Algebraic Decoding of Rank Metric Codes

Françoise Levy-dit-Vehel

ENSTA Paris, France levy@ensta.fr

joint work with Ludovic Perret (UCL Louvain)

Special Semester on Gröbner Bases - Workshop D1

Outline

• The Rank Decoding problem (RD)

- Ontivation
- ♦ Some complexity results
- Easy instances of RD
- Solving RD:
 - generic algorithms
 - focusing on Ourivski-Johannsson method
 - 👌 our approach
- Practical results
- Conclusion

The Rank Decoding Problem

RD

Input: $N, n, k \in \mathbb{N}^*$, $G \in \mathcal{M}_{k \times n}(\mathbb{F}_{q^N})$, $c \in \mathbb{F}_{q^N}^n$. Question: find $m \in \mathbb{F}_{q^N}^k$, such that e = c - mG has smallest rank $\operatorname{Rk}(e | \mathbb{F}_q)$? Here, $\operatorname{Rk}(e | \mathbb{F}_q)$ is the rank of *e* when considered as a $(N \times n)$ matrix over \mathbb{F}_q .

A related problem: MR

Input: $N, n, k \in \mathbb{N}^*$, $M_0, \ldots, M_k \in \mathcal{M}_{N \times n}(\mathbb{F}_q)$ Question: find $(\lambda_1, \ldots, \lambda_k) \in \mathbb{F}_q^k$, such that $E = M_0 - \sum_{i=1}^k \lambda_i M_i$ has smallest rank ?

MR can be seen as a *Subcode Rank Decoding* problem, where *m* has to be searched in \mathbb{F}_q^k .

The Rank Decoding Problem

RD

Input: $N, n, k \in \mathbb{N}^*$, $G \in \mathcal{M}_{k \times n}(\mathbb{F}_{q^N})$, $c \in \mathbb{F}_{q^N}^n$. **Question:** find $m \in \mathbb{F}_{q^N}^k$, such that e = c - mG has smallest rank $\operatorname{Rk}(e | \mathbb{F}_q)$? Here, $\operatorname{Rk}(e | \mathbb{F}_q)$ is the rank of *e* when considered as a $(N \times n)$ matrix over \mathbb{F}_q .

A related problem: MR

Input: $N, n, k \in \mathbb{N}^*$, $M_0, \ldots, M_k \in \mathcal{M}_{N \times n}(\mathbb{F}_q)$. Question: find $(\lambda_1, \ldots, \lambda_k) \in \mathbb{F}_q^k$, such that $E = M_0 - \sum_{i=1}^k \lambda_i M_i$ has smallest rank ?

MR can be seen as a *Subcode Rank Decoding* problem, where *m* has to be searched in \mathbb{F}_q^k .

The Rank Decoding Problem

RD

Input: $N, n, k \in \mathbb{N}^*$, $G \in \mathcal{M}_{k \times n}(\mathbb{F}_{q^N})$, $c \in \mathbb{F}_{q^N}^n$. **Question:** find $m \in \mathbb{F}_{q^N}^k$, such that e = c - mG has smallest rank $\operatorname{Rk}(e | \mathbb{F}_q)$? Here, $\operatorname{Rk}(e | \mathbb{F}_q)$ is the rank of *e* when considered as a $(N \times n)$ matrix over \mathbb{F}_q .

A related problem: MR

Input: $N, n, k \in \mathbb{N}^*$, $M_0, \ldots, M_k \in \mathcal{M}_{N \times n}(\mathbb{F}_q)$. Question: find $(\lambda_1, \ldots, \lambda_k) \in \mathbb{F}_q^k$, such that $E = M_0 - \sum_{i=1}^k \lambda_i M_i$ has smallest rank ?

MR can be seen as a *Subcode Rank Decoding* problem, where *m* has to be searched in \mathbb{F}_q^k .

... of MR

- > Birational permutations signature scheme [Sh 93]
- > TTM cryptosystem [Mo 99]
- Courtois ZK authentication scheme [Co 01]

... of RD

- ♦ GPT cryptosystem [GaPaTr 91,GaOu 01]
 - Chen authentication scheme [Ch 96]
 - > Berger-Loidreau cryptosystem [BeLo 04]

Theorem (BuFrSh 96,Co 01)

MR is NP-Hard.

Proof.

