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Overview

Dual-consistency for functional outputs
definition, relation between discrete and
continuous dual problems

Implications for DG treatment:
inviscid Euler flow equation
compressible Navier-Stokes equations

Numerical results
discrete adjoint behavior, convergence rates for
outputs
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Dual problems

Application of duality-based techniques:

error analysis
design optimization, optimal control, ...

Introduce Lagrangian on approproiate spaces, obtain either

continuous dual problem
discrete dual problem

For general discretizations, lack of correspondence between
the two
Propose: dual-consistency property as a connection between
the discrete and continuous dual problems.
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Continuous Variational Setting

Primal variation problem: u ∈ V satisfy

F (u) = 0

where F is Frechét-differentiable, maps V → W ′.
Functional of interest: J (·) : V → R

Introduce Lagrangian:

L (u,ψψψ) ≡ J (u)− (F (u),ψψψ)W ′,W ,

Taking variations u → u+ δv ∈ V in the permissible primal
space, requiring the Lagrangian be stationary with respect
to permissible δv, obtain equation for the continuous dual
variable ψψψ :

F ′[u]
∗ψψψ = J ′[u]
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Discrete Variational Setting

Primal discrete problem: U ∈ R
N satisfy

F(U) = 0

Discrete functional of interest: J(·) : R
N → R

Introduce Lagrangian:

L(U,ΨΨΨ) ≡ J(U)− (F(U),ΨΨΨ)RN ,

Taking variations δU ∈ R
N , obtain equation for the

continuous dual variable ΨΨΨ:

F′[U]
TΨΨΨ = J′[U]
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Discrete Setting for Finite Element Methods

Finite dimensional test and trial spaces: Vh and Wh, with
bases {φk} and {ϕk}.
FEM semilinear form: Rh(·, ·), functional Jh(·).
Define

uh ≡ uD
h +

N

∑
k=1

Ukφk,vh ≡
N

∑
k=1

Vkϕk.

The ith component of the nonlinear system of equations for
the unknown coefficients U ≡ {Uk} is

Rh(uh,ϕi) = 0, i = 0, . . . ,N.

Then ψψψh ≡ ∑N
k=1ΨΨΨkϕk corresponding to the discrete adjoint

solution satisfies

R′
h[uh](φi,ψψψh) = J ′

h[uh](φi), ∀i = 0, . . . ,N.
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Dual-consistency

DEFINITION

The finite element formulation together with the discrete functional
Jh(·) is dual-consistent if given u andψψψ solutions to the primal and
adjoint PDE respectively, the following holds:

R′
h[u](vh,ψψψ) = J ′

h[u](vh), ∀vh ∈ Vh.

More generally, the formulation is said to beasymptotically
dual-consistent if:

lim
h→0

(

sup
vh∈Vh

|R′
h[u](vh,ψψψ)−J ′

h[u](vh)|

‖vh‖Vh

)

= 0.
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Dual-consistency

Factors to consider in showing dual-consistency of FE
formulation:

1 Treatment of interior terms
2 Treatment of boundary condition and functional

Lack of dual-consistency of NIP results in (Harriman,
Houston and Süli):

1 non-convergent discrete adjoint solution
2 suboptimal functional output convergence

Considerations at domain boundary demonstrate:
1 necessary matching condition between boundary and

functional treatment
2 generalizes conservativity of functional treatment (Giles)
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First-order conservation laws

Let u ∈ V be a weak solution to the following system of
conservation law,

{

∇ ·F (u) = 0, x ∈ Ω,

D(u|∂Ω,BC) = 0, x ∈ ∂Ω,

where Dirichlet conditions are imposed via the boundary
operator D(·,BC) : ∂V → ∂V
Adjoint state ψψψ associated with J (·) ≡

∫

Γoutput
J(·)ds,

Γoutput⊂ ∂Ω satisfies the PDE:

−F ′[u]T ·∇ψψψ = 0, x ∈ Ω,

subject to,
∫

∂Ω
ψψψT n̂ ·F ′[u](ũ)ds =

∫

Γoutput

J′[u](ũ)ds, ∀ũ ∈ ∂V 0
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First-order conservation laws

Trace space of V satisfying the linearized, homogeneous
Dirichlet condition:

∂V 0 ≡
{

ũ ∈ ∂V : D′[u|∂Ω](ũ) = 0
}

.

∴ Components of variations ũ|∂Ω allowed by the primal
Dirichlet BC give rise to constraints on ψψψ |∂Ω.

Existence of dual solutions for certain set of functionals,
dependent on the boundary condition

E.g., for inviscid Euler flow equations, on flow tangency
boundaries only pressure based functionals are allowed
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}

.

