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1. General introduction:

This Paper is devoted to the numerical analysis of a discontinuous

Galerkin method with nonoverlapping domain decomposition, of order

k = 1,2 or 3 for solving the steady incompressible Stokes and Navier-

Stokes systems of equations.

The authors analyze the discrete Stokes problem by establishing a

uniform discrete inf-sup condition for the pressure, which is vital for

proving the optimal estimation for the velocity and pressure.

The nonlinear convection term of the Navier-Stokes equation is dis-

cretized by adapting to totally discontinuous velocities the upwind

scheme introduced by Lesaint and Raviart. The authors analyzed the

nonlinearity by proving the uniform Lp estimates for the discrete ve-

locity. This enables us to prove the existence of discrete solution and

error estimates.
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2. Model Stokes and Navier-Stokes problems

Let Ω be a Lipschitz domain of R2. Let f ∈ H−1(Ω)2 and µ > 0.

−µ∆u + ∇p = f , in Ω, (1)

∇ · u = 0, in Ω, (2)

u = 0, on ∂Ω. (3)

If additionally,
∫
Ω p = 0, there exist a unique solution u ∈ H1

0(Ω)2,

p ∈ L2
0(Ω) [12], where

H1
0(Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω},

L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω
q = 0}.

[12]. Girault and Raviart Finite element methods for the steady Navier-

Stokes problem in polyhedra, Springer Series in Computational Math-

ematics 5 (1986).
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2. Model Stokes and Navier-Stokes problems

However, in what follows, we shall need both the gradient of u and

the pressure p have a trace on line segments. For this, it suffices for

instance that the data f belong to L4/3(Ω)2.

In [14], we have that if Ω is a Lipschitz polygon and f ∈ L4/3(Ω)2, then

the solution (u, p) belongs to W2,4/3(Ω)2×W1,4/3(Ω) with continuous

dependence on ‖f‖
L4/3(Ω)

. Thus each component of the gradient of

u has a trace on a line segment e, this trace belongs to W1,4/3(e) →֒

L2(e). The same result holds for the trace of the pressure. Therefore,

the trace is well defined and belongs to L2(e).

[14]. Grisvard Elliptic problems in nonsmooth domains, Pitman Mono-

graphs and Studies in Mathematics 24.
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2. Model Stokes and Navier-Stokes problems

Stokes system is a linearized vision of the Navier-Stokes system

−µ∆u + u · ∇u + ∇p = f , in Ω, (4)

∇ · u = 0, in Ω,

u = 0, on ∂Ω.

where

u · ∇u =
2∑

i=1

ui
∂u

∂xi

is the convection term.

[12], (4),(2),(3) always has a solution (not necessary unique) (u, p) ∈

H1
0(Ω)2 × L2

0(Ω).

Since H1(Ω) →֒ Lp(Ω) for p < ∞, we have u · ∇u belongs to L4/3(Ω)2.

Therefore, if f belongs to L4/3(Ω)2, every solution (u, p) of (4),(2),(3)

belongs to W2,4/3(Ω)2 × W1,4/3(Ω).
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3. Notation and preliminaries

Assume Ω is a Lipschitz polygon partitioned into two sub-domains Ω1

and Ω2, both Lipschitz polygons, with interface γ, i.e., Ω = Ω1∪γ∪Ω2

(see Figure 1).
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3. Notation and preliminaries For i = 1,2, define

• Ei
h be a regular family of triangulations of Ωi, consisting of triangles

of maximum diameter h;

• Γi
h be the set of all edges of Ei

h that do not lie on γ, set Γh = Γ1
h∪Γ2

h;

• γi
h be the set of edges of Ei

h that lie on γ.

