3 Compact Operators, Generalized Inverse, Best-
Approximate Solution

As we have already heard in the lecture a mathematical problem is well - posed
in the sense of Hadamard if the following properties hold true

e For all admissible data, a solution exists
e For all admissible data, the solution is unique
e The solution depends continuously on the data

If one of these properties is not fulfilled, we speak of an ill-posed problem. In
the sequel we consider linear operator equations of the form

K=y, K:X-Y, (22)

where X and Y are Hilbert spaces. Since a variety of inverse problems (see 1D
backwards heat equation) results in the formulation of an integral equation of
the first kind

/ k(s, )2 (t)dt = y(s) (23)
G

we have this kind of problem in the following in mind. Here z(¢) is the searched
quantity, k(s,t) € L%(G x G) denotes the kernel and y € L?(G) the input, e.g.
some measured data.

Since integral operators are (under suitable conditions) ” compact operators”
we first review some basic facts about compact operators. Remember that the
linear operator K : X — between Hilbert spaces X and Y is called compact if
for all bounded sets B C X, K(B) is compact.

For any compact operator K between Hilbert spaces X and Y, there exists
a singular system (o;, u;, v;)iew which is defined as follows. If K* denotes the
adjoint of K (recallVa € X andVy € Y (Kz,y) = (z, K*y) holds), then (0;);eN
are the non-zero eigenvalues of the self-adjoint operator K*K (and also of K K*)
and are ordered in decreasing order. The (u;);c are a complete orthonormal
system of eigenvalues of K*K spanning R(K*) = R(K*K) and the (v;);eN are
defined via

v = Kui
K|

The (v;);eN are a complete orthonormal system of eigenvalues of K K* and span

R(K) = R(KK*). The following formulas hold

Kui = 0; (24)

K*Ui = 0O;U; (25)

Kz = zgi (z,ui)v; (v € X) (26)
i=1

Ky = Y oilyv)u (yeY). (27)
i=1



The latter two sums are called ”singular value expansion” (SVE) and converge
in the Hilbert space norms of X and Y, respectively. If there are infinitely many
singular values they accumulate (only) at zero, i.e.
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which is a crucial fact for the ill-posedness of integral - equations of the first
kind.

We will now relax the notion of a solution. In general for any operator equation
Tx = y we have existence (1) of a solution if y € R(T) holds and uniqueness (2)
if M(T) = {0}. Stability is obtained, assuming that (1) and (2) hold, so that
T~ exists, if 77! is bounded. Always assuming that (1) and (2) are fulfilled
would be very restrictive, therefore, we are interested in some generalized notion
of a solution, that approximates x in Tx = y in a unique way.

Definition 1 Let T : X — Y be a bounded linear operator.

a) x € X is called "least-squares solution” of Tz =y if

Tz —y|| = inf {||Tz — X
HarMI;&ﬂ\zyMze}

b) x € X is called "best approzimate solution” of Tx =y if x is least-squares
solution and

[|lz|| = in}f{ {I|z]| | z is least-squares solution of Tz = y}.
z€E

The best-approximate solution is therefore the least-squares solution with min-
imal norm and is closely related to the ”Moore-Penrose” (generalized) inverse
Tt of T, which will turn out to be the solution operator mapping y onto the
best-approximate solution of Tx = y. We define the Moore-Penrose inverse in
an operator theoretic way by restricting the domain and range of T in such a
way that the resulting restricted operator is invertible, its inverse will then be
extended to its maximal domain.

Definition 2 The Moore-Penrose inverse TT of T € L(X,Y) is defined as the
unique linear extension of T—1 to

D(TT) := R(T) + R(T)* (28)

with
N(TT) =R(T)* (29)

where
T = Tinerye : N(T)E — R(T). (30)

TT is well defined: Since N'(T) = {0} and R(T) = R(T) the inverse T exists.
Due to (29) and the requirement that T is linear for any y € D(TT) with the
unique representation y = y; + yo, where y; € R(T) and yo € R(T)*, Tty has
to be T~ 1y;.

