ),
[l Nulla
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u€eH

m
ull« = sup a(u,v) = sup alts 2z %)
vet IVlla ver  [vlla
m m
a(u, Pv;) a(Pyu, v;)
= sup = sup —_
0 D Tl D Dl
m
< C.B. < sup Zi:l | Piullallvilla < CB.
veH [v]la
< oy VI PR /ST ToTE
T el [v]la

m

> Pl
i=1

IN

5=

<

by (a). O
We want to show for any u € H{(Q) there exists u; € H}(Q) : such that
Uy + ug = u and

1

w3 oy + llu2llF g,y < EHUH%F(Q)

, e 0\

up () = u(x) . N 1\ °

extension x € 7 N Qs
ur |l 00y < Cllullg@) w1 € Ho (1)
Uy = U — U, Uy E H&(Qg)
luallmr(an) < lullai@) + [willa @) < 1+ C)llullayq)

convergence depends on the extension.

a(Pu,u) <? <m-a(u,u) m : § of subspace

Theorem 5.2  a) a(Pu,u) < Ba(u,u) ,Yu
b) a(u, u) < ﬂinfu1+~~+um:u,uq,€Hi Z?il a(u,;, Uv)

Then a) <= b).

35



Proof. Let u € H.
Put u; = Pipilu.
UL+ -+ Uy :P1P—1u+~-~+PmP_1u=u

Let
vieEH v+ +uv,=u

be another decomposition with v; = u; + w; then

iwi =0
i=1

M
[r

-
Il
_
s
Il
—

a(vi,v;) = a(ug, u;) + 2a(uq, w;) + a(w;, w;)

I

©
Il
-

a(ui, w;) + 2a(PyP~ u, w;) + a(w;, w;)

a(ui, u;) + 2a(P~u, Z w;) + Z a(w;, w;)

1 i=1 =1

I
.MS

2

m

inf E a(vi,v;) =
U=v1+-+Vm,v; EH;

=1 7

a(ui,ui) = Y a(PP~'u, PP~ u)

1 i=1

H'Ms

3

= a(P tu, PP~ ) = a(P~'u, PP ) = a(P~ 'u,u)

i=1

a(Pu,u) < Ba(u,u),YVu <= a(u,u) < Ba(P~ u,u), Vu
(proof: Take u = P'/2v)
O
Lemma 5.1 With
a(u,v) = A(u,v)

define
Ai : Hl — HZ‘, (AZU”UZ) = A(Ui,’l}i) Ui, Vg S Hl

and
Then Pz = A,L_lQIA
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Proof. Yu € H,u; = P;u
Denote w; = Ai_lQiAu Jie, Aw; = Q;Au

Y, (Ajw;, v;) = (QiAu,v;) = (Au,v;) = a(u,v;)
[

(Aw;,v;) = a(w;,v;)

Hence w; = u; O

a(u,v) = (u,v) g
(’LL, ’U) = (u7 U)L2

The previous Lemma gives the relation between the projection P; corre-
sponding to the given bilinear form a(-,-) and Ly projection Q;.
That is, we began with

H=H +Hs+ -+ Hp
a(u,v) = (Au,v)
P,:H — H;
aa(u,u) < a(Pu,u) < fa(u,u) ,Yu e H
P=P +P+---+P,
and then we have proved that
P =A7'QiA
where Q; : H — H; in (+,-). Now, we have
a(Au,u) < (A(i A7'QiA)u,u) < B(Au,u)
i=1
and this is equivalent to
a(Au,u) < (AB7'Au,u) < B(Au,u) VYu € H
where B~ =" Q,»Ai_lQi. Putting Au = v,
a(A v, v) < (B 1o, w) < B(A v, v) Ywe H

or
a(Bu,u) < (Au,u) < f(Bu,u) Yv e H

Thus, we constructed B so far, which is equivalent to A and we now use B as
a preconditioner so that

ubt = uF — . BT AWk — f)
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Ugy  Us
| | |

U1 Ug us

Example 5.1 (Simple 1 dim’l example)
Simply consider the equation —u” = f in Q with the boundary condition
u(0) = u(1) = 0. Then we have

with

Note that A is (n — 1) x (n — 1) matriz and H = R"~'. As above figure we
define
H=H, + Hy QZgluQQ

Ul
Uz
U = (us
Ugq
Us

where
H1 = {(u17u27u37070)t}7H2 = {(0,0,U3,H47U5)t}

Here we can take 3 = 2 by the property of the projection. For u € H, we want
to find o such that

2
aZa(ui, ;) < a(u,u), w=up+ ug
i=1
where u; € H;. From the figure,
(Aui,ur) < c(Au,u), ¢ isindependent of h

Letting us = u — uy, then we have such « independent of h. In this case
L0 100
Ql - |:0 0:| 5 QQ - |:O I2:|
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and

(251 Uy Uy 0
U2 Ug Ug 0
Q1 |us u3 Q1 |us| = |us
U4 0 U4 Uy
us 0_ us us
and
2 -1 i 0 0
-1 2 -1 0o 2 -1
Alz 9 A2:
-1 2 0 -1 2 -1
0 0 | -1 2

Note that A1 has zero entries that correspond to w4, us-multiplication and As
do to uy,us-multiplication. Now, we obtain the preconditioner as following

B = Q1A Q1 + Q2A5 Q2 = AT + AS
where Aj 1s the pseudo-inverse of A;.