At the interface γ, the two meshes Ei
h are related by two assumptions:

Hypothesis H1: Either γ1
h is a subgrid of γ2

h or γ2
h is a subgrid of γ1

h;

Hypothesis H2: There exist two constants L1 and L2 independent of

h such that for any pair of segments e1 ∈ γ1
h end e2 ∈ γ2

h such that

|e1 ∩ e2| > 0, we have

|e1|

|e2|
≤ L1 and

|e2|

|e1|
≤ L2.
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3. Notation and preliminaries

Some definition: for a domain O ⊂ R2,

W k,r(O) = {v ∈ Lr(O) : ∀|m| ≤ k, ∂mv ∈ Lr(O)},

X = {v ∈ L2(Ω) : ∀E ∈ Eh, v|E ∈ W2,4/3(E)},

M = {v ∈ L2
0(Ω) : ∀E ∈ Eh, v|E ∈ W1,4/3(E)}.

Hk(O) = W k,2(O),

|||·||| =
∑

E∈Eh

‖ · ‖2k,E, where ‖ · ‖k,O Sobolev norm of Hk(O).

X = X2

D(O) = {Infinitely differentiable function with compact support on O},

D′(O) = {Distributions on O},

v = (vi)i

∇v =

(
∂vi

∂xj

)

i,j

[[φ]] = (φ|Ek)|e − (φ|El)|e,

{φ} =
1

2
(φ|Ek)|e +

1

2
(φ|El)|e,
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3. Notation and preliminaries

Introduce the following bilinear forms on X × X and X × M

a(u,v) =
∑

E∈Eh

∫

E
∇u : ∇v −

∑

e∈Γh∪γ1
h

∫

e
{∇u}ne · [[v]]

+ ǫ∗
∑

e∈Γh∪γ1
h

∫

e
{∇v}ne · [[u]] ,

b(v, p) = −
∑

E∈Eh

∫

E
p∇ · v +

∑

e∈Γh

∫

e
{p} [[v]] · ne +

∑

e∈γ1
h

∫

e
pγ [[v]] · n1,

J0(u,v) =
∑

e∈Γh∪γ1
h

σe

|e|

∫

e
[[u]] · [[v]] ,

where pγ is the trace of p on the coarser mesh, i.e.

pγ =

{
p|Ω1

, if γ2
h is a subgrid of γ1

h;

p|Ω2
, if γ1

h is a subgrid of γ2
h.

For ǫ∗, ǫ∗ = 1 is the nonsymmetric case (Case A); while ǫ∗ = −1 is

the symmetric case (Case B).

9



3. Notation and preliminaries

Remark 3.1 The form b defined by (7) can also be written

b(v, p) = −
∑

E∈Eh

∫

E
p∇ · v +

∑

e∈Γh∪γ1
h

∫

e
{p} [[v]] · ne +

ǫ

2

∑

e∈γ1
h

∫

e
[[p]] [[v]] · n1,

where

ǫ =





1, if γ2
h is a subgrid of γ1

h;

−1, if γ1
h is a subgrid of γ2

h.

Remark 3.2 Note that if u and v both belong to H1
0(Ω)2, then formally

a(u,v) =
∫

Ω
∇u : ∇v and b(v, p) = −

∫

Ω
p∇ · v,

which are the standard bilinear forms associated with the Stokes prob-

lems.
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3. Notation and preliminaries With these forms, we consider the fol-

lowing variational problem: Find u ∈ X and p ∈ M , solution of

µ(a(u,v) + J0(u,v)) + b(v, p) =

∫

Ω
f · v, ∀v ∈ X, (5)

b(u, q) = 0, ∀q ∈ M. (6)

Remark 3.3 Note that all functions v in X satisfy

−
∑

E∈Eh

∫

E
∇ · v +

∑

e∈Γh∪γ1
h

∫

e
[[v]] · ne = 0.

Therefore we can relax the zero mean-value constraint in (6); i.e., (6)

is equivalent to

b(u, q) = 0, ∀q ∈ Q = {q ∈ L2(Ω) : ∀E ∈ Eh, q|E ∈ W1,4/3(E)}.

Lemma 3.4 If f ∈ L4/3(Ω)2. If (u, p) is the solution of (1)-(3), then

(u, p) satisfies the variational problem (5), (6) and conversely.