∴ Components of variations ũ|∂Ω allowed by the primal
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DG for conservation laws

Semilinear form:

Rh(uh,vh) ≡

∑
κ∈Th

{

−

∫

κ
∇vT

h ·F (uh)dx+

∫

∂κ\∂Ω
v+

h
T
H (u+

h ,u−
h , n̂)ds

+

∫

∂κ∩∂Ω
v+

h
T
H b(u+

h ,ub
h, n̂)ds

}

Note:
1 boundary conditions on ∂Ω weakly imposed via

constructing a discrete boundary trace ub
h(u

+
h ,BCData)

being a function of the interior trace and BC data.
2 boundary numerical flux H b(·, ·, n̂) possibly different from

H (·, ·, n̂)
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General prescription for dual-consistency

Projective property of boundary trace map:
ub

h(u
b
h(·,BCData),BCData) = ub

h(·,BCData)
∴ vector space decomposition:

∂V p
h = range

([

∂ub
h

∂u+
h

])

⊕null

([

∂ub
h

∂u+
h

])

Fixed point property:

D(u|∂Ω,BC) = 0⇒ ub
h(u|∂Ω,BCData) = u|∂Ω.

Following choice of boundary flux and functional constitute
a dual-consistent treatment:

H b(·) = n̂ ·F (ub
h(·,BCData))

Jh(·) =
∫

Γoutput

J(ub
h(·,BCData))ds.
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Test case: inviscid Euler equations

Expression for the fluxes F = [F x,F y] are,

F x =









ρu
ρu2 + p

ρuv
ρuH









, F y =









ρv
ρuv

ρv2 + p
ρvH









.

H the total enthalpy, p the pressure given by

Geometry: flow around Gaussian bump:

Ω =
{

(x,y) ∈ (−6,6)× (0,6) : y >
1
5e−2x2

}

Output of interest

J (u) =
∫

x∈[−6,6], y= 1
5e−2x2

nyp(u)e−
1
2x2

ds, (0.1)
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Implications of different boundary treatments

(a) Dual-consistent (b) Dual-inconsistent

Figure: Comparison of p = 3 discrete adjoint solutions. M∞ = 0.5.
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Figure: Comparison of functional output convergence. M∞ = 0.5.
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Discretization of elliptic operators

Denote primal system: ∇ · (A v(u)∇u) = 0,x ∈ Ω,
{

D(u|∂Ω,BC) = 0, x ∈ ∂Ω,

N(n̂ ·A v(u)∇u|∂Ω,BC) = 0, x ∈ ∂Ω,

Bassi-Rebay II DG discretization:

Rh(uh,vh) ≡ ·· ·−

∫

∂Ω
(ub

h −u+
h )T(n̂ ·A v(ub

h)
T∇v+

h )ds

+
∫

∂Ω
v+

h
TFb

h

(

n̂ ·A v(ub
h)∇u+

h −ηf n̂ ·δδδ b
f

)

ds,

where δδδ b
f ∈ [V p

h ]2 such that
∫

Ω
τττT

h ·δδδ
b
f dx =

∫

σf

(u+
h −ub

h)
T [n̂ ·A v(ub

h)
T τττ+

h ]ds,

Consistent, dual-consistent on interior elements
Stable for sufficiently large stabilization parameter ηf
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General prescription for dual-consistency

Projective property of boundary flux map:
Fb

h(F
b
h(·,BCData),BCData) = Fb

h(·,BCData)

Fixed point property:

N(n̂ ·A v∇u|∂Ω,BC) = 0
⇒ Fb

h(n̂ ·A v∇u|∂Ω,BCData) = n̂ ·A v∇u|∂Ω

Form of functional for dual-consistent treatment:

Jh(∇uh) =

∫

Γoutput

J(Fb
h(n̂ ·A v∇u+

h −ηf n̂ ·δδδ b
f ))ds
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Test case: compressible Navier-Stokes equations

Viscous flux A v(u)∇u, where components are:

x :











0
2
3µ(u)(2∂u

∂x −
∂v
∂y)

µ(u)(∂u
∂y + ∂v

∂x)
2
3µ(u)(2∂u

∂x −
∂v
∂y)u+ µ(u)(∂u

∂y + ∂v
∂x)v+ κ(u)∂T

∂x











y :











0
µ(u)(∂u

∂y + ∂v
∂x)

2
3µ(u)(2∂v

∂y −
∂u
∂x )

2
3µ(u)(2∂v

∂y −
∂u
∂x )v+ µ(u)(∂u

∂y + ∂v
∂x)u+ κ(u)∂T

∂y











.

Boundary condition on no-slip, adiabatic boundary:
u = v = 0, [A v(u)∇u]4 = 0
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Fine grid used for computation

Figure: NACA 0012 grid, 10752 elements.
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Implications of different boundary treatments

(a) Dual-consistent (b) A dual-inconsistent

Figure: Comparison of p = 3 discrete adjoint solutions.
M∞ = 0.5,Re = 5000
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Implications of different boundary treatments
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(a) Dual-consistent
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(b) Dual-inconsistent

Figure: Comparison of drag output convergence. M∞ = 0.5,Re = 5000
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Conclusions

Proposed property of dual-consistency as a connection
between duality in continuous and discrete settings

Demonstrated the importance in the treatment of boundary
condition and functional output important for
dual-consistency
Given a prescription for dual-consistent treatment of:

1 DG discretization of first-order conservation laws
2 Bassi-Rebay II DG discretization of elliptic operators

Demonstrated implications in the context of flow equations:

1 Regularity of discrete adjoint solution
2 Rate of functional output convergence
3 Effectivity of duality-based error estimates
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Thank you for your attention!
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