3 Compact Operators, Generalized Inverse, BestApproximate Solution

As we have already heard in the lecture a mathematical problem is well - posed in the sense of Hadamard if the following properties hold true

- For all admissible data, a solution exists
- For all admissible data, the solution is unique
- The solution depends continuously on the data

If one of these properties is not fulfilled, we speak of an ill-posed problem. In the sequel we consider linear operator equations of the form

$$
\begin{equation*}
K x=y, \quad K: X \rightarrow Y, \tag{22}
\end{equation*}
$$

where X and Y are Hilbert spaces. Since a variety of inverse problems (see 1D backwards heat equation) results in the formulation of an integral equation of the first kind

$$
\begin{equation*}
\int_{G} k(s, t) x(t) d t=y(s) \tag{23}
\end{equation*}
$$

we have this kind of problem in the following in mind. Here $x(t)$ is the searched quantity, $k(s, t) \in L^{2}(G \times G)$ denotes the kernel and $y \in L^{2}(G)$ the input, e.g. some measured data.

Since integral operators are (under suitable conditions) "compact operators" we first review some basic facts about compact operators. Remember that the linear operator $K: X \rightarrow$ between Hilbert spaces X and Y is called compact if for all bounded sets $B \subseteq X, \overline{K(B)}$ is compact.

For any compact operator K between Hilbert spaces X and Y, there exists a singular system $\left(\sigma_{i}, u_{i}, v_{i}\right)_{i \in \mathbb{N}}$ which is defined as follows. If K^{*} denotes the adjoint of K (recall $\forall x \in X$ and $\forall y \in Y\langle K x, y\rangle=\left\langle x, K^{*} y\right\rangle$ holds), then $\left(\sigma_{i}\right)_{i \in \mathbb{N}}$ are the non-zero eigenvalues of the self-adjoint operator $K^{*} K$ (and also of $K K^{*}$) and are ordered in decreasing order. The $\left(u_{i}\right)_{i \in \mathbb{N}}$ are a complete orthonormal system of eigenvalues of $K^{*} K$ spanning $\overline{R\left(K^{*}\right)}=\overline{R\left(K^{*} K\right)}$ and the $\left(v_{i}\right)_{i \in \mathbb{N}}$ are defined via

$$
v_{i}:=\frac{K u_{i}}{\left\|K u_{i}\right\|} .
$$

The $\left(v_{i}\right)_{i \in \mathbb{N}}$ are a complete orthonormal system of eigenvalues of $K K^{*}$ and span $\overline{R(K)}=\overline{R\left(K K^{*}\right)}$. The following formulas hold

$$
\begin{align*}
K u_{i} & =\sigma v_{i} \tag{24}\\
K^{*} v_{i} & =\sigma_{i} u_{i} \tag{25}\\
K x & =\sum_{i=1}^{\infty} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i} \quad(x \in X) \tag{26}\\
K^{*} y & =\sum_{i=1}^{\infty} \sigma_{i}\left\langle y, v_{i}\right\rangle u_{i} \quad(y \in Y) . \tag{27}
\end{align*}
$$

The latter two sums are called "singular value expansion" (SVE) and converge in the Hilbert space norms of X and Y, respectively. If there are infinitely many singular values they accumulate (only) at zero, i.e.

$$
\lim _{i \rightarrow \infty} \sigma_{i}=0
$$

which is a crucial fact for the ill-posedness of integral - equations of the first kind.
We will now relax the notion of a solution. In general for any operator equation $T x=y$ we have existence (1) of a solution if $y \in R(T)$ holds and uniqueness (2) if $\mathcal{N}(T)=\{0\}$. Stability is obtained, assuming that (1) and (2) hold, so that T^{-1} exists, if T^{-1} is bounded. Always assuming that (1) and (2) are fulfilled would be very restrictive, therefore, we are interested in some generalized notion of a solution, that approximates x in $T x=y$ in a unique way.