Remark 3.5 Note that the jump term J0 plays no part in the proof and

therefore the statement of Lemma 3.4 is valid even if J0 is suppressed

from (5).
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3. Notation and preliminaries

In order to approximate u and p, we introduce two finite-dimensional

spaces Xh ⊂ X and Mh ⊂ M , such that

Xh = {vh ∈ X : ∀E ∈ Eh, vh ∈ Pk(E)}, Xh = Xh × Xh,

Mh = {qh ∈ M : ∀E ∈ Eh, qh ∈ Pk−1(E)}.

With these spaces, the discrete scheme is: find (U, P) ∈ Xh ×Mh such

that

∀vh ∈ Xh, µ(a(U,vh) + J0(U,vh)) + b(vh, P) =

∫

Ω
f · vh, (7)

∀qh ∈ Mh, b(U, qh) = 0. (8)

We denote by Vh the kernel of b in Xh:

Vh = {vh ∈ Xh; ∀qh ∈ Mh, b(vh, qh) = 0}.
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3. Notation and preliminaries

Finally, we recall the approximation properties of Xh and Mh.

Recall that the meshes Ei
h are regular. For k ≥ 1, it is easy to construct

an operator rh ∈ L(L2
0(Ω);Mh), such that, for any E ∈ Eh,

∀q ∈ Pk−1(E)

∫

E
q(rh(p) − p) = 0, (9)

and for any real number s ∈ [0, k],

∀q ∈ Hs(Ω) ∩ L2
0(Ω), ‖q − rh(q)‖0,E ≤ chs

E|q|s,E. (10)

For each k = 1,2,3, there exists an operator Ri
h ∈ L(H1(Ωi)

2;Xh(Ωi)),

where Xh(Ωi) denotes the space Xh restricted to Ωi, such that for any

E ∈ Eh,
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3. Notation and preliminaries

∀v ∈ H1(Ωi)
2, ∀qh ∈ Pk−1(E),

∫

E
qh∇ · (Ri

h(v) − v) = 0, (11)

∀v ∈ H1(Ωi)
2, ∀e of Γi

h, ∀qh ∈ Pk−1(e)
2,

∫

e
qh ·

[[
Ri

h(v)
]]

= 0, (12)

∀v ∈ H1
0(Ωi)

2, ∀e ∈ ∂Ωi,∀qh ∈ Pk−1(e)
2,

∫

e
qh · Ri

h(v) = 0, (13)

∀s ∈ [1, k + 1], ∀v ∈ Hs(Ωi)
2, |v − Ri

h(v)|1,E ≤ chs−1
E |v|s,∆E

, (14)

where ∆E is a suitable macro-element containing E. Also, for m = 0

or 1, for any t ≥ 2, for s ∈ [1, k + 1],

∀v ∈ W s,t(Ωi)
2, |v − Ri

h(v)|Wm,t(E) ≤ Chs−m
E |v|W s,t(∆E). (15)

Furthermore, each triangle E ∈ Ei
h has at least one side e such that

∀v ∈ H1(Ωi)
2,

∫

e
(Ri

h(v) − v) = 0 (16)

14



3. Notation and preliminaries

An easy consequence of (16) is the following lemma

Lemma 3.6 Assume that Ei
h is a regular family of trianglations. Then

there exists a constant C independent of h, such that

∀v ∈ (H1
0(Ωi))

2,


∑

e∈Γi
h

1

|e|
‖
[[
v − Ri

h(v)
]]
‖20,e




1
2

≤ C
∣∣∣
∣∣∣
∣∣∣∇(v − Ri

h(v))
∣∣∣
∣∣∣
∣∣∣
0,Ωi

.
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4. An inf-sup condition For proving the inf-sup condition, we define a

norm on X which is more appropriate than the broken H1 norm.

∀vh ∈ Xh, [|vh|] =



∑

E∈Eh

‖∇v‖20,E + J0(vh,vh)




1/2

.

