
3 Compact Operators, Generalized Inverse, Best-

Approximate Solution

As we have already heard in the lecture a mathematical problem is well - posed
in the sense of Hadamard if the following properties hold true

• For all admissible data, a solution exists

• For all admissible data, the solution is unique

• The solution depends continuously on the data

If one of these properties is not fulfilled, we speak of an ill-posed problem. In
the sequel we consider linear operator equations of the form

Kx = y, K : X → Y, (22)

where X and Y are Hilbert spaces. Since a variety of inverse problems (see 1D
backwards heat equation) results in the formulation of an integral equation of
the first kind

∫

G

k(s, t)x(t)dt = y(s) (23)

we have this kind of problem in the following in mind. Here x(t) is the searched
quantity, k(s, t) ∈ L2(G × G) denotes the kernel and y ∈ L2(G) the input, e.g.
some measured data.

Since integral operators are (under suitable conditions) ”compact operators”
we first review some basic facts about compact operators. Remember that the
linear operator K : X → between Hilbert spaces X and Y is called compact if
for all bounded sets B ⊆ X, K(B) is compact.

For any compact operator K between Hilbert spaces X and Y , there exists
a singular system (σi, ui, vi)i∈IN which is defined as follows. If K∗ denotes the
adjoint of K (recall ∀x ∈ X and ∀y ∈ Y 〈Kx, y〉 = 〈x, K∗y〉 holds), then (σi)i∈IN

are the non-zero eigenvalues of the self-adjoint operator K∗K (and also of KK∗)
and are ordered in decreasing order. The (ui)i∈IN are a complete orthonormal
system of eigenvalues of K∗K spanning R(K∗) = R(K∗K) and the (vi)i∈IN are
defined via

vi :=
Kui

||Kui||
.

The (vi)i∈IN are a complete orthonormal system of eigenvalues of KK∗ and span
R(K) = R(KK∗). The following formulas hold

Kui = σvi (24)

K∗vi = σiui (25)

Kx =

∞
∑

i=1

σi 〈x, ui〉 vi (x ∈ X) (26)

K∗y =
∞
∑

i=1

σi 〈y, vi〉ui (y ∈ Y ). (27)
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The latter two sums are called ”singular value expansion” (SVE) and converge
in the Hilbert space norms of X and Y , respectively. If there are infinitely many
singular values they accumulate (only) at zero, i.e.

lim
i→∞

σi = 0

which is a crucial fact for the ill-posedness of integral - equations of the first
kind.
We will now relax the notion of a solution. In general for any operator equation
Tx = y we have existence (1) of a solution if y ∈ R(T ) holds and uniqueness (2)
if N (T ) = {0}. Stability is obtained, assuming that (1) and (2) hold, so that
T−1 exists, if T−1 is bounded. Always assuming that (1) and (2) are fulfilled
would be very restrictive, therefore, we are interested in some generalized notion
of a solution, that approximates x in Tx = y in a unique way.

Definition 1 Let T : X → Y be a bounded linear operator.

a) x ∈ X is called ”least-squares solution” of Tx = y if

||Tx − y|| = inf
z∈X

{||Tz − y|| | z ∈ X}

b) x ∈ X is called ”best approximate solution” of Tx = y if x is least-squares
solution and

||x|| = inf
z∈X

{||z|| | z is least-squares solution of Tx = y} .

The best-approximate solution is therefore the least-squares solution with min-
imal norm and is closely related to the ”Moore-Penrose” (generalized) inverse
T † of T , which will turn out to be the solution operator mapping y onto the
best-approximate solution of Tx = y. We define the Moore-Penrose inverse in
an operator theoretic way by restricting the domain and range of T in such a
way that the resulting restricted operator is invertible, its inverse will then be
extended to its maximal domain.

Definition 2 The Moore-Penrose inverse T † of T ∈ L(X, Y ) is defined as the
unique linear extension of T̃−1 to

D(T †) := R(T ) + R(T )⊥ (28)

with
N (T †) = R(T )⊥ (29)

where
T̃ := T|N (T )⊥ : N (T )⊥ → R(T ). (30)

T † is well defined: Since N (T̃ ) = {0} and R(T̃ ) = R(T ) the inverse T̃ 1 exists.
Due to (29) and the requirement that T † is linear for any y ∈ D(T †) with the
unique representation y = y1 + y2, where y1 ∈ R(T ) and y2 ∈ R(T )⊥, T †y has
to be T̃−1y1.