Definition 1 Let $T: X \rightarrow Y$ be a bounded linear operator.
a) $x \in X$ is called "least-squares solution" of $T x=y$ if

$$
\|T x-y\|=\inf _{z \in X}\{\|T z-y\| \| z \in X\}
$$

b) $x \in X$ is called "best approximate solution" of $T x=y$ if x is least-squares solution and

$$
\|x\|=\inf _{z \in X}\{\|z\| \mid z \text { is least-squares solution of } T x=y\} .
$$

The best-approximate solution is therefore the least-squares solution with minimal norm and is closely related to the "Moore-Penrose" (generalized) inverse T^{\dagger} of T, which will turn out to be the solution operator mapping y onto the best-approximate solution of $T x=y$. We define the Moore-Penrose inverse in an operator theoretic way by restricting the domain and range of T in such a way that the resulting restricted operator is invertible, its inverse will then be extended to its maximal domain.

Definition 2 The Moore-Penrose inverse T^{\dagger} of $T \in \mathcal{L}(X, Y)$ is defined as the unique linear extension of \tilde{T}^{-1} to

$$
\begin{equation*}
\mathcal{D}\left(T^{\dagger}\right):=\mathcal{R}(T)+\mathcal{R}(T)^{\perp} \tag{28}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{N}\left(T^{\dagger}\right)=\mathcal{R}(T)^{\perp} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{T}:=T_{\mid \mathcal{N}(T)^{\perp}}: \mathcal{N}(T)^{\perp} \rightarrow \mathcal{R}(T) . \tag{30}
\end{equation*}
$$

T^{\dagger} is well defined: Since $\mathcal{N}(\tilde{T})=\{0\}$ and $\mathcal{R}(\tilde{T})=\mathcal{R}(T)$ the inverse \tilde{T}^{1} exists. Due to (29) and the requirement that T^{\dagger} is linear for any $y \in \mathcal{D}\left(T^{\dagger}\right)$ with the unique representation $y=y_{1}+y_{2}$, where $y_{1} \in \mathcal{R}(T)$ and $y_{2} \in \mathcal{R}(T)^{\perp}, T^{\dagger} y$ has to be $\tilde{T}^{-1} y_{1}$.

Proposition 1 Let now P and Q be orthogonal projectors onto $\mathcal{N}(T)$ and $\mathcal{R}(T)$, respectively. Then,
a) the "Moore-Penrose equations"

$$
\begin{align*}
T T^{\dagger} T & =T \tag{31}\\
T^{\dagger} T T^{\dagger} & =T^{\dagger} \tag{32}\\
T^{\dagger} T & =I-P \tag{33}\\
T^{\dagger} T & =Q_{\mid \mathcal{D}\left(T^{\dagger}\right)} \tag{34}
\end{align*}
$$

hold true.
b)

$$
\begin{equation*}
\mathcal{R}\left(T^{\dagger}\right)=\mathcal{N}(T)^{\perp} \tag{35}
\end{equation*}
$$

Proof: Because of the definition of T^{\dagger}, for all $y \in \mathcal{D}\left(T^{\dagger}\right)$,

$$
T^{\dagger} y=\tilde{T}^{-1} Q y=T^{\dagger} Q y
$$

so that $T^{\dagger} y \in \mathcal{R}\left(\tilde{T}^{-1}\right)=\mathcal{N}\left(T^{\dagger}\right)$. For all $x \in \mathcal{N}\left(T^{\dagger}\right): T^{\dagger} T x=\tilde{T}^{-1} \tilde{T} x=x$. This proves $\mathcal{R}\left(T^{\dagger}\right)=\mathcal{N}(T)^{\perp}$. Now, for any $y \in \mathcal{D}\left(T^{\dagger}\right)$, (35) implies that $T T^{\dagger} y=$ $T T^{\dagger} Q y=T \tilde{T}^{-1} Q y=\tilde{T} \tilde{T}^{-1} Q y=Q y$ since $\tilde{T}^{-1} Q y \in \mathcal{N}(T)^{\perp}$. Consequently (34) holds. By definition of T^{\dagger} we have that for all $x \in X$:

$$
T^{\dagger} T x=\tilde{T}^{-1} T(P x-(I-P) x)=\tilde{T}^{-1} T P x+\tilde{T}^{-1} T(I-P) x=(I-P) x
$$

thus (33) holds. Now (33) implies $T T^{\dagger} T=T(I-P)=T-T P=T$, therefore (31) is true. (35) and (34) imply (32) ($\left.T^{\dagger} T T^{\dagger}=T^{\dagger} Q_{\mid D\left(T^{\dagger}\right)}=T^{\dagger}\right)$. \#

Proposition 2 Let $K: X \rightarrow Y$ be compact, $\operatorname{dim} \mathcal{R}\left(T^{\dagger}\right)=\infty$. Then T^{\dagger} is a densly defined unbounded operator.
We will show that T^{\dagger} assigns to each $y \in \mathcal{D}\left(T^{\dagger}\right)$ the best approximate solution and that this solution depends discontinuously on y unless $\operatorname{dim} \mathcal{R}(T)<\infty$.

Theorem 1 Let $y \in \mathcal{D}\left(T^{\dagger}\right)$, then

$$
\begin{equation*}
T x=y, \quad T: X \rightarrow Y \tag{36}
\end{equation*}
$$

has a unique best-approximate solution which is given by $T^{\dagger} y$. The set of all least-squares solutions is $T^{\dagger} y+\mathcal{N}(T)$.

Proof: Let

$$
S=\{z \in X \mid T z=Q y\} .
$$

Since $y \in \mathcal{D}\left(T^{\dagger}\right)=\mathcal{R}(T)+\mathcal{R}\left(T^{\dagger}\right), Q y \in \mathcal{R}(T) \Rightarrow S \neq \emptyset$. As the orthogonal projector Q is also a metric projector, we have $\forall z \in S$ and $\forall x \in X$:

$$
\|T z-y\|=\|Q y-y\| \leq\|T x-y\| .
$$

So, all elements in S are least-squares of $T x=y$. Conversely, let z be a leastsquares solution of (36). Then

$$
\|Q y-y\| \leq\|T z-y\|=\inf \{\|u-y\| \mid u \in \mathcal{R}(T)\}=\|Q y-y\|
$$

Thus, $T z$ is the closest element to y in $\mathcal{R}(T)$, i.e. $T z=Q y$ and

$$
S=\{x \in X \mid x \text { is least-squares solution of } T x=y\} \neq \emptyset .
$$

Now, let \bar{z} be the element of minimal norm in the closed linear manifold $S=$ $T^{-1}(\{Q y\})$. Since then $S=\bar{z}+\mathcal{N}(T)$, it suffices to show that

$$
\bar{z}=T^{\dagger} y
$$

As an element of minimal norm in $S=\bar{z}+\mathcal{N}(T), \bar{z}$ is orthogonal to $\mathcal{N}(T)$, i.e. $\bar{z} \in \mathcal{N}\left(T^{\dagger}\right)$. This implies that $\bar{z}=(I-P) \bar{z}=T^{\dagger} T \bar{z}=T^{\dagger} Q y=T^{\dagger} T T^{\dagger} y=T^{\dagger} y$, i.e. $\bar{z}=T^{\dagger} y$. $\quad \#$

Theorem 2 Let $y \in \mathcal{D}\left(T^{\dagger}\right)$. Then $x \in X$ is a least-squares solution of $T x=y$ if and only if the normal equation

$$
\begin{equation*}
T^{*} T x=T^{*} y \tag{37}
\end{equation*}
$$

holds.
Proof: As we know x is least-squares solution of $T x=y$ if and only if $T x$ is the closest element in $\mathcal{R}(T)$ to y, which is equivalent to $T x-y \in \mathcal{R}(T)=\mathcal{N}\left(\mathcal{T}^{*}\right)$, i.e. to $T^{*}(T x-y)=0$ and thus to (37). \#