Under the Hypotheses H1 and H2, we have the following preliminary

result.

Lemma 4.1 Let the mesh Eh is regular and satisfy Hypothesis H2. Let

v ∈ H1(Ω)2, let k = 1,2 or 3 and let Rh(v) denote the operators R1
h(v)

in Ω1 and R2
h(v) in Ω2 satisfying (11)-(16). Then there exists a con-

stant C depending only on k, L1, L2 and the triangle-regular constant

σ such that ∀ph ∈ Mh,
∣∣∣∣∣∣∣∣

∑

e∈Γh∪γ1
h

∫

e
{ph} [[Rh(v) − v]] · ne

∣∣∣∣∣∣∣∣
≤ C‖ph‖0,D12 |||∇(Rh(v) − v)|||0,D12 ,

where D12 = D1 ∪ D2 and Di denotes the union of elements of Ei
h

adjacent to γ.

16



Now we address the existence and uniqueness of discrete scheme (7),

(8).

∀vh ∈ Xh, µ(a(U,vh) + J0(U,vh)) + b(vh, P) =

∫

Ω
f · vh,

∀qh ∈ Mh, b(U, qh) = 0.

Consider f = 0, let vh = U. In the nonsymmetric case, the existence

and uniqueness is obvious. For symmetric case, we make the following

assumption:

Hypothesis H3:[27] There exists a constant K > 0, independent of h,

such that

∀v ∈ Xh, a(vh,vh) + J0(vh,vh) ≥ K [|vh|]
2 .

Then existence and uniqueness will be followed also for symmetric case.

[27]: Wheeler, An elliptic collocation-finite element method with inte-

rior penalties, SIAM J. Numer. Anal. 15, 152-161.
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With the fact that γ1
h is a subgrid of γ2

h (or vice versal) we will have

the inf-sup condition theorem:

Theorem 4.2 Let the regular mesh Eh satisfy Hypotheses H1 and H2.

Then there exists a constant β∗ > 0, independent of h, such that

inf
ph∈Mh

sup
vh∈X̃h

b(vh, ph)

[|vh|] ‖ph‖0
≥ β∗,

where

X̃h = {vh ∈ Xh : ∀e ∈ Γh,
∫

e
qh · [[vh]] = 0, ∀qh ∈ Pk−1(e)

2}.

Theorem 4.2 can be extended by induction to a fixed number of sub-

domains.
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Then, the inf-sup condition allows us to construct a good approxima-

tion operator.

Corollary 4.3 Under the assumption of Theorem 4.2, there exists an

approximation operator Ph ∈ L(H1
0(Ω)2; X̃h) such that for any s ∈

[1, k + 1]:

∀v ∈ H1
0(Ω)2, ∀qh ∈ Mh, b(Ph(v) − v, qh) = 0,

∀v ∈ (Hs(Ω) ∩ H1
0(Ω))2, [|Ph(v) − v|] ≤ Chs−1|v|s,Ω,

∀v ∈ H1
0(Ω)2, ∀e ∈ Γh, ∀q ∈ Pk−1(e

2),
∫

e
[[Ph(v) − v]] · q = 0.
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5. Error estimation

Theorem 5.1 Let k = 1,2 or 3 be the degree of the polynomials in the

definition of Xh and assume that the solution (u, p) of problem (1)-

(3) belongs to Hk+1(Ω)2 × Hk(Ω). Then, if the regular triangulation

satisfies Hypotheses H1 and H2, and if H3 holds, the solution (U, P)

of (7),(8) satisfies the error estimate

[|u − U|] ≤ Chk(|u|k+1 +
1

µ
|p|k),

where C is independent of h and µ.

Theorem 5.2 Under the assumption and notation of Theorem 5.1, we

have

‖p − P‖0 ≤ Chk(µ|u|k+1 + |p|k),

with a constant C independent of h and µ.
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5. Error estimation

We now address the estimate for the velocity in the L2 norm. The

convergence is optimal for the symmetric case (Case A), but lose a

power of h in nonsymmetric case (Case B).

