NIPG - The Nonsymmetric Interior Penalty Galerkin Method

Huidong Yang
Institute of Computational Mathematics
Johannes Kepler University Linz
huidong@numa.uni-linz.ac.at

Content

- Introduction
- Consistency
- Adjoint inconsistency
- Boundedness
- Stability analysis
- Error estimate

The Model Problem

Restrict ourselves to the model problem

$$
\begin{align*}
-\Delta u & =f \\
u & =0
\end{align*}
$$

on $\partial \Omega$
Ω - a convex polygonal domain
f - a given function in $L^{2}(\Omega)$
Rewrite the problem as a first-order system

$$
\begin{align*}
\sigma & =\nabla u & & \text { in } \Omega \tag{1}\\
-\nabla \cdot \sigma & =f & & \text { in } \Omega \tag{2}
\end{align*}
$$

The Weak Formulation

Multiply (1)-(2) by test functions τ and v, and integrate on a subset K of Ω

$$
\begin{array}{rlrl}
\int_{K} \sigma \cdot \tau d x & = & -\int_{K} u \nabla \cdot \tau d x+\int_{\partial K} u n_{K} \cdot \tau d s \\
\int_{K} \sigma \cdot \nabla v d x & = & & \int_{K} f v d x+\int_{\partial K} \sigma \cdot n_{K} v d s
\end{array}
$$

n_{K} - the outward normal unit vector to ∂K
This is the weak formulation we will use to define the DG methods.

The Flux Formulation

The finite element spaces associated with the triangulation $\Pi_{h}=\{K\}$ of Ω, $P(K)=P_{p}(K)(p \geqslant 1), \Sigma(K)=\left[P_{p}(K)\right]^{2}$

$$
\begin{array}{rrr}
V_{h}:= & \left\{v \in L^{2}(\Omega):\left.v\right|_{K} \in P(K)\right. & \left.\forall K \in \Pi_{h}\right\} \\
\Sigma_{h}:= & \left\{\tau \in\left[L^{2}(\Omega)\right]^{2}:\left.\tau\right|_{K} \in \Sigma(K)\right. & \left.\forall K \in \Pi_{h}\right\}
\end{array}
$$

Find $u_{h} \in V_{h}$ and $\sigma \in \Sigma_{h}$ such that for all $K \in \Pi_{h}$, we have

$$
\begin{align*}
\int_{K} \sigma_{h} \cdot \tau d x= & -\int_{K} u_{h} \nabla \cdot \tau d x+\int_{\partial K} \hat{u}_{K} n_{K} \cdot \tau d s & \forall \tau \in \Sigma(K) \tag{3}\\
\int_{K} \sigma_{h} \cdot \nabla v d x= & \int_{K} f v d x+\int_{\partial K} \hat{\sigma}_{K} \cdot n_{K} v d s & \forall v \in P(K) \tag{4}
\end{align*}
$$

Numerical fluxes $\hat{\sigma}_{K}$ and \hat{u}_{K} are approximations to $\sigma=\nabla u$ and to u on the boundary of K.

Traces and Numerical Fluxes

- The traces of functions in $H^{1}\left(\Pi_{h}\right)$ belong to $T(\Gamma):=\Pi_{K \in \Pi_{h}} L^{2}(\partial K), \Gamma$, the union of the boundaries of the elements K of Π_{h}, functions in $T(\Gamma)$ are double-valued on $\Gamma^{0}:=\Gamma \backslash \partial \Omega$ and single-valued on $\partial \Omega$.
- Numerical fluxes are consistent if $\hat{u}(v)=\left.v\right|_{\Gamma}, \hat{\sigma}(v, \nabla v)=\left.\nabla v\right|_{\Gamma}$, conservative if $\hat{u}(\cdot)$ and $\hat{\sigma}(\cdot, \cdot)$ are single-valued on Γ.
- Trace operators
- e, an interior edge shared by elements K_{1} and K_{2}, n_{1} and n_{2}, unit normal vector on e pointing exterior to K_{1} and $K_{2}, \varepsilon_{h}^{o}$ the set of interior edges $e, \varepsilon_{h}^{\partial}$, the set of boundary edges.
- For $q \in T(\Gamma)$, with $q_{i}:=\left.q\right|_{\partial K_{i}},\{q\}=\frac{q_{1}+q_{2}}{2}, \llbracket q \rrbracket=q_{1} n_{1}+q_{2} n_{2}$, on $e \in \varepsilon_{h}^{o}$
- For $\varphi \in[T(\Gamma)]^{2}$, with $\varphi_{i}:=\left.\varphi\right|_{\partial K_{i}},\{\varphi\}=\frac{\varphi_{1}+\varphi_{2}}{2}, \llbracket \varphi \rrbracket=\varphi_{1} \cdot n_{1}+\varphi_{2} \cdot n_{2}$, on $e \in \varepsilon_{h}^{o}$
$-\llbracket q \rrbracket=q n,\{\varphi\}=\varphi$, on $e \in \varepsilon_{h}^{\partial}$