Theorem 5.3
H=H+Hy+- -+ H,,

a(u,v) = (Au,v)

Let P, : H — H,; be the orthogonal projection w.r.t a(-,-) and A is symmetric
and positive definite. Furthermore, we have following three conditions:

(1) a(a(ur,ur) + -+ a(tm, um)) < alu,u), wr+- - +up=u

(it is < aa(u,u) < a(Pu,u), P=P +---+ Pp)

(2) a(Pu,u) < Ba(u,u)( it is <= a(u,u) < Binfy, 4oqu,,=u D req alui, u;))

(3) There are local preconditioners B; : H — H; with B = B* satisfying that
for some constant c¢; and co

c1(Biu,u) < (Au,u) < co(Bju,u), Yu € H;

Then, we have
aci (A u,u) < (B 'u,u) < Bea(A M u,u), Yu e H

where B~' = Bl + .- + B, (For matriz C, C* := pseudo-inverse of C).
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Proof.
Note that P; = Q;A; 1Q,A. We have a pseudo-inverse

(QiAQ;)T = Q:AT'Q;
since (QiAQi)QiAlei = QiAQiAlei = Q.

(From (1) and (2) we have
(A7, 0) < ((QAQ1)" +++ + (QmAQm) " Jv,v) < B(A™ v, v)
and from (3)
c1((QiAQi) T u,u) < (Bfu,u) < ca(c(QiAQi) Tu,u), Vu e H;
Combining above two inequalities, we get the result of the theorem. O

Lemma 5.2 Let p € H'/?(—1,0). Define

(@ =2)p(=x), =z €][0,1]
90{ 0, z€ll1,2

Then, 3 C such that ||¢|| gi/2(—1,2) < Clloll mrrz1,0)-

Proof.
By previous lemma 6.4, we have

lellFrarz—1,2) < Crllllzse 0y + N1ellireo,n) + 1ol e 2 + (e) + 12(0))

Note that [|¢]|g1/2(1,9) = 0. Now

lellzzc0,1) < llellz2(-1,0)

. —o)(1 — )2
! (1 -2z —z)(1 —y)|?
<2/ / (= |;2—§(2 )1 —y)| dxdy

+2//|30 S S
o [ [ e [ [0

(‘SD|H1/2(_1,0) + ||§D||L2(71,0))
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On the other hand,

! —z) — p(—2)(1 — x))?
i) - [ PR e

IA

Yo a? 2
—r)dr <
| Pen T <ol g,

and

! —z)(1 — z))2
n(e) = [ EEZI 4o < ol

Gathering all inequalities complete the proof. O
Our Goal is to construct Schur-complement on the lines(sub-boundaries) of
the interior of the given domain.

A= U?:l o = UZl Ai

For crossing points,
ki=0(1/h), i=1,...,m
and for usual lines,
k,=0(1/h), i=mi+1,...,m
Assume 3 r independent of h such that Vp € A there exists A;:
B(p,r)[ A C X

Let H=Hp(A) and H = Hy + Hy + - - - + H,, with

H; = Hy(\) = {¢" € Hy(M)|p(x) = 0,3z & A}
By previous Lemma 9.2, we have V" € H, Egp? € H;,

It 12:  + el < Ol
H (A1) H (Am)
Define } )
Hi=Hy+---+H,,, Hy=Hp 1+ -+ Hp,

Then H = H; + H,. So far we have constructed the space satisfying the con-
ditions (1) and (2) in the previous theorem 9.3. Now, we’ll construct a precon-
ditioner for the Schur-complement by an additive form of pseudo-inverses such

as
yrl=%f4 42t
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as followings: For i =mq +1,...,m,
0 0 0
Y, =R; |0 X2 0|R!
0 0 0

where R; is the permutation matrix and X is the matrix corresponding to the
1 dim’l Laplacian. i. e.

2 -1 0
-1 2 -1
X:
-1 2
Hence
0 0 0
Sf=R; |0 X°V2 0|R!

0 0 0

For the cross point, we introduce the following lemma.
Lemma 5.3 Symmetric and positive definite matrices
>:R*—R™, S:R"— R"
are given. Lett : R™ — R™ such that
a(p, p)s < (tp,tp)s < Blp,¢)s, Vo € R™
(t"u, ) rn = (u, t0) rn
4T,

where (+,-)pi is the Buclidian inner product. Denote C = t¥~ Then we

have
a(CTu,u) < (u,u)s < B(CTu,u), Vu e Im(t)

Remark 5.1 m < n should be hold and t can be interpreted a kind of extension
operator.