Theorem 5.3 Assume that Ω is convex. Then, under the hypotheses

of Theorem 5.1, there exist a constant C, independent of h and µ such

that

‖u − U‖0 ≤ Chk+1(|u|k+1 +
1

µ
|p|k), ǫ∗ = −1,

‖u − U‖0 ≤ Chk(|u|k+1 +
1

µ
|p|k), ǫ∗ = +1.
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6. Navier-Stokes problem

Recall the Navier-Stokes system (4),(2),(3)

−µ∆u + u · ∇u + ∇p = f , in Ω,

∇ · u = 0, in Ω,

u = 0, on ∂Ω.

Discretize the nonlinear convection term u · ∇u with an upwind dis-

cretization of u · ∇z: ∀u, z, θ ∈ X

c(u; z, θ) =
∑

E∈Eh

(∫

E
(u · ∇z) · θ +

∫

∂E−

|{u} · nE|(zint − zext) · θint

)

+
1

2

∑

E∈Eh

∫

E
(∇ · u)z · θ −

1

2

∑

e∈Γh∪γ1
h

∫

e
[[u]] · ne{z · θ},

where

∂E− = {x ∈ ∂E : {u} · nE < 0},

and the superscript int (resp. ext) refers to the trace of the function

on a side of E coming from the interior of E (resp. coming from the

exterior of E on that side).
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6. Navier-Stokes problem

Then we discretize Navier-Stokes system by: find (U, P) ∈ Xh × Mh

such that

∀vh ∈ Xh,

µ(a(U, vh) + J0(U,vh)) + c(U;U,vh) + b(vh, P) =
∫

Ω
f · vh, (17)

∀qh ∈ Mh, b(U, qh) = 0. (18)

It is easy to see that, when u, z, θ ∈ H1
0(Ω)2, c reduces to

c(u; z, θ) =

∫

Ω
(u · ∇z) · θ +

1

2

∫

Ω
(∇ · u)z · θ.

Considering Lemma 3.4, we have that every solution of the Navier-

Stokes problem (4),(2),(3) is also a solution of (17) (18) and con-

versely.
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6. Navier-Stokes problem

Lemma 6.1 The trilinear form c defined satisfies the following ”inte-

gration by parts” for all u, z, θ in X

c(u; z, θ) = −
∑

E∈Eh

(

∫

E
(u · ∇θ) · z +

1

2

∫

E
(∇ · u)z · θ)

+
1

2

∑

e∈Γh∪γ1
h

∫

e
[[u]] · ne{z · θ}

−
∑

E∈Eh

∫

∂E−

|{u} · nE|zext · (θint − θext) +

∫

Γ+

|u · n|z · θ,

where Γ+ is the subset of ∂Ω where u · n > 0. In particular, if z = θ,

we obtain

c(u; z, z) =
1

2

∑

E∈Eh

∫

∂E−

|{u} · nE|‖zext − zint‖2 +
1

2

∫

Γ+

|u · n|‖z‖2 ≥ 0.
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6. Navier-Stokes problem

Lemma 6.2 Assume that the regular triangulation satisfies Hypothesis

H2. Then for each real number p ∈ [2,∞) there exists a constant C(p),

independent of h, such that

∀v ∈ H1(Eh), ‖v‖Lp(Ω) ≤ C(p) [|v|] .

Here

H1(Eh) = {v ∈ L2(Ω) : ∀E ∈ Eh, v|E ∈ H1(E)}.
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6. Navier-Stokes problem With Lemma 6.1 and Lemma 6.2, together

with inf-sup condition Theorem 4.2, we are able to prove the existence

of discrete solution and a priori estimates.

Proposition 6.3 Assume that the regular triangelation satisfy Hypothe-

ses H1 and H2. Then, if H3 holds, for any f in L4/3(Ω)2 and µ > 0,

the discrete Navier-Stokes problem (17),(18) has at least one solution

(U, P) in Xh × Mh, and each solution satisfies the a priori estimates

[|U|] ≤
C(4)

µK
‖f‖

L4/3(Ω)
,

∑

E∈Eh

∫

∂E−

|{U} · nE|‖Uint − Uext‖2 +

∫

Γ+

|U · n|‖U‖2 ≤
2

µK
C(4)2‖f‖2

L4/3(Ω)
,

‖P‖0 ≤ C(‖f‖
L4/3(Ω)

+ [|U|]2).

where C(4) is the constant of Lemma 6.2 with exponent 4 and C is

another constant that depends on β∗ but is independent of h and µ.
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6. Navier-Stokes problem

Now, we turn to error estimates. Let (U, P) be a solution of (17),(18),

let (u, p) be a solution of (4),(2),(3), let UI = Ph(u) be the operator

defined in Corollary 4.3 and let PI = rh(p) be the operator defined in

(9). Set χ = U − UI, ξ = P − PI, we obtain the following equation:

µ(a(χ, χ) + J0(χ, χ)) + c(UI;χ, χ) + c(χ;U, χ) = µ(a(u − UI, χ)

+J0(u − UI , χ)) + b(χ, p − PI) + c(u − UI;UI, χ) + c(u;u − UI, χ).

The left-hand side is bounded below by

Kµ [|χ|]2 +
1

2

∑

E∈Eh

∫

∂E−

|{UI · ne}|‖χ
ext − χint‖2 +

1

2

∫

Γ+

|U · n|‖χ‖2 + c(χ;U, χ).

Therefore, we must find an upper bound for c(χ;U, χ).
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6. Navier-Stokes problem

Lemma 6.4 Assume that the regular mesh satisfies Hypothesis H2.

There exists a constant C and for each r > 2, there exists a constant

Cr, both independent of h, such that

∀uh ∈ Vh, ∀vh,wh ∈ Xh,

|c(uh;vh,wh)| ≤ Crh
2/r [|uh|] [|vh|] [|wh|]

+ C‖wh‖L4(Ω)(‖uh‖L4(Ω) [|vh|]

+ ‖vh‖L4(Ω)J0(uh,uh)
1/2).

As is usual for the Navier-Stokes equations, we introduce the quantity

N(h) = sup
vh,wh∈Vh

c(wh;vh,wh)

[|vh|] [|wh|]

2

.

According to Lemmas 6.1 and 6.2, N(h) is bounded by a constant N

independent of h. It is easy to check that the discrete Navier-Stokes

problems (17),(18) has a unique solution if the data satisfy

N

K2µ2
C(4)‖f‖

L4/3(Ω)
< 1.
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6. Navier-Stokes problem

Theorem 6.5 Under the assumption of Theorem 5.1 and if the data f

and µ satisfy:

N

K2µ2
C(4)‖f‖

L4/3(Ω)
<

1

2
,

then, the solution (U, P) of (17),(18) satisfies the following a priori

error estimates:

[|u − U|] ≤ Chk((1 +
1

µ2
)|u|k+1 +

1

µ
|p|k),

‖p − P‖0 ≤ Chk(µ|u|k+1 + |p|k) +
C

µ
[|u − U|] .

where (u, p) is the solution of (4),(2),(3) and the constant C depends

upon f , but not on h or µ.

Theorem 6.6 Under the assumption of Theorem 6.5, and if Ω is convex,

there is a constant C independent of h such that

‖u − U‖0,Ω ≤ Chk+1.
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Conclusion:

In this paper, the authors have established optimal a priori estimates

for a totally discontinuous family of approximations of the steady in-

compressible Stokes and Navier-Stokes equations in two dimensions.

Both symmetric and nonsymmetric cases are discussed. The scheme

are locally conservative away from subdomain interfaces. This paper is

the first analysis of discontinuous Galerkin methods with nonmatching

domain decomposition for Stokes and Navier-Stokes equations in the

primitive variables.
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