The Primal Formulation

In (3)-(4), we add over all the element, use the average $\}$ and jump [] operators, express σ_{h} solely in terms of u_{h}, apply the integration by parts formula, we obtain

$$
\begin{gather*}
B_{h}\left(u_{h}, v\right)=\int_{\Omega} f v d x \quad \forall v \in V_{h} \tag{5}\\
B_{h}\left(u_{h}, v\right):=\int_{\Omega} \nabla_{h} u_{h} \cdot \nabla_{h} v d x+\int_{\Gamma}\left(\llbracket \hat{u}-u_{h} \rrbracket \cdot\left\{\nabla_{h} v\right\}-\{\hat{\sigma}\} \cdot \llbracket v \rrbracket\right) d s \\
+\int_{\Gamma^{0}}\left(\left\{\hat{u}-u_{h}\right\} \llbracket \nabla_{h} v \rrbracket-\llbracket \hat{\sigma} \rrbracket\{v\}\right) d s \tag{6}
\end{gather*}
$$

$\hat{u}=\hat{u}\left(u_{h}\right), \hat{\sigma}=\hat{\sigma}\left(u_{h}, \sigma_{h}\left(u_{h}\right)\right)$
The primal form : $B_{h}(\cdot, \cdot): H^{2}\left(\Pi_{h}\right) \times H^{2}\left(\Pi_{h}\right) \rightarrow R$
Equation 5 : The primal formulation of the method

The Primal Form of NJPG Method

Numerical flux of NIPG method

$$
\begin{aligned}
& \hat{u}_{K}=\left\{u_{h}\right\}+n_{K} \cdot \llbracket u_{h} \rrbracket \\
& \hat{\sigma}_{K}=\left\{\nabla_{h} u_{h}\right\}-\alpha_{j}\left(\llbracket u_{h} \rrbracket\right)
\end{aligned}
$$

where $\alpha_{j}\left(\llbracket u_{h} \rrbracket\right)=\eta_{e} h_{e}^{-1} \llbracket u_{h} \rrbracket$

$$
\begin{equation*}
B_{h}(u, v)=\left(\nabla_{h} u, \nabla_{h} v\right)-<\left\{\nabla_{h} u\right\}, \llbracket v \rrbracket>+<\llbracket u \rrbracket,\left\{\nabla_{h} v\right\}>+\alpha^{j}(u, v) \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& (a, b)=\int_{\Omega} a b d x \\
& <a, b>=\int_{\Gamma} a b d s \\
& \alpha^{j}(u, v)=\sum_{e \in \varepsilon_{h}} \int_{e} \eta_{e} h_{e}^{-1} \llbracket u \rrbracket \cdot \llbracket v \rrbracket d s \\
& \eta_{e} \text { - are bounded uniformly above and below by positive constant }
\end{aligned}
$$

Consistency of NIPG Method (1)

We have consistency of numerical fluxes of NIPG method

$$
\hat{u}(u)=\left.u\right|_{\Gamma},\left.\quad \hat{\sigma}(u, \nabla(u))\right|_{\Gamma}=\nabla u
$$

Then, use numerical fluxes,

$$
\hat{u}=\{u\}+n_{K} \cdot \llbracket u \rrbracket, \quad \hat{\sigma}=\left\{\nabla_{h} u\right\}-\alpha_{j}(\llbracket u \rrbracket)
$$

we have

$$
\begin{gathered}
\llbracket \hat{u} \rrbracket=0, \quad\{\hat{u}\}=u \\
\llbracket \hat{\sigma} \rrbracket=0, \quad\{\hat{\sigma}\}=\nabla u \\
\alpha^{j}(u, v)=0
\end{gathered}
$$

Consistency of NIPG Method (2)