Proof.
3(tTt)~! by assumption. We note that

Ct =t(tTt)y 1ot
,which is easily verified from the following observation
CHO =t(t"t) 1ottty 1T (24T = t(tTt) 17T

Now it’s sufficient to check #(t7#)~!tT is a projection. If u € I'm(t), then u = ti
for some ¢. Thus
Ctou =ttty "tTu=tp=u
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Also, for all vy € (Im(t))*,
0 = (vo, tp) = (vo, t(tTt) 1t tp) = (L(tTt) T vo, tp), Ve
Hence we have
CtCvy =0, Voo € (Im(t)*
Now, Yu € Im(t)
(Chu,u) = (CHp,tp) = (T8 'St T tp, tp)
= (t"t(tTt) T S, tp)
= (Zp,9)

Hence the proof is completed. O

In the Additive Schwartz Method, we need to define BZ-+ . Now we’ll try to
set
Bf =(CHt =Ci =t 1T

2

where I'm(t) := H; by using certain proper extension operator t.

6 Additive Schwarz Method on interfaces

Let zg be a fixed cross point. Let A be the union of branches emerging from zj.
Let L;, for i = 1,--- ,m be each branch. Let L,,;1 = L;. Define a trace norm

on A by
= "%,
3 ; 13,

Let x; ; be the point on the branch L; which has distance jh from zy. Let

" (12
H

0510( (L;UL;11)
Hy(A\) = Ho+ Hi + -+ Hp,
H; ={¢" € Hy(\)|¢"(x) = 0,2 ¢ L;}
Ho={¢" e H*N)|¢"(z1;) = = ¢"(¥m), i =1,2,--- ,k}

Here we assume that each L; has the same number k£ of nodes.

Lemma 6.1 There exists ¢ independent of h such that for each ¢" € H"()),
there exist ¢ € H; which satisfy

of+ oL+ + gl ="

[ o O e e | o | s 1] |
Mgy " o HE () HE(O)
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Proof. Let ¢ € Hy(\). Define ¢f(z; ;) = ¢"(x1;), for j = 1,--- ,k and
i = 1,--- ,m.(Fix first branch and rotate it). It is clear that ¢ € Hy. Let

Y = ¢h|, Since

h||2 h| 2
=m
”%”Hé,(x) H¢ HHU%O(LIUL

R 2
~ " ~ (X ),
” |2 ||H§(L1) (Enp, 1)
there exists ¢; independent of h such that

I6ol? s <eale"*, .
RRIZEAPY HE ()

Let " = ¢" — ¢ff. Define ¢! (z; ;) = £"(x;,;). Then

"2y <ealld”|? 4
Hh(N) Hh(N)

~ (Xppoi, hi)-

[ P oA
H

1 1
Ho2o(k) 2o i

Hence we obtain

82, < lIEM? s
CTHZON HE(\)

Continuing the above processes , we can prove the lemma.
O
The lemma shows that

Za(¢",0") < al(Po+ -+ )", 6) < (m o+ a(6", ")

Let ¢ be the extension operator such that for each 1" = [1/)0 1

}T

to"=[vo n -+
where 1 = [wl wm]T. Hy=t-F, F=Hy(L;). And we have

h h

L <Ol
30 S 9%

2 (L)

So
Bf =12 ht"

Now decompose the whole interface space Hy,(A) into subspaces. Let

Hy(A) = HN o 5N 7O 4 O

Um

]T

where HZ-(N), for i = 1,--- ,my are the subspace corresponding to cross points

HY = {¢" € Hy(A) | (@) = t:"(2), 2 € Ay 0"(x) = 0,2 ¢ A}

and Hl-(o), for i = m; + 1,--- ,m are the subspace corresponding to intervals

between cross points

H = {¢" € Hy(A) | " (2) = 0,2 ¢ \i}
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Let
B! :B]—\i},l +"'+B?\_f,m1 _|_B(')*‘,m1+1 _|_..._~_B(')’:m7

where
0 0 0
By, =10 X720
0 0 0

X is one dimensional Laplacian operator and
BJJ\rl,z' = tiZXlet?

Then B is a preconditioner of S = AO—Z?:l AOiAflAio. Here A;l is expensive.
With a local preconditioner on §2; how to construct a global preconditioner ?
We can use ASM.

6.1 Non-exact Solvers
Let Q =uU ,Q;, Q;NQ; =0,ifi#j. Let
H,(Q) = Hy+ Hy
where
Ho=Hpo() @ - @ Hpo(Q)
Hpo(S4) = {¢" € Hu(Q)|¢" (x) = 0,2 ¢ O}
Assume that we have the followings.
A) 3B;, ail|u|[Hiq) < (Biuu) < cof|u”|[F gy, Vu" € Hao(Ch)
B) Ht, t: Hh(Fz) — Hh(Qi),S.t.
1" 1, (02 < C:'z||¢h||H%(F
where Hy = tHp()\)

C) C4||¢h||2%(/\) < (X, 9) < C5H¢hHZ%(A)7V¢h € Hu(A)

i)

Theorem 6.1 Let

B! = _ + 21T
B—l

n

Then there exist o, 8 = a, B(c1,¢a,- -+ ,¢5) such that

a(Bu,u) < (Au,u) < f(Bu,u), Yu.

45



Proof. a) Let u" € H,(Q") and ¢" € H"(A) such that ¢"(z) = u"(z),x €
A. Then there exists ¢g independent of h such that

||¢h||H%(A) < collu"|[F1 0

Let u? = t¢". Then

sy < esllo® ) < eacolle I3 q)

Let ul = u" — u?. We have the similar inequalities using triangle inequality.

b) a((P+ P)u,u) < 2a(u,u),Vu
A), B),C) and the lemma completes the proof.
O

6.2 Explicit Extension Operators

One simple extension operator is harmonic extension. But consider another one:
Let (s,n) be a near boundary coordinate system. Using this we will construct
a extension operator t. Let ¢ be a given function defined on boundary I' of
domain 2 For continuous case, we can define u = t¢ by

where {(n) = 1 — %. For discrete case, we can define u by the following three
steps.

