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Bayesian Inverse Problems

Infer unknown x ∈ Rd given noisy observations of forward map G : Rd → RJ

y = G (x) + ε, ε ∼ N(0, n−1Σ), n ∈ N,

Given prior measure µ0 for x , here µ0 = N(0,C0), we obtain a posterior

µn(dx) =
1

Zn
exp(−nΦ(x))µ0(dx), Φ(x) =

1

2
|y − G (x)|2Σ−1 ,

where Zn :=
∫
Rd e
−nΦ(x) dµ0

Objective: Sample (approximately) from µn and compute

Eµn [f ] =

∫
Rd

f (x)µn(dx), f ∈ L1
µ0

(R)

In this talk we are interested in the case of increasing precision n→∞
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Computational Bayesian Inference

Computational methods for approximate sampling or integrating w.r.t. µ:

Markov chain Monte Carlo,

Importance sampling

Sequential Monte Carlo and particle filters,

Quasi-Monte Carlo and numerical quadrature, ...

Common computational challenges:

1 Expensive evaluation of forward model G

→ Multilevel or surrogate methods

2 High-dimensional or even infinite-dimensional state space, e.g., function spaces

→ Intense research in recent years for all mentioned methods

3 Concentrated µn due to informative data, i.e., n� 1 or J � 1

→ Analyzed so far in [Beskos et al., 2018] and [Schillings & Schwab, 2016]
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General Approach For Noise-Level Robust Sampling

Prior-based sampling or integration will suffer from the increasing difference
between µn and µ0 as n→∞, i.e.,

dµn

dµ0
∝ e−nΦ → δargmin Φ and dTV(µn, µ0)→ 1

Idea: Base sampling methods on a suitable (simple) reference measure
mimicking the (increasing) concentration of µn

Here, Laplace approximation of µn: Lµn := N(xn,Cn),

xn := argmin
x

nΦ(x) +
1

2
‖C−1/2

0 x‖2, Cn :=
(
n∇2Φ(xn) + C−1

0

)−1

Very common approximation in Bayesian statistics and OED ([Long et al.,

2013], [Alexanderian et al., 2016], [Chen & Ghattas, 2017] ...)
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Laplace’s Method for Asymptotics of Integrals [Laplace, 1774]

[Wong, 2001]: Considering integrals

J(n) :=

∫
D

f (x) exp(−nΦ(x)) dx , D ⊆ Rd

with sufficiently smooth f and Φ, we have, under suitable conditions, as
n→∞

J(n) = e−nΦ(x?) n−d/2

(
f (x?)√

det(2πH?)
+ O(n−1)

)
where x? := argminx∈Rd Φ ∈ D and H? := ∇2Φ(x?) > 0

Yields: Given smooth Lebesgue density of µ0, then for suitable f∣∣∣∣∫
Rd

f dµn −
∫
Rd

f dN(x?, (nH?)−1)

∣∣∣∣ ∈ O(n−1)
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Convergence of Laplace Approximation

Theorem ([Schillings, S., Wacker, 2019])

Given that

Φ ∈ C 3(Rd), unique xn and Cn > 0 for sufficiently large n > 0,

a unique minimizer x? := argminx∈Rd Φ(x) exists with ∇2Φ(x?) > 0 and

inf
‖x−x?‖>r

Φ(x) ≥ Φ(x?) + δr , δr > 0,

limn→∞ xn = x?.

Then
dH(µn,Lµn) ∈ O(n−1/2).

Closely related to the Bernstein–von Mises theorem but:

Covariance of Lµn depends on given data (BvM: Fisher information)

Misspecification (“ground truth” not in prior support) not important

Density dµn/dLµn also exists in Hilbert spaces (for Gaussian µ0)
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Remarks

The convergence theorem can be extended under suitable assumptions to

1 any prior µ0 which is absolutely continuous w.r.t. Lebesgue measure,

2 sequences of Φn, e.g.,

Φn(x) =
1

2n

n∑
i=1

‖yi − G (x)‖2

3 the underdetermined case G : Rd → RJ , J < d , iff µ0 is Gaussian and G acts
only on linear active subspace M with dim(M ) ≤ J:

G (x + m) = G (x), ∀x ∈ RM ∀m ∈M⊥

4 Approximations x̃n, C̃n of xn,Cn such that ‖xn − x̃n‖, ‖Cn − C̃n‖ ∈ O(n−1)
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Examples

µ0 = N(0, I2), Φ(x) = 1
2‖y −G (x)‖2, G (x) = [exp( 1

5 (x2− x1)), sin(x2− x1)]>
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Next

1 Laplace Approximation

2 Markov Chain Monte Carlo

3 Importance Sampling

4 Quasi Monte Carlo
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Markov Chain Monte Carlo (MCMC)

Construct Markov chain (Xm)m∈N with invariant measure µn, i.e.,

Xm ∼ µn ⇒ Xm+1 ∼ µn

Given suitable conditions, we have Xm
D−−−−→

m→∞
µn and for f ∈ L2

µ0
(R)

SM(f ) :=
1

M

M∑
m=1

f (Xm)
a.s.−−−−→

M→∞
Eµn [f ]

Autocorrelation of Markov chain effects efficiency:

M E
[∣∣∣SM(f )− Eµn [f ]

∣∣∣2] −−−−→
M→∞

Varµn(f )

[
1 + 2

∞∑
m=0

Corr (f (X1), f (X1+m))

]
︸ ︷︷ ︸

integrated autocorrelation time (IACT)
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Metropolis-Hastings (MH) algorithm [Metropolis et al., 1953]

Given current state Xm = x ,

1 draw new state y according to proposal kernel P(x , ·): Ym ∼ P(x)

2 accept proposed y with acceptance probability α(x , y), i.e., set

Xm+1 =

{
y , with probability α(x , y),

x , with probability 1− α(x , y).