Let u solve the model problem, by the integration by parts formula, we have for any $v \in H^{2}\left(\Pi_{h}\right)$ that

$$
\int_{\Omega} \nabla_{h} u \cdot \nabla_{h} v d x=-\int_{\Omega} \Delta u v d x+\int_{\Gamma}\left\{\nabla_{h} u\right\} \cdot \llbracket v \rrbracket d s+\int_{\Gamma^{0}} \llbracket \nabla_{h} u \rrbracket \cdot\{v\} d s
$$

With $\{u\}=u, \llbracket u \rrbracket=0,\left\{\nabla_{h} u\right\}=\nabla_{h} u, \llbracket \nabla_{h} u \rrbracket=0,-\Delta u=f$, we have

$$
\begin{align*}
B_{h}(u, v) & :=\int_{\Omega} f v d x+\int_{\Gamma}\left(\llbracket \hat{u} \rrbracket \cdot\left\{\nabla_{h} v\right\}+(\nabla u-\{\hat{\sigma}\}) \cdot \llbracket v \rrbracket\right) d s \tag{8}\\
& +\int_{\Gamma^{0}}\left(\{\hat{u}-u\} \llbracket \nabla_{h} v \rrbracket-\llbracket \hat{\sigma} \rrbracket\{v\}\right) d s+\alpha^{j}(u, v)
\end{align*}
$$

If numerical fluxes are consistent, on $\Gamma, \llbracket \hat{u} \rrbracket=0,\{\hat{u}\}=u, \llbracket \hat{\sigma} \rrbracket=0,\{\hat{\sigma}\}=\nabla u$, we conclude that

$$
\begin{equation*}
B_{h}(u, v)=\int_{\Omega} f v d x \quad \forall v \in H^{2}\left(\Pi_{h}\right) \tag{9}
\end{equation*}
$$

Adjoint Inconsistency of NJPG Methods (1)

Let ψ solve

$$
\begin{aligned}
-\Delta \psi & =g \\
\psi & =0
\end{aligned}
$$

$$
\begin{array}{r}
\text { in } \Omega \\
\text { on } \partial \Omega
\end{array}
$$

If $B_{h}(v, \psi)=\int_{\Omega} v g d x$ for all $v \in H^{2}\left(\Pi_{h}\right)$, we say that the primal form is adjoint consistent.
Since $\psi \in H^{2}(\Omega), \llbracket \psi \rrbracket=0,\{\psi\}=\psi, \llbracket \nabla \psi \rrbracket=0,\{\nabla \psi\}=\nabla \psi$, by the integration by parts, we get

$$
\begin{equation*}
B_{h}(v, \psi)=\int_{\Omega} v g d x+\int_{\Gamma} \llbracket \hat{u}(v) \rrbracket \cdot \nabla \psi d s-\int_{\Gamma^{0}} \llbracket \hat{\sigma}\left(v, \sigma_{h}(v)\right) \rrbracket \psi d s \quad \forall v \in H^{2}\left(\Pi_{h}\right) \tag{10}
\end{equation*}
$$

Adjoint Inconsistency of NJPG Methods (2)

For the numerical fluxes of NIPG method, we calculate

$$
\begin{aligned}
\llbracket \hat{u} \rrbracket & =\llbracket\{v\}+n_{K} \cdot \llbracket v \rrbracket \rrbracket \\
& =\llbracket\{v\} \rrbracket+\llbracket n_{K} \cdot \llbracket v \rrbracket \rrbracket \\
& =n_{1}\left(n_{1} \cdot\left(n_{1} v_{1}+n_{2} v_{2}\right)\right)+n_{2}\left(n_{2} \cdot\left(n_{1} v_{1}+n_{2} v_{2}\right)\right) \\
& =n_{1}\left(v_{1}-v_{2}\right)+n_{2}\left(v_{2}-v_{1}\right) \\
& =2\left(n_{1} v_{1}+n_{2} v_{2}\right)=2 \llbracket v \rrbracket \\
\llbracket \hat{\sigma} \rrbracket & =\llbracket\left\{\nabla_{h} v\right\} \rrbracket-\llbracket \alpha_{j}(\llbracket v \rrbracket) \rrbracket \\
& =0-0=0
\end{aligned}
$$

So, insert them into Equation (10)

$$
B_{h}(v, \psi)=\int_{\Omega} v g d x+2 \int_{\Gamma} \llbracket v \rrbracket \cdot \nabla \psi d s
$$