It follows from the last Theorem that $T^{\dagger} y$ is the solution of $T^{*} T x=T^{*} y$ of minimal norm, i.e.

$$
T^{\dagger}=\left(T^{*} T\right)^{\dagger} T^{*} .
$$

Theorem 3 Let $\left(\sigma_{n}, u_{n}, v_{n}\right)_{n \in \mathbb{N}}$ be a singular system for K (compact, mapping from X to Y). Then we have
a)

$$
y \in \mathcal{D}\left(K^{\dagger}\right) \Longleftrightarrow \sum_{n=1}^{\infty} \frac{\left|\left\langle y, v_{n}\right\rangle\right|}{\sigma_{n}^{2}}<\infty
$$

b) for $y \in \mathcal{D}\left(K^{\dagger}\right)$

$$
K^{\dagger} y=\sum_{n=1}^{\infty} \frac{\left|\left\langle y, v_{n}\right\rangle\right|}{\sigma_{n}} u_{n} .
$$

Proof: Let $y \in \mathcal{D}\left(K^{\dagger}\right)$, i.e. $Q y \in \mathcal{R}(K)$. The orthogonal projector Q onto $\overline{\mathcal{R}(K)}$ can be written as

$$
Q=\sum_{n=1}^{\infty}\left\langle\cdot, v_{n}\right\rangle v_{n},
$$

since the $\left\{v_{n}\right\}$ span $\overline{\mathcal{R}(K)}$. Since $Q y \in \mathcal{R}(K)$, there exists an $x \in X$ with $K x=Q y$. W.l.o.g. we can assume that $x \in \mathcal{N}(K)^{\perp}$. Since the $\left\{u_{n}\right\}$ span $\overline{\mathcal{R}\left(K^{\dagger}\right)}=\mathcal{N}(T)^{\perp}, x=\sum_{n=1}^{\infty}\left\langle x, u_{n}\right\rangle u_{n}$ so that we have

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left\langle y, v_{n}\right\rangle v_{n}=K x=\sum_{i=1}^{\infty}\left\langle x, u_{n}\right\rangle K u_{n}=\sum_{i=1}^{\infty} \sigma_{n}\left\langle x, u_{n}\right\rangle v_{n} . \tag{38}
\end{equation*}
$$

Thus, $\forall n \in \mathbb{N}$

$$
\left\langle y, v_{n}\right\rangle=\sigma_{n}\left\langle x, u_{n}\right\rangle
$$

must hold. Since as a sequence of Fourier coefficients $\left(\left\langle x, u_{n}\right\rangle\right) \in l^{2}$, so that $\left(\frac{\left\langle y, v_{n}\right\rangle}{\sigma_{n}}\right) \in l^{2}$, the condition in $\left.a\right)$ follows. Conversely, assume that this condition holds. By the Riesz - Fischer theorem from functional analysis

$$
x:=\sum_{n=1}^{\infty} \frac{\left\langle y, v_{n}\right\rangle}{\sigma_{n}} u_{n} \in X .
$$

We have that

$$
K x=\sum_{n=1}^{\infty} \frac{\left\langle y, v_{n}\right\rangle}{\sigma_{n}} K u_{n}=\sum_{n=1}^{\infty}\left\langle y, v_{n}\right\rangle v_{n}=Q y .
$$

Especially, $Q y \in \mathcal{R}(K)$ and hence $y \in \mathcal{D}\left(K^{\dagger}\right)$. Since the $\left\{u_{n}\right\}$ span $\mathcal{N}(K)^{\perp}, x \in$ $\mathcal{N}(K)^{\perp}$. Since x lies in both, in this set and in $\mathcal{N}(K)^{\perp}, x$ is the element with minimum norm in this set, i.e. $x=K^{\dagger} Q y=K^{\dagger} y$. Thus b) holds as well. \#

References

[1] H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.