By reduction of Maximum Likelihood Decoding over \mathbb{F}_q - proven to be NP-Hard [BeMcEvT 78, Ba 94, GuVa 05] - to MR.

Corollary

There exists a reduction from RD to MR.

Open Questions

- ♦ No known explicit reduction.
 - Is RD NP-hard ?

Algorithms for particular codes

Gabidulin codes: the generator matrix is of the form

$$G=egin{pmatrix} g_1&\dots&g_n\ g_1^q&\dots&g_n^q\ dots&\ddots&dots\ g_1^{q^{k-1}}&dots&dots\ g_n^{q^{k-1}}\ g_1^{q^{k-1}}&\dots&g_n^{q^{k-1}} \end{pmatrix}, \ (g_1,\dots,g_n)\in\mathbb{F}_{q^N}^n.$$

♦ Decoding algorithms (\mathbb{F}_{q^N} -mult.): $r^3 + (2n + N)r$ [Ga 91], (5/2) n^2 [Lo 05].

Reducible rank codes: generator matrix of the form $\begin{pmatrix} G_1 & 0 \\ A & G_2 \end{pmatrix}$, where G_i , i = 1, 2, are matrices of Gabidulin codes. \diamond Decoding complexity (\mathbb{F}_{q^N} -mult.): $O(kn + n^3)$ [OuGaHoAm 03].

Generic algorithms

Stern-Chabaud (96):

- Problem modeled in terms of parity-check matrix.
- Solving approach: enumerating rank r *r*-tuples of \mathbb{F}_{q^N} over \mathbb{F}_q , and trying to solve a linear system.
- Improved exhaustive enumeration from q^{Nr} to $q^{(N-r)(r-1)}$.
- Complexity: $O((nr + N)^3 q^{(N-r)(r-1)})$.

Ourivski-Johansson (02):

- Problem reduced to finding a minimum rank codeword in an extended code.
- Enumeration + solving a linear system over \mathbb{F}_q .
- Two versions, with complexities $O((rN)^3q^{(r-1)(k+1)+2})$ and $O((k+r)^3r^3q^{(N-r)(r-1)+2})$.

Problem: given $G \in \mathcal{M}_{k \times n}(\mathbb{F}_{q^N})$ and $c \in \mathbb{F}_{q^N}^n$, find $m \in \mathbb{F}_{q^N}^k$, such that e = c - mG has smallest rank $r = \text{Rk}(e | \mathbb{F}_q)$.

Construct the code C_e with generator matrix

$$\left(\begin{array}{c} \mathbf{G} \\ \mathbf{c} \end{array}\right) = \left(\begin{array}{c} \mathbf{I}_{k} & \mathbf{0} \\ \mathbf{m} & \mathbf{1} \end{array}\right) \left(\begin{array}{c} \mathbf{G} \\ \mathbf{e} \end{array}\right)$$

Provided $r \leq (d-1)/2$, the problem is then "reduced" to finding a codeword of minimum rank r in C_e . Indeed, all those are of the form $\epsilon e, \epsilon \in \mathbb{F}_{q^N}^*$. Having found $e' = \epsilon e$, the value of ϵ is retrieved by computing cH^t and $e'H^t$, H being the parity-check matrix of C.

Modeling the problem as a set of quadratic equations

Any vector $v \in \mathbb{F}_{q^N}^n$ can be expressed in a basis $X = (x_1, \dots, x_N)$ of \mathbb{F}_{q^N} over \mathbb{F}_q as

 $v = (x_1, \ldots, x_N)A,$

where $A \in \mathcal{M}_{N \times n}(\mathbb{F}_q)$ and $\operatorname{Rk}(A) = \operatorname{Rk}(v | \mathbb{F}_q)$. Thus, if $\operatorname{Rk}(v | \mathbb{F}_q) = r$, we can write

$$v = (\tilde{x_1}, \ldots, \tilde{x_N}) \begin{pmatrix} \tilde{A} \\ 0 \end{pmatrix} = (\tilde{x_1}, \ldots, \tilde{x_r}) \tilde{A}$$

with $\tilde{A} \in \mathcal{M}_{r \times n}(\mathbb{F}_q)$ of full rank *r*.