Penalty Term and DG Norm

The penalty term of NIPG method

$$
\alpha^{j}(u, v)=\sum_{e \in \varepsilon_{h}} \int_{e} \eta_{e} h_{e}^{-1} \llbracket u \rrbracket \cdot \llbracket v \rrbracket d s, \quad\left(C_{e, 0} \leq \eta_{e} \leq C_{e, 1}\right)
$$

Take the norm of NIPG method in $V(h)=V_{h}+H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \subset H^{2}\left(\Pi_{h}\right)$ as

$$
\||v|\|_{h}^{2}=|v|_{1, h}^{2}+\sum_{K \in \Pi_{h}} h_{K}^{2}|v|_{2, K}^{2}+|v|_{*}^{2}
$$

where $|v|_{1, h}^{2}=\sum_{K}|v|_{1, K}^{2}, \quad|v|_{*}^{2}=\alpha^{j}(v, v)$.

Boundedness of NJPG Method (1)

By noting if $u \in H^{2}(K)$ and e is an edge of K, we have trace inequality ${ }^{1}$

$$
\left\|\frac{\partial u}{\partial n}\right\|_{0, e}^{2} \leq C\left(h_{e}^{-1}|u|_{1, K}^{2}+h_{e}|u|_{2, K}^{2}\right), \quad \text { Then, }
$$

$$
\int_{e}\left|\frac{\partial u}{\partial n} q\right| d s \leq C\left(|u|_{1, K}^{2}+h_{e}^{2}|u|_{2, K}^{2}\right)^{1 / 2} h_{e}^{-1 / 2}\|q\|_{0, e}, \quad \text { for every } q \in L^{2}(e)
$$

$$
\int_{\Gamma}\left\{\nabla_{h} u\right\} \cdot \llbracket v \rrbracket d s=\sum_{e \in \varepsilon_{h}} \int_{e}\left\{\nabla_{h} u\right\} \cdot \llbracket v \rrbracket d s
$$

$$
\begin{aligned}
& \leq C\left[\sum_{K}\left(|u|_{1, K}^{2}+h_{K}^{2}|u|_{2, K}^{2}\right)\right]^{1 / 2}\left[\sup \left(1 / \eta_{e}\right) \sum_{e \in \varepsilon_{h}} \eta_{e} h_{e}^{-1} \int_{e}|\llbracket v \rrbracket|^{2} d s\right]^{1 / 2} \\
& \leq \sup \left(1 / \eta_{e}\right) C\||u|\|_{h}|v|_{*} \leq \sup \left(1 / \eta_{e}\right) C\left\|u\left|\left\|_{h}\right\|\right| v \mid\right\|_{h}
\end{aligned}
$$

[^0]
Boundedness of NJPG Method (2)

Similarly, we have $<\llbracket u \rrbracket,\left\{\nabla_{h} v\right\}>=\int_{\Gamma} \llbracket u \rrbracket \cdot\left\{\nabla_{h} v\right\} d s \leq C\|u u\|_{h}\|v v\|_{h}$ Obviously, we have $\left(\nabla_{h} u, \nabla_{h} v\right) \leq C|u|_{1, h}|v|_{1, h} \leq C\left\|\left|u\left\|_{h}\right\|\right| v\right\|_{h}$,

$$
\begin{aligned}
\alpha^{j}(u, v) & =\sum_{e \in \varepsilon_{h}} \int_{e} \eta_{e} h_{e}^{-1} \llbracket u \rrbracket \cdot \llbracket v \rrbracket d s \leq \sum_{e \in \varepsilon_{h}}\left[\int_{e} \eta_{e} h_{e}^{-1} \llbracket u \rrbracket^{2} d s\right]^{1 / 2}\left[\int_{e} \eta_{e} h_{e}^{-1} \llbracket v \rrbracket^{2} d s\right]^{1 / 2} \\
& \leq\left[\sum_{e \in \varepsilon_{h}} \int_{e} \eta_{e} h_{e}^{-1} \llbracket u \rrbracket^{2}\right]^{1 / 2}\left[\sum_{e \in \varepsilon_{h}} \int_{e} \eta_{e} h_{e}^{-1} \llbracket v \rrbracket^{2}\right]^{1 / 2} \\
& =\alpha^{j}(u, u)^{1 / 2} \alpha^{j}(v, v)^{1 / 2}=|u|_{*}|v|_{*} \leq C\|\mid u\|_{h}\|v v\|_{h}
\end{aligned}
$$