Step 1) |
Vi(zij) = ijcﬁ(i +1).
Step 2) B |
Vi(zi;) = MW%)-
Step 3)

h . V(Z”) if zZl € Dij
“ (Zl) o { 0 if z ¢ UZ‘J‘Dij

Then u = t¢ = P3P2P1¢.

Py =

I

where lower identity matrix corresponds to D. Then

[l 2 oy < ellV Lz (om).-
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Let P, = Diag{:-- L < b

’ﬁ’
Let ) ;
1
1
P=11 1
1 1
1 . 1

V(Zi,o - d)(z)?ll’ = 07 7N_ 1
Pio=V(zij+1)=V(zij)+o(i+j+1),0<i<N-1, 0<j<M
Cost of P, is O(h™2). Let
t" = PPy P
For any given function V, define W by

W(Zl,M) = V(Zi’M),Z' = 07 s ,M
and fori=0,--- ,Nand j=M,M—1,--- 1,

Wizij-1) = Wizij) + V(zij-1)
If we let ¢y = S0 o Soi_i; Vizg), Wizim) = V(zim)

Wi(tij-1) = Wilzij) + V(zij-1)
then ¢; = Zj]\/io W (zi—;). Cost of tT is again O(h~2).

7 Domain Decomposition with Many Subdomains
(n>>1)
Let €2 be a domain of diameter O(1) with boundary I', and set
0. = {(5,y)  w =5, y=<t, (1,9) €9
with boundary I'..
Lemma 7.1 There exzists ¢y # c1() such that for all u € H'(€.),
ple) =u(z), zele, ol o) < alulao.).

There exists ¢y # ¢o(e) such that for every o € H2 (T.), there exists u € H' ()
satisfying

()0(‘/17) = U(x), YIS FE? |u|H1(QE) S C2|SO‘H%(F5).
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Proof.
| |2 7/ % 2+ @ ’
YY) = 0. \ Oz oy
[ (oa\?  [faa\® .,
= Jo\as) T\a) =line

2
2 (p(@) — )
lis, = [ [ E g e
— (Bs) = &(1))* dsdt = |3|?
/r/r s U=l

Now we define

r.)’
Lemma 7.2 There exists c; # c1(e) such that for all u € H' (),

2
1 =& + 1
Il y = ellele + ok,

pla) =ula), v eley  lel,y . <elldlmn.

There exists ¢y # co(e) such that for every p € H2 (T.), there exists u € H'(L.)
satisfying

pla)=u@). v T [uliay <eallely

Proof.

Il = [ o+ [ 19l
Q. Q.

= |, ) + |3 ) ~ EIBIT, @) + 1alF @),

2

elelli, .y + IsD\HQ(F ) 1817,y + \wlm(r)
]
Lemma 7.3 There exists c; # c1(e) such that szr, x)dx =0, meas(I',) = ¢,
then 1

EH@H%2(I‘E)+|¢|2%( < cifef? HE T
Proof.
fIIsOIIL2 ro Tl oy = 1802am + 18154

< C2||u||H1(Q) < Sobolev
< esltlF ()
= CIMZ%(F )
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O
Let ¢ : H2(T'.) — H'(€.) be given by

n

=tp = =1-—.

u=tp==%v, {n) D
Then )
|ulFr .y = 1€ P 011F, 00 + €l 1013 (0. €' = -

For ¢ € H2(T.), let

@ =0+ @1, Yo = const, / p1(z)dx =0,
e
ug = const = g,
up = tp1 = &u,

[uollz,0.) < c2elleollzar.),

2
1
(6) 0117, (0. + [lin (o, < eslenl? s

Hr = = calol

HE(I.)
We have(Lemma 9.2)
Lemma 7.4 Let

Then there exists ¢ such that ||gp||H by S ||50||H2( 1.0)°

Lemma 7.5 If ¢ € Hz(0,3¢), and we have (¢ # c(¢))

1 2 2 2
Sl 050) + 19123 50 < €0l

Let ¢ = 1 + @2 with
), z € (0,e
oy (1@ (0.¢)
pa(x), x € (2¢,3¢)

where @1, p2 are defined on [0, 3€] according to Lemma 11.4. Then

1 9 9 2
+ 2 lleallzy 080 + Il < crllllH?(0,3¢)".

1 2 2
EH%HLQ(O,&) + ‘901| (o, H7(0,3¢) —

3e)

Proof.

/38/38 |z:y\2 dmy‘// 5_;\2 =20
g/O ()dx—/oso<s>2ds
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Lemma 7.6 Let o° € H'/2(0,3¢) be continuous piecewise linear with ¢°(ic) =
pi, 1=0,---,3. Then

|2 . %Zé‘%?JrZZ(% — ;)%

H2(03)

Proof.