Let $C_e = \langle G_{syst} \rangle$, $G_{syst} = (I_{k+1} R)$, $R \in \mathcal{M}_{(k+1)\times(n-k-1)}(\mathbb{F}_{q^N})$. Then, there exists $u \in (\mathbb{F}_{q^N})^{k+1}$, such that

 $uG_{syst} = (u, uR) = e$

Modeling the problem as a set of quadratic equations

Any vector $v \in \mathbb{F}_{q^N}^n$ can be expressed in a basis $X = (x_1, \dots, x_N)$ of \mathbb{F}_{q^N} over \mathbb{F}_q as

 $v = (x_1, \ldots, x_N)A,$

where $A \in \mathcal{M}_{N \times n}(\mathbb{F}_q)$ and $\operatorname{Rk}(A) = \operatorname{Rk}(v | \mathbb{F}_q)$. Thus, if $\operatorname{Rk}(v | \mathbb{F}_q) = r$, we can write

$$v = (\tilde{x_1}, \ldots, \tilde{x_N}) \begin{pmatrix} \tilde{A} \\ 0 \end{pmatrix} = (\tilde{x_1}, \ldots, \tilde{x_r}) \tilde{A}$$

with $\tilde{A} \in \mathcal{M}_{r \times n}(\mathbb{F}_q)$ of full rank r.

Let $C_e = \langle G_{syst} \rangle$, $G_{syst} = (I_{k+1} R)$, $R \in \mathcal{M}_{(k+1) \times (n-k-1)}(\mathbb{F}_{q^N})$. Then, there exists $u \in (\mathbb{F}_{q^N})^{k+1}$, such that

 $uG_{syst} = (u, uR) = e$

Modeling the problem as a set of quadratic equations

Writing

$$\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_1 \mathbf{R}) = \mathbf{X} \mathbf{A},$$

 $X = (x_0, ..., x_{r-1})$ being an incomplete basis of \mathbb{F}_{q^N} over \mathbb{F}_q and $A = (\alpha_{i,j}) \in \mathcal{M}_{r \times n}(\mathbb{F}_q)$ being of full rank r, we get

$$\mathbf{e}_1 = (x_0, \dots, x_{r-1})A_1$$
 and $\mathbf{e}_1 R = (x_0, \dots, x_{r-1})A_2$,

where $A = (A_1 A_2)$, $A_1 \in \mathcal{M}_{r \times (k+1)}(\mathbb{F}_q)$, $A_2 \in \mathcal{M}_{r \times (n-k-1)}(\mathbb{F}_q)$. We thus have to solve

$$(x_0,\ldots,x_{r-1})A_2 = (x_0,\ldots,x_{r-1})A_1R.$$
 (1)

As it suffices to retrieve ϵe , for any $\epsilon \in \mathbb{F}_{q^N}^*$, we can set $x_0 = 1$. System (1) is a quadratic system of n - k - 1 equations and nr + r - 1 unknowns $\alpha_{i,j}, x_1, \ldots, x_{r-1}$ over \mathbb{F}_{q^N} . Systeme (1) is equivalent to

$$(x_0,\ldots,x_{r-1})(A_2)_j = (x_0,\ldots,x_{r-1})A_1R_j, \ k+2 \le j \le n,$$
 (2)

 $(A_2)_j$ (resp. R_j) being the *j*-th column of A_2 (resp. R). Let $\Omega = (\omega_0, \dots, \omega_{N-1})$ be a basis of \mathbb{F}_{q^N} over \mathbb{F}_q . Over Ω ,

$$\mathbf{x}_i = \sum_{j=0}^{N-1} \mathbf{x}_{ij} \, \omega^j, \ \mathbf{x}_{ij} \in \mathbb{F}_q, \ \mathbf{0} \leq i \leq r-1.$$

Expressing this way X and each R_j w.r.t. Ω , we can rewrite (2) as a system of N(n - k - 1) equations in nr + N(r - 1) unknowns over \mathbb{F}_q .

Solving the system: Ourivski-Johannsson strategy

Choose $\mathcal{J} \subseteq [k+2,...,n]$, $|\mathcal{J}| = m$, yielding *mN* equations in N(r-1) + r(m+k+1) unknowns.

Strategy 1: $O(((r-1)N + m + k + 1)^3 q^{(r-1)(m+k+1-r)+2})$

 \diamond Guess values of $\alpha_{i,j}$ contributing to quadratic terms.

♦ Solve the resulting linear system of *Nm* equations in N(r-1) + m + k + 1 unknowns $(m \ge r - 1 + \lceil \frac{k+1}{N-1} \rceil)$.

Strategy 2: $O((m + k + 1)^3 r^3 q^{(N-r)(r-1)+2})$

- \bigcirc Guess the coordinates of the x_i s' in the basis Ω .
- Solve the resulting linear system of *Nm* equations in r(m+k+1) unknowns $(m \ge \lceil \frac{(k+1)r}{N-r} \rceil)$.

Similar to [ChSt 96], but there the system solved is in *rn* + *N* unknowns.

Solving the system: Ourivski-Johannsson strategy

Choose $\mathcal{J} \subseteq [k+2,...,n]$, $|\mathcal{J}| = m$, yielding *mN* equations in N(r-1) + r(m+k+1) unknowns.

Strategy 1: $O(((r-1)N + m + k + 1)^3 q^{(r-1)(m+k+1-r)+2})$

 \diamond Guess values of $\alpha_{i,j}$ contributing to quadratic terms.

♦ Solve the resulting linear system of *Nm* equations in N(r-1) + m + k + 1 unknowns $(m \ge r - 1 + \lceil \frac{k+1}{N-1} \rceil)$.

Strategy 2: $O((m+k+1)^3r^3q^{(N-r)(r-1)+2})$

- \diamond Guess the coordinates of the x_i s' in the basis Ω .
- ♦ Solve the resulting linear system of *Nm* equations in r(m + k + 1) unknowns $(m \ge \lceil \frac{(k+1)r}{N-r} \rceil)$.

Similar to [ChSt 96], but there the system solved is in rn + N unknowns.

Add to system (2) the n - k syndrome equations:

 $\begin{cases} (x_0, \dots, x_{r-1})(A_2)_j = (x_0, \dots, x_{r-1})A_1R_j, \ k+2 \le j \le n \\ (x_0, \dots, x_{r-1})AH^t = cH^t. \end{cases}$ (3)

Take a basis Ω of \mathbb{F}_{q^N} over \mathbb{F}_q , and express X w.r.t. Ω . Rewrite (3) as a system of N(2(n-k)-1) equations in nr + N(r-1) unknowns over \mathbb{F}_q .

- ♦ Run a Gröbner basis algorithm (F₄) on this system, to obtain the associated variety \mathcal{V} over \mathbb{F}_q .
- ♦ Express each element of \mathcal{V} as $(\tilde{X}, \tilde{A}) \in \mathbb{F}_{q^N}^r \times \mathcal{M}_{r \times n}(\mathbb{F}_q)$ (going from \mathbb{F}_q^{rN} back to $\mathbb{F}_{q^N}^r$).

♦ Set $\tilde{\mathbf{e}} = \tilde{X}\tilde{A}$. Compute the rank of $\tilde{\mathbf{e}}$ and keep the one satisfying $\operatorname{Rk}(\tilde{\mathbf{e}} | \mathbb{F}_q) = r$ and $c - \tilde{\mathbf{e}} \in C = \langle G \rangle$.

Results

N	n	k	r	OuJo-1	OuJo-2	ChSt	LePe
25	30	15	2	2 ³²	2 ³⁹	2 ⁴²	31s.
30	30	16	2	2 ³⁷	2 ⁴⁶	2 ⁴⁷	28s.
30	50	20	2	2 ⁴¹	2 ⁴⁵	2 ⁴⁹	83s.(5min. 30s.*)
50	50	26	2	2 ⁴⁹	2 ⁶⁷	2 ⁷⁰	1h. 5min.
15	15	7	3	2 ³⁵	2 ³⁷	2 ³⁸	30min. 20s.
15	15	8	3	2 ³⁶	2 ⁴⁰	2 ³⁸	13h. 30min.
20	20	10	3	2 ⁴²	2 ⁵²	2 ⁵²	8h.

* Running time of the algorithm on the system over \mathbb{F}_{q^N} .

Our contribution

- ♦ Consider a slightly modified system.
- ♦ Use a different solving approach.
- ♦ For r = 2, our algorithm performs very well even for *N*, *n* large.
- ♦ Good results for r = 3 when $k \le n/2$.

Further research...

- Exploit information obtained for r = 2,3 to attack r = 4.
- \diamond Include all the constraints in system (specially, $c e \in C$).
- Construct a system directly from RD, and compare the results.