Collecting all the terms which are bounded by the DG norm of the NIPG method, we get

$$
\begin{aligned}
B_{h}(u, v) & =\left(\nabla_{h} u, \nabla_{h} v\right)-<\left\{\nabla_{h} u\right\}, \llbracket v \rrbracket>+<\llbracket u \rrbracket,\left\{\nabla_{h} v\right\}>+\alpha^{j}(u, v) \\
& \leq C_{1}|u|_{1, h}|v|_{1, h}+C_{2}|u|_{*}\|v\|_{h}+C_{3}\left\|\left.\left|u \|_{h}\right| v\right|_{*}+C_{4}|u|_{*}|v|_{*}\right. \\
& \leq C\|u\|_{h}\|v v\|_{h}
\end{aligned}
$$

Stability Analysis of NJPG Method (1)

Equivalence of DG and weak norm

$$
\begin{gathered}
|v|_{\#}=\left(|v|_{1, h}^{2}+|v|_{*}^{2}\right)^{1 / 2}=\left(|v|_{1, h}^{2}+\alpha^{j}(v, v)\right)^{1 / 2} \\
\||v|\|_{h}^{2}=|v|_{1, h}^{2}+\sum_{K \in \Pi_{h}} h_{K}^{2}|v|_{2, K}^{2}+|v|_{*}^{2}
\end{gathered}
$$

By inverse inequality

$$
\|\nabla v\|_{0} \leq h^{-1}\|v\|_{0}
$$

So

$$
C_{1}|v|_{\#}^{2} \leq\||v|\|_{h}^{2} \leq C_{2}|v|_{\#}^{2}
$$

Stability Analysis of NJPG Method (2)

We show that the NIPG method satisfies the stability condition

$$
B_{h}(v, v) \geq C_{s}|v|_{\#}^{2} \quad \forall v \in V_{h}
$$

We define the week norm, the natural one for analyzing the stability of NIPG method

$$
|v|_{\#}=\left(|v|_{1, h}^{2}+|v|_{*}^{2}\right)^{1 / 2}=\left(|v|_{1, h}^{2}+\alpha^{j}(v, v)\right)^{1 / 2}
$$

From the primal forms of the DG method, we have

$$
\begin{aligned}
B_{h}(v, v) & =\left(\nabla_{h} v, \nabla_{h} v\right)-<\left\{\nabla_{h} v\right\}, \llbracket v \rrbracket>+<\llbracket v \rrbracket,\left\{\nabla_{h} v\right\}>+\alpha^{j}(v, v) \\
& =\left(\nabla_{h} v, \nabla_{h} v\right)+\alpha^{j}(v, v) \\
& =\left\|\nabla_{h} v\right\|_{0, \Omega}^{2}+\alpha^{j}(v, v) \\
& =|v|_{\#}^{2} \geq C_{s}|v|_{\#}^{2}
\end{aligned}
$$

Error Estimates (1)

A bound on the approximation error $\left\|u-u_{I}\right\|$, where $u_{I} \in V_{h}$, the usual continuous interpolant, then
$\left.\alpha^{j}\left(u-u_{I}, u-u_{I}\right)\right)=\sum_{e \in \varepsilon_{h}} \int_{e} \eta_{e} h_{e}^{-2 p-1} \llbracket u-u_{I} \rrbracket \cdot \llbracket u-u_{I} \rrbracket d s=0$
The norm of the NIPG method can be bounded by

$$
\left\|\left|u-u_{I}\right|\right\|_{h}^{2}=\left|u-u_{I}\right|_{1, h}^{2}+\sum_{K \in \Pi_{h}} h_{K}^{2}\left|u-u_{I}\right|_{2, K}^{2} \leq C_{a}^{2} h^{2 p}|u|_{p+1, \Omega}^{2}
$$

So

$$
\left\|\left|u-u_{I}\right|\right\|_{h} \leq C_{a} h^{p}|u|_{p+1, \Omega}
$$

By the stability of the NIPG method, we have

$$
\begin{aligned}
C_{s}\left\|\left|u_{I}-u_{h}\right|\right\|_{h}^{2} & \leq B_{h}\left(u_{I}-u_{h}, u_{I}-u_{h}\right) \\
& =B_{h}\left(u_{I}-u, u_{I}-u_{h}\right)+B_{h}\left(u-u_{h}, u_{I}-u_{h}\right) \\
& =\left\{u_{I}-u_{h} \in V_{h}\right\}=B_{h}\left(u_{I}-u, u_{I}-u_{h}\right)
\end{aligned}
$$