Correct α = αn for µn-invariance well-known

Efficiency of MH algorithm depends entirely on “good” choice of proposal P

Construct proposals s. th. efficiency/autocorrelation is robust w.r.t. n→∞
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Gaussian Random Walk-MH

Proposal kernel: P(x) = N(x , s2C0) with tunable stepsize s > 0:
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Iteration k
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If πn : Rd → (0,∞) denotes density of µn: αn(x , y) = min
{

1, πn(y)
πn(x)

}

Dimension-robust version: pCN-proposal [Beskos et al., 2008]

P(x) = N(
√

1− s2x , s2C0), s ∈ (0, 1],

is µ0-reversible which yields αn(x , y) = min
{

1,
(

exp(−Φ(y))
exp(−Φ(x))

)n}
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Idea for Noise-Level Robust MH Algorithms

Inform proposal P about (increasing) concentration of µn by using (an
approximation of) posterior covariance for proposing

(cf. [Tierney, 1994], [Haario et al., 2001], [Martin et al., 2012]...)

Here, we use the covariance Cn of the Laplace approximation Lµn

[Rudolf & S., 2018]: Candidates for noise lebel-robust RW- & pCN-variants

H-RW: Pn(x) = N(x , s2Cn),

generalized pCN (gpCN): Pn(x) = N(As,nx , s
2Cn)

where bounded linear operator As,n ensures µ0-reversibility

(cf. operator weighted proposals [Law, 2013] and [Cui et al., 2016])
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Numerical Experiment

Problem: Infer coefficient in 1D BVP by observing solution at 4 points

Proposals:

RW: P0(x) = N(x , s2C0), pCN: P0(x) = N(
√

1− s2x , s2C0),

H-RW: Pn(x) = N(x , s2Cn), gpCN: Pn(x) = N(Asx , s
2Cn)

Results:

Prior Posterior, n−1 = 10−2 Posterior, n−1 = 10−4
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Noise-Level Robustness of MH Algorithms

Given µn-invariant Markov chains (Xm)m∈N we can study if

lim
n→∞

∞∑
m=0

Corr (f (X1), f (X1+m)) <∞, f ∈ L2
µ0

(R)

To start, we consider simpler efficiency indicators:

Mean acceptance rate: E [αn(Xm,Ym)] ,

Lag-1-Autocorrelation: Corr(a>Xm, a
>Xm+1), a ∈ Rd

Noise-level robust efficiency defined as

lim
n→∞

E [αn(Xm,Ym)] > 0, lim
n→∞

Corr(a>Xm, a
>Xm+1) < 1
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Noise-Level Robustness of MH Algorithms cont’d

[S., 2017]: For Gaussian posteriors µn = Lµn = N(xn,Cn)
the proposals

Pn(x) = N(x , s2Cn), Pn(x) = N(As,nx , s
2Cn)

yield

lim
n→∞

E [αn(Xm,Ym)] > 0, lim
n→∞

Corr(a>Xm, a
>Xm+1) < 1 (1)

Convergence of the Laplace approximation lifts this to the non-Gaussian case:

Theorem ([Rudolf, S., 2019])

Given dH(µn,Lµn)→ 0 we have for the H-RW and gpCN proposal

Pn(u) = N(u, s2Cn), Pn(u) = N(As,nu, s
2Cn),

that (1) holds.
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Numerical Experiment for Increasing Concentration

Linear forward map G (convolution operator) applied to unknown function

Gaussian prior and noise ε ∼ N(0, n−1 I4) yield Gaussian posterior

Examine mean acceptance rate vs. proposal stepsize s:

P(u) = N(u, s2C0)
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Numerical Experiment for Increasing Concentration

Nonlinear forward map G (exp ◦ convolution operator)

Gaussian prior and noise ε ∼ N(0, n−1 I4) yield non-Gaussian posterior

Examine mean acceptance rate vs. proposal stepsize s:

P(u) = N(u, s2Cn)
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Self-Normalizing Importance Sampling

Given importance distribution ν and i.i.d. samples Xm ∼ ν, m = 1, . . . ,M, use

Eµn [f ] =

∫
Rd f e−nΦdµ0∫
Rd e−nΦdµ0

≈
∑M

m=1 wn(Xm) f (Xm)∑M
i=1 wn(Xm)

wn ∝
dµn

dν

SLLN yields
∑M

m=1 wn(Xm) f (Xm)∑M
i=1 wn(Xm)

a.s.−−−−→
M→∞

Eµn [f ] and given that

Vµn,ν(f ) := Eν

[(
dµn

dν

)2

(f − Eµn [f ])2

]
<∞

there holds a CLT with asymptotic variance Vµn,ν(f ) as M →∞

How does Vµn,ν(f ) behave as n→∞ for suitable ν?
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Prior Importance Sampling

Choose prior measure as importance distribution ν = µ0, i.e.,

Xm ∼ µ0 i.i.d. , wn(x) = exp(−nΦ(x))

Asymptotic variance of prior importance sampling given by

Vµn,µ0 (f ) =
1

Z 2
n

∫
Rd

(f − Eµn [f ])2 e−2nΦ dµ0, Zn =

∫
Rd

e−nΦ dµ0

Theorem ([Schillings, S., Wacker, 2019])

Given dH(µn