5||¢6||2L2(0,3a) ~ 252%27
i=0

3 3
l¥° |12L12 0,3¢) ZZ

=0 j=
O

Lemma 7.7 There exists ¢ # c(h,e) such that for every o € Hy(0,3¢), there
are O, b satisfying

¢" = ¢ + ¢t + ¢,
©° — piecewise linear,

el(x) =0,  x€(2e30),
eh(z) =0, x€(0,e),

and

2 2 2 2
9123 0y + 10T 3 0y + I 3 0y S P

Proof. Define ¢° by the values
Yo = ¥1 =

P2 = Y3 =

Then

2 1 Ti+1 2 i Ti+1 9
)2=(2 | e@de) <5ef  PPa)da

i i

ZE <5||90||L2(0 3¢)
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\

9 1 »Cz+1 1 (it N 2
wi—e =7 [ dx—g/ o () dr

J

2
1 1 [T+l [Tit1 Tit1 j+1
=2 (6/ / x) dydx — f/ / da;dy)
Tit1  pTi41 Lk —oh
gi/ / @(x)@()dxdy
62 X, Zj |x_y‘

8

e

<

[ s,

2
; |z =yl

P =" — ¢,
15 3e
/ M (z) dz = Y (x)dr =0
0 2e
0

Lemma 7.8 Let Q = J;_, Q;, where Q; is polygonal and diam Q; = O(H), and
let A =", N\;. Then there exists c # c(h, H) such that for every o € Hy(A),

there are o™, ol - [l satisfying (i) o™ - piecewise linear on the coarse grid
Ui, 09, (ii) ol (z) =0, x & N\;, i=1,---,m. Then

16 73 ay < €1l

Z Hﬁpmﬁql/z(A) < Cl”‘z"thqu/z(A)

i=1

»l= EE + Ei’_ R ZE7 (Zip, @) =~ ||50hH001/2
"
(Cup, ) =H>Y @i+ Y (pi—
i

(Z0,0) = 9" 2 a)

i

8 Additive Schwarz Method(ASM) and Multi-
level Decomposition

Let Q be a domain in R2, €;,i = 1,...,n be a disjoint subdomain of Q and
A =Ul,09;. In addition,

B; «— —Aq,
Y — H1/2(A).
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Let t: H'/2(A) — H(Q) be an extension operator. Then

0 A
By 0

B!l = _ R e
B, | Q,

Let us fix the subdomain 2; and omit the index 7. First consider the case when
€ is polygonal. Let Qf, Qb ... Q’J‘ be a sequence of grids on Q and Wy C Wy C
... C W; =W be a sequence of nested spaces respectively. We denote the set
{qﬁgk)}i:m’._”nk be the nodal basis in W, and CIJZ(-k) ={a- ¢§k)|a € R} be the
spanned vector space of this basis. Then we have

Wi =0" +... 4 o

J n -
W:Zi@ﬁ.’“).

k=0 i=1
Let Pi(k) W — @gk) be an orthogonal projection with respect to a(,-).
Theorem 8.1 We have the two followings with «, 3 independent of h:

(1) For every u" € W, there eists ul(-k) € @gk) such that

and
J ng

k 1
ZZ s )||§11(Q) < a”uh”Hl(Q)
k=0 1=1
J ng

=alu %o <ad] S PPul ul) < plul,uh)
k=0 1=1
(2) "
h2 . 2
[|lu ||H1(Q) < 6Zi:02%gfv§k):u“ [v; HHl(Q)

We use the following fundamental result.

Lemma 8.1 Let Qp : W — Wy, be an orthogonal projection in Lo(2). Then
there exist constants C1, Cs (independent of h and J) such that

J

Culla® 3 0y < A1) = 1Qou" Gy + Y hi 1@k — Que1)d” 15
k=1

< Collu"| %1 e
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and

J
Gillllll <, ot Stz @ < Calllu”ll

J k=0
uZ eWp

Here Qf, : W — Wy, is Lo-orthogonal projection.
Proof. (of (1)) Let u" € W, then

J
= Qo + 3 (Q — Qo u = of + o) 0,
k=1

where v,}; € W,. Note that @ yu" = u". On the other hand, since vZ € Wi,

Nk Nk
k) (k k
=3 a6l =3l
i=1 i=1
where v,}; IS <I>Ek). Thus
J Nk
=33l
k=0 i=1
e (k) L& (k)
-2
Z [[v; \|12Hl(sz) ~ Zzhk [v; H2L2(52)
k=0 i=0 k=0 i=0

J

~ > bRl
k=0

< 13 -

Note that we used Lemma and the fact v} = (Qr — Q—1)u". O
Proof. (of (2))

J Nk

. _ k
sy < B0k 30D hi* 0 2 -
k=0 i=1

J ng J g
. — k . — k k
inf S eI ) = it 30D ka0 13, )

(k) ¢ g (k)
i ne‘?i(k) k=0 i=1 @i k=0 i=1
Yo ik v =uh

J
> Cinf Y b2 |lvil, 0
i k=0

J
=C inf thz
Jat SRk

> C - Co|lut||3
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O Let us give an example of the above theorem. Let Agk) : ‘Ill(.k) — @Ek). Let us
(k)

define Ly orthogonal projection ng) W — @, as follows:

ho (k)
W on o W0 L) o
Qb — ®)

k) (k
(¢, 6 (o)
Define Pi(k) W — @Ek) by setting
p _ (A(k))le(k).

and a(-,-) by
a(ul,v") = (Au,v).

Then

(AP o) = (A0, 67) = a(@M, 67) = (@™ 6) 1, (0,
where
o _ _a@.8")
' (¢§k)a¢§k))L2(Q)

We have the following equalities:
k) (K
AB) o) _ a6, 6")
(6", 6")
i @i ) L2(Q)

(0, (bgk))Lg(Q) ®)
a(@™, o)

So we have the following equality for the preconditioner B

(A7) 1o =

J ng
By = Z Z(Al('k))_ngk)“h

k=0 i=0

n k
:zJ: £ (uh, 6 ))L2(9)¢(k)

Remark 8.1 .
a(¢”,¢") = O(1)
J ng
_ k k
BB}—’th = Z (’U,h,qhg ))L2(Q)¢£ )
k=0 i=0
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9 Fictitious Space Method

Theorem 9.1 Let Hy and H be Hilbert spaces with (-,)p,,(,-)u. Let A :
Hy — Hy and B : H — H be self adjoint positive definite operators, i.e.,
A*=A>0 and B* = B > 0. Assume that there exists R : H — Hq such that

(ARv, Rv) g, < Cr(Bv,v)m, Yv e H,
and T : Hy — H such that
RTug = ug, Yug € Ho,
and
Cr(BTug, Tug)g < (Aug, uo) m,, Yug € Hy.
Set C~' = RB™'R* where R* : H — Hy and (R*ug,v)ny = (uo, Rv)n,. Then
we have
Cr(A " ug, o), < (C™ o, ug) < Cr(A™ ug,ug) Vuo € H.
Lemma 9.1 Let A= A* > 0 in Hilbert space. Then
(4 = o
Proof.
(u,v) = (A7 20, AY20) < C. B. < ||A7Y 20| AY 20|
= (A7 u, u) V2 (A, v)/?
and

_ g1 -1 1/2 _ (u,v)
vV = A U = (A u, ’u) / = Slelg 7(141]),0)1/2

0
Proof. (of Theorem) The first inequality follows from

R*up,v
(RB™'R*ug, u0)"/?) ity = (B™'R*ug, R*ug) = sup %
veEH (vav)H
> qp BT o (R Too)a

 wEHo (BT’UO7T’U())}{/2 B vo€Ho (Av()?UO)l/Q

(’LL(),U())H 1 L
T Uflelgo (Avo, v0)1/2 VO (A ug, ug)

For the second one,

,R A*1/2 ,A1/2R
(RB™'R*ug, ug)"/?)Hy = sup % — ( o - V) H,
veH (Bv,v)y veH (Bv,v)3

ARug, Rv)Y/?
C. B. < (A—luO’uO);I/Oz sup M

ver  (Bv,v)l/?
VCr(A  ug, ug) /2.

IN

IN
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10 Application to Fictitious Domain Method

10.1 Neumann Boundary Condition

Let us consider the following model problem:
—Au4+u = finQ
0
a—z —0onT.

where 2 is not regular(not polygonal) and I is its boundary.
Let Hy = H'(Q) and H = H}(TI). Let A and B be the differential operators
according to the domain 2 and II, i.e.,

A+— —Aq+1
B «+—— —Aq

Let R: H}(IT) — H'(Q) be a restriction operator. In this case, we define it by
R = Ig. Then we have

(Ru, RU)HI(Q) < CR(VU, VU)LQ(H) .
Let T : H*(Q2) — H}(IT) be an extension operator. Then
ue HY(Q) = |lull i) = Cilldllmrewy = Col Tull

and
RTug =uy  Vug € HY(Q).

We obtain preconditioner for the domain 2 by setting
C~'=RB7'R".
In matrix notation,
ct=1[1 0] (-AgY) [(ﬂ and Ru = ug
where

R=[I 0] anduz[uﬂ]
UTT\Q

and I is an identity block.

10.2 Dirichlet Boundary Condition(1-D case)

Let us first consider Dirichlet Boundary condition for 1-D problem:

_% = fin (a,b) € (0,1)
u(a) = u(b) = 0.
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Let Hy = Hi(a,b) and H = H}(0,1) with I = (0,1) and Q = (a,b). Let
A=—-Aq and B = —Ap. In order to extend u from € to v on II, we define an
extension operator T : Hj(a,b) — HE(0,1) by

Ty = {U(IE) x € (a,b)
0 z € II\(a,b).

Then
(Tug, Two) g () = (w0, Uo) g1 () == Cr = 1.

Next, we consider the restriction operator R : H&yh(H) — H&h(Q). There are
many ways to define R. Here we consider two R and compare them.
1) The first one is defined as follows:

Rl — ul () x; € (a,b)
o x; = a or b.

|IR|| — oo as h — 0. So Cr — oo. This is not a good choice of restriction.
2) So we introduce another restriction operator. Let I : Hi () — H(2) be
natural restriction defined as follows:

(Iqu)(z) = u(x),r € Q, Yue H(Q)

and Ir : H}(II) — R? be the trace operator defined by

Iru = [Z((Z))} . Vue HI).

Let t : R? — H'(Q) be the extension operator defined by

¢ <[ZEZ§]) — u(a)+ W(x _a).

Now we define the restriction operator R : Hg(I1) — H}(Q) by
R=1Iq —tIr.
Clearly, we have
u(a)] < Cllull ),

u(0)] < Cllullgr ),

and

b 2
(u(b) — u(a))
[t Irulf :/ wdm < C||u||§11(n)~
Thus

| Rull o) < oyl g @) + [[Hrull g < Crllullmam

since |[Ioul|gi() < |[Ioullgran. Note that Cg is independent of h in this
case(FEM). It is easy to see that RTug = ug — 0 = ug, Vup € H}(Q).

57



10.3 Dirichlet Boundary Condition(2-D case)

Let Hy = H}(Q), H = H}(I), A = —Aq and B = —Ap. Let T : H}(Q) —
H}(I) be an extension operator defined by

Tu — u(x) z €
0 x € I\Q

as in the case of 1-D. Then Cy = 1. Let R = I — tIr, where t is the extension
operator from subsection 10.2, then we obtain constant Cr(independent of h).

10.4 Mixed Boundary Condition(2-D case)

Let H'(Q) = {u € H'(Q)|u(z) = 0,z € Tp}. Let H = H} (M), A = —Aq and
B = —Aq. We see, o -
H\QZGNUGD.

Let Typuo = TnTpuo. Define Tp : HS) — H'(QU Gp) for Dirichlet data by

S Q
o {u (.’E) X

Next, by trace theorem, there exists Ty : H'(QUGp) — H'(II). Now, we define
a restriction operator R by R = Iq — trty - Ip where I : Hi (1) — H(Q) and
Ip : HY(T) — HY?(T'p). We define ty : H/?(Tp) — H'/?(T) by

(tx@)(=s) = (1= 5)6(s) for ¢(s) € H/2(Tp).

Here (1 — s/D) is a linear cut-off function. Note that D is independent of h.
We get the following estimation for ¢y

ltn ol a2y < Cillll gz r,)-

Let tp : H'/2(I') — H'(Q) be the extension operator, then we have the following

estimation for R
[Rull < ol + [[tr]l - [[En |l - [[Dull

< Crllull g (-

Here Cg is independent of h in FEM case.

10.5 Unstructured and nonuniform grid(2-D case)

Here we consider the case of unstructured and nonuniform grid of Q. In the
case of structured grid €2, there is no problem. In other words, we can design
a preconditioner for the differential operator on €2 from that on II. In the case
when € is not polygonal, though, we want to design a preconditioner from the
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uniform grid differential operator on II. Let Q" denote the uniform grid on II
and hy be the mesh size of Q" satisfying

hﬂ<

1
—=T"min
V2
where

Tmin — 11N 7;.
ZLEQ]L

Let Hy = Hp(II") and H = Hp(Q™). Let A = —Apn and B =~ AV
be defined as previously. Now, we construct Rg : Hp(Q™) — Hp(II"). Let
Uht € Hp,(QM), then how can we define v € Hy,(II")? Let z denote nodal
point of II" and Z;; is the node of some Q;;. We set u”(z) = U™ (Z; ;) i.e.,
RUM = u" is a simple restriction. Next, we define the extension operator
T : Hy(IT") — Hy,(Q") by the following way:(See Figure ??.)

Ut (2;;) = u(2) if 2 belongs to some Q;

U (2i5) = L

3 (u(z1) + ul(22) + u"(z3)) otherwise

With the condition on mesh size thatthere are only two cases.(See Figure 77.)
That is, there is a one-to-one correspondence between II" and some subset Q"¢
of Q™. Then we can see that

RTu" =u" vl € m,(11").
Assume that ci7min < hy, i.e b is of order h.

Lemma 10.1 There exist two constants Cg and Cj@( independent of h) such
that
IRQU"™ llsany < CRIU™

and
ITQu™ | 1 ny < CF [[w (|11 -

Proof. Let v = RU", then

" Ly = Y (B (200)) + (" (z00))? + (u"(23,))%)

T; CIIP
+ (uh(zil) - uh('ziz))2 + (uh(zi2) - uh('zis))2 + (uh(zis) - uh(zi1))2)
= D B+ UE)°)

T; CITh
h hy 12 h hy 2 h hy 2
+ Z ((Uiluajl - Uizu,]é) + (Ui2%j2 - Uia%js) + (U’isn,js - Uilnvjl) )
TjCHh

Clearly,

TR 4+ (U )D) < U 1, (Q").

7; CITh
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Next,

h h . .
(U —U;*. )? < some differences of neighbors
1,71 12,72
hﬁ hu 2 hu hﬁ 2
< U — U)o+ U = Ui,)™

So there exists a constant C7 such that

ST, - Ul P+ U, - UM )2+ (U - U )?)

11,1 12,]2 12,72 3,73 13,73 21,71
T CIIh

< CHlU™ [T, oy

This completes the proof of the existence of Cr. The existence of Cr is the
same as the case of C'g. O

Theorem 10.1 We have the preconditioner for the problem on Q" with Cr(#
C(R)) and Cr(# C(h)) by letting (~Aq,)~" ~ RRQ(~=Agn, ) 'RHRT.

11 Fictitious Space Method and Multilevel ASM

We consider the following mixed boundary value problem:

> gt wle)u = fa), 20

i,j=1

Then, we have

Ou Ov
/ ( 92: Dz + ap(z )uv) dady + /FN o(x)uvds

with

a(u,v) = a(v,u)

We assume that Q" = Uf\il 7; is quasi-uniform and shape regular with 9Q" =
ATk and T c Q,T% C (R2\ Q). Also suppose that hy < 7,in/2V/2.
Deﬁne Q" by the minimum collection of Q;; enclosing Q". Let Q" = S" with
Sh = Sh|JS% such that, if

Q" # 2
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then o
S"(Qij € Sp and S}y = S" . S},

We have
(Au,v) = a(u",v")

(BU,U) = [U" |31 (gny, VU™ € Ha(Q")
R : Hy(Q") — Hp(Q")
Theorem 11.1 There exist C; and Cs, independent of h, such that
C1 (A u,v) < (RB7'RTu,v) < Co(A™ u,u), Vu
Proof. The proof is same as one in the previous theorem of the FSM. O

Remark 11.1 The condition hy < rmm/Qﬂ instead of hy < T\“}; is needed in
the mized boundary case.

Assume hy = 1,277 hy =1.27% k=0,1,...,J, and hy = hy and we have
a sequences of triangulations and spaces

I, Iy, ... it
Wecwlc...cWh=H,Q"
where W) = {ul = 3, a!" "1 and ¢{*) is a nodal basis. Let " = S%. Now,

J
— "‘ k T(k .
By'U" =) > @", 6 Lyomy@™ - part of BPX in IT
k=0 {suppe(® nQh#¢}

where

Uh _ Uh(ZLj) Ziﬁj S Qh
0 otherwise

Theorem 11.2 There exist C1,Cs, independent of h, such that
CLUM B gy < (BNULU) < Co[UP |21 o)

Proof. Note that

J
By (Uh) =Y Uk, @) ,qe" - BPX inTL,
k=0
w_ [ Ul(Ziy) ZiyeQ”
BnUnt = { 0 otherwise
and
Ry=[I 0]
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Then RyBy'RY = By' O

Drichlet Condition (S" = S%)

BUM = Z > Uk me

k=0 guppa () cQn
Theorem 11.3 There exists Cy,Co such that
ClUM 31 gny < (BpU,U) < Col|U" (131 om VU € Ha(Q")

Proof. The proof is postponed and let us assume temporarily that the the-
orem was proved already. O

Mixed Condition (S} # ¢, Sk # ¢)

lU ZZU (I) Lz(H) ()

where the second summation is taken on the set supp(®; *) Q") # ¢ and

supp(®(*) N S}) = ¢. o
Proof. Note that TI" Q" = GHUGY and G NG = ¢. From the figure
we observe that OG? (N Sh = S% and Gh = Q"|JG%. Now define

Hy(G") = {u"|u"(z) = 0,2 € OG"}

Then we have by previous case

J
— k k
BD,lGUg = Z Z (Ug:‘bz(‘ ))Lz(G)q)z(' :
k=0 supp@Ek> cGh

and
CilGE 36y < (Bp,aUa,Ug) < Cal| U&7 ()

Also define Ry ¢ : Hh(Gh) — Hh(Q ) by

Uh Zl 1 Z1 i € Qh
RN,GUg*(Zz‘,j) —{ OG( ) otﬁerwise

Then, finally we have
Ryc=[I 0]
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and
R BV RV, = B}
N,GPp,g4'N,G M

O

Now, we’ll show the Theorem for Dirichlet condition. Define Wy, = Wi () Hx(Q").
Then, the proof of the theorem is completed if the following conditions are sat-
isfied :

(a) For all uh € W, 3u™ = a® ™ such that

SOY uh-w

F=0 supp(u{®)cQr

and

k
a3 P on < I3 o
supp(ugk))CQ’*

(b) For all u" € W,
h2 < Binf (k)2
P T S T RO
supp(u®)cQhr

where the infimum is taken on ugk) decomposition satisfying

SOY Pow

k=0 supp(uf®)cQn
with «, 8 are independent of h.

Now, to prove the above condition (a) and (b), we need 3 lemmas. The
proof of each lemma is easy, so omitted. The first and second lemmas imply
the condition (b) and the last lemma with BPX in IT implied the condition (a).
Now, we’ll state the three lemmas.

Lemma 11.1 There exists C, independent of h, such that
-k
(Vo' V), ry < C(L/V2) ol 2 0] Ly

for all triangles T; of the triangluation II} N Supp Wy, ,v" € Wi, wh € W, (1>

Lemma 11.2 Yu" = u’& + Zizl uﬁ, uz € Wk, we have
J

"> < Clug 3 guy + D 4" Ikl gn)
k=1
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Lemma 11.3 For givenu" € W, we define " (z) = ul(z) if z € Q", otherwise, " =
0. Then, for a given decomposition

J
it =g+ Y g, iy € Wi,
k=1

3 decomposition

J
u :UO"v‘Zulw Uk € Wk:
k=1
such that p
Al ony < Cliio] + Y NI, m)
k=1

for some constant C, independent of h.
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