Error Estimates (2)

Use the continuity of $u-u_{I}$, we have the estimate

$$
\begin{aligned}
C_{s}\left\|\left|u_{I}-u_{h}\right|\right\|_{h}^{2} & =B_{h}\left(u_{I}-u, u_{I}-u_{h}\right) \\
& \leq C_{b}\left\|\left|u_{I}-u\right|\right\|_{h}\left\|\left|u_{I}-u_{h}\right|\right\|_{h} \\
& \leq C_{b} h^{p}\left\|\left|u_{I}-u_{h}\right|\right\|_{h}|u|_{p+1, \Omega}
\end{aligned}
$$

Thus by triangle inequality, we get

$$
\begin{aligned}
\left\|\left|u-u_{h}\right|\right\|_{h} & \leq\left\|\left|u-u_{I}\right|\right\|_{h}+\left\|\left|u_{I}-u_{h}\right|\right\|_{h} \\
& \leq C_{a} h^{p}|u|_{p+1, \Omega}+C_{b} h^{p}|u|_{p+1, \Omega} \\
& =C h^{p}|u|_{p+1, \Omega}
\end{aligned}
$$

Error Estimates (3)

For the L^{2}-error estimate of the NIPG method, let ψ is the solution of the adjoint problem

$$
-\Delta \psi=u-u_{h} \quad \text { in } \Omega \quad \psi=0 \quad \text { on } \partial \Omega
$$

We then have

$$
\left\|u-u_{h}\right\|_{0, \Omega}^{2}=B_{h}\left(u-u_{h}, \phi\right)-2 \int_{\Gamma}\{\nabla \phi\} \cdot \llbracket u-u_{h} \rrbracket d s=: T_{1}+T_{2}
$$

If ψ_{I} is the continuous interpolant of ψ in V_{h}, then $B_{h}\left(u, \psi_{I}\right)=\left(f, \psi_{I}\right)$, and

$$
\begin{aligned}
T_{1} & =B_{h}\left(u-u_{h}, \psi\right)=B_{h}\left(u-u_{h}, \psi-\psi_{I}\right) \\
& \leq C\left\|\left|u-u_{h}\right|\right\|_{h}\left\|\left|\psi-\psi_{I}\right|\right\|_{h} \\
& \leq C h\left\|\mid u-u_{h}\right\|_{h}\left\|u-u_{h}\right\|_{0, \Omega}
\end{aligned}
$$

Error Estimates (4)

Use the definition of the penalty term and norm of the NIPG method, and apply the trace inequality, we get

$$
\begin{aligned}
\sum_{e \in \varepsilon_{h}} \int_{e}\{\nabla u\} \cdot \llbracket v \rrbracket d s & =\sum_{e \in \varepsilon_{h}} \int_{e}\left(h_{e}^{2 p+1}\right)^{1 / 2}\{\nabla u\} \cdot \llbracket v \rrbracket\left(h_{e}^{-2 p-1}\right)^{1 / 2} d s \\
& \leq C\left\|v\left|\left\|_{h}\left(\sum_{e \in \varepsilon_{h}} h_{e}^{2 p+1} \int_{e}\left|\{\nabla u\} \cdot n_{e}\right|^{2} d s\right)^{1 / 2} \leq C h^{p}\right\| v\right|\right\|_{h}\|u\|_{2, h}
\end{aligned}
$$

Again use the elliptic regularity, we have

$$
T_{2} \leq C h^{p}\left\|\left|u-u_{h}\left\|_{h}\right\| \psi\left\|_{2, \Omega} \leq C h^{p}\right\|\right| u-u_{h}\right\|_{h}\left\|u-u_{h}\right\|_{0, \Omega}
$$

Collect error estimates for T_{1}, T_{2}, we obtain the desired optimal estimate

$$
\left\|u-u_{h}\right\|_{0, \Omega} \leq C h^{p+1}\|u\|_{p+1, \Omega}
$$

[^0]: ${ }^{1}$ D.N.Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19(1982), pp. 742-760.