Proposition 1 Let now P and Q be orthogonal projectors onto N(T) and
R(T), respectively. Then,



a) the ”Moore-Penrose equations”

TT'T = T (31)
Tt = Tf (32)
T'T = 1-P (33)
T'T = Qipern (34)
hold true.
b)
R(TT) = N(T)+ (35)

Proof: Because of the definition of TT, for all y € D(T'),
Ty =T7'Qy=T'Qy,

so that Tty € R(T1) = N(T"). For all z € N(TT): T1Ta =TTz = x. This
proves R(TT) = N(T)*. Now, for any y € D(T"), (35) implies that TTTy =

TTIQy = TT'Qy = TT'Qy = Qy since T~1Qy € N(T)*. Consequently
(34) holds. By definition of Tt we have that for all z € X:

T'Te =TT (Px— (I — P)x) =T TPz +T7'T(I — P)x = (I — P)x,

thus (33) holds. Now (33) implies TT'T = T(I — P) = T — TP = T, therefore
(31) is true. (35) and (34) imply (32) (TTTT! = T1Qp(rty = TT). #

Proposition 2 Let K : X — Y be compact, dimR(TT) = co. Then Tt is a
densly defined unbounded operator.

We will show that Tt assigns to each y € D(T) the best approximate solution
and that this solution depends discontinuously on y unless dimR(T') < cc.

Theorem 1 Let y € D(T1), then
Te=y, T:X—Y (36)

has a unique best-approzimate solution which is given by TTy. The set of all
least-squares solutions is TTy + N (T).

Proof: Let
S={z€e X |Tz=Qy}.

Since y € D(TT) = R(T) + R(TY), Qy € R(T) = S # . As the orthogonal
projector @ is also a metric projector, we have Vz € S and Vz € X :

1Tz —yll = [1Qy — yll < |[Tz —yll.

So, all elements in S are least-squares of Tx = y. Conversely, let z be a least-
squares solution of (36). Then

1Qy — yll < [Tz — yl| = inf{[Ju —y[| | u € R(T)} = [|Qy — yl|.
Thus, Tz is the closest element to y in R(T), i.e. Tz = Qy and

S = {x € X | x is least-squares solution of Ta = y} # 0.



Now, let z be the element of minimal norm in the closed linear manifold S =
T-1({Qy}). Since then S =z + N (T), it suffices to show that
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y.
As an element of minimal norm in S =z + N/(T), Z is orthogonal to N (T), i.e.
z € N(T1). This implies that 7= (I — P)z = TTTz = TtQy = T'TTty = Tty,
ie. z=Ty. #

Theorem 2 Let y € D(TY). Then x € X is a least-squares solution of Tx =y
if and only if the normal equation

T*Tx=T"y (37)
holds.

Proof: As we know x is least-squares solution of Tx = y if and only if Tz is the
closest element in R(T) to y, which is equivalent to Tz —y € R(T) = N(T%),
ie. to T*(Tx —y) = 0 and thus to (37). #
It follows from the last Theorem that TTy is the solution of T*Ta = T*y of
minimal norm, i.e.

Th = (T*T)TT*.

Theorem 3 Let (0, Un, Un)new be a singular system for K (compact, mapping
from X toY). Then we have

a)
yeD(K) = > = <o

n=1
b) fory € D(KT)
RN
K'y Z o Uy,

n=1

Proof: Let y € D(KT), i.e. Qy € R(K). The orthogonal projector Q onto R(K)

can be written as -
Q = Z <-,’Un> Un,,

n=1

since the {v,} span R(K). Since Qy € R(K), there exists an z € X with
Kz = Qy. W.lo.g we can assume that = € N(K)t. Since the {u,} span

R(KY) =N(T)*, 2 =307, (x,u,) uy, so that we have

i(y,vnﬂjn :Kx:i(x7un>Kun:§:0n (z, up) vn. (38)
i—1 i—1 i—1

Thus, Vn € IN
<y7 Un) = 0On <.Z', un>



must hold. Since as a sequence of Fourier coefficients ({z,u,)) € [?, so that

(M) € 2, the condition in a) follows. Conversely, assume that this condition

On

holds. By the Riesz - Fischer theorem from functional analysis

T = i <y’vn>un c X.

[oF
n=1 n

We have that

o~ (U Vn) S

Kz = —Ku, = yUn) Un = .

z ; - Ku ;(yv}v Qy

Especially, Qy € R(K) and hence y € D(K1). Since the {u,} span N (K)*, z €
N(K)*. Since x lies in both, in this set and in N(K)*, x is the element with
minimum norm in this set, i.e. * = K'Qy = Kty. Thus b) holds as well.  #
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