Proposition 1 Let now P and Q be orthogonal projectors onto N (T ) and
R(T ), respectively. Then,
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a) the ”Moore-Penrose equations”

TT †T = T (31)

T †TT † = T † (32)

T †T = I − P (33)

T †T = Q|D(T †) (34)

hold true.

b)
R(T †) = N (T )⊥ (35)

Proof: Because of the definition of T †, for all y ∈ D(T †),

T †y = T̃−1Qy = T †Qy,

so that T †y ∈ R(T̃−1) = N (T †). For all x ∈ N (T †): T †Tx = T̃−1T̃ x = x. This
proves R(T †) = N (T )⊥. Now, for any y ∈ D(T †), (35) implies that TT †y =
TT †Qy = T T̃−1Qy = T̃ T̃−1Qy = Qy since T̃−1Qy ∈ N (T )⊥. Consequently
(34) holds. By definition of T † we have that for all x ∈ X :

T †Tx = T̃−1T (Px − (I − P )x) = T̃−1TPx + T̃−1T (I − P )x = (I − P )x,

thus (33) holds. Now (33) implies TT †T = T (I − P ) = T − TP = T , therefore
(31) is true. (35) and (34) imply (32) (T †TT † = T †Q|D(T †) = T †). #

Proposition 2 Let K : X → Y be compact, dimR(T †) = ∞. Then T † is a
densly defined unbounded operator.

We will show that T † assigns to each y ∈ D(T †) the best approximate solution
and that this solution depends discontinuously on y unless dimR(T ) < ∞.

Theorem 1 Let y ∈ D(T †), then

Tx = y, T : X → Y (36)

has a unique best-approximate solution which is given by T †y. The set of all
least-squares solutions is T †y + N (T ).

Proof: Let
S = {z ∈ X | Tz = Qy}.

Since y ∈ D(T †) = R(T ) + R(T †), Qy ∈ R(T ) ⇒ S 6= ∅. As the orthogonal
projector Q is also a metric projector, we have ∀z ∈ S and ∀x ∈ X :

||Tz − y|| = ||Qy − y|| ≤ ||Tx − y||.

So, all elements in S are least-squares of Tx = y. Conversely, let z be a least-
squares solution of (36). Then

||Qy − y|| ≤ ||Tz − y|| = inf{||u − y|| | u ∈ R(T )} = ||Qy − y||.

Thus, Tz is the closest element to y in R(T ), i.e. Tz = Qy and

S = {x ∈ X | x is least-squares solution of Tx = y} 6= ∅.
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Now, let z be the element of minimal norm in the closed linear manifold S =
T−1({Qy}). Since then S = z + N (T ), it suffices to show that

z = T †y.

As an element of minimal norm in S = z + N (T ), z is orthogonal to N (T ), i.e.
z ∈ N (T †). This implies that z = (I − P )z = T †Tz = T †Qy = T †TT †y = T †y,

i.e. z = T †y. #

Theorem 2 Let y ∈ D(T †). Then x ∈ X is a least-squares solution of Tx = y

if and only if the normal equation

T ∗Tx = T ∗y (37)

holds.

Proof: As we know x is least-squares solution of Tx = y if and only if Tx is the
closest element in R(T ) to y, which is equivalent to Tx − y ∈ R(T ) = N (T ∗),
i.e. to T ∗(Tx − y) = 0 and thus to (37). #
It follows from the last Theorem that T †y is the solution of T ∗Tx = T ∗y of
minimal norm, i.e.

T † = (T ∗T )†T ∗.

Theorem 3 Let (σn, un, vn)n∈IN be a singular system for K (compact, mapping
from X to Y ). Then we have

a)

y ∈ D(K†) ⇐⇒
∞
∑

n=1

| 〈y, vn〉 |

σ2
n

< ∞

b) for y ∈ D(K†)

K†y =

∞
∑

n=1

| 〈y, vn〉 |

σn

un.

Proof: Let y ∈ D(K†), i.e. Qy ∈ R(K). The orthogonal projector Q onto R(K)
can be written as

Q =

∞
∑

n=1

〈·, vn〉 vn,

since the {vn} span R(K). Since Qy ∈ R(K), there exists an x ∈ X with
Kx = Qy. W.l.o.g. we can assume that x ∈ N (K)⊥. Since the {un} span

R(K†) = N (T )⊥, x =
∑∞

n=1 〈x, un〉un so that we have

∞
∑

i=1

〈y, vn〉 vn = Kx =
∞
∑

i=1

〈x, un〉Kun =
∞
∑

i=1

σn 〈x, un〉 vn. (38)

Thus, ∀n ∈ IN
〈y, vn〉 = σn 〈x, un〉
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must hold. Since as a sequence of Fourier coefficients (〈x, un〉) ∈ l2, so that
(

〈y,vn〉
σn

)

∈ l2, the condition in a) follows. Conversely, assume that this condition

holds. By the Riesz - Fischer theorem from functional analysis

x :=
∞
∑

n=1

〈y, vn〉

σn

un ∈ X.

We have that

Kx =

∞
∑

n=1

〈y, vn〉

σn

Kun =

∞
∑

n=1

〈y, vn〉 vn = Qy.

Especially, Qy ∈ R(K) and hence y ∈ D(K†). Since the {un} span N (K)⊥, x ∈
N (K)⊥. Since x lies in both, in this set and in N (K)⊥, x is the element with
minimum norm in this set, i.e. x = K†Qy = K†y. Thus b) holds as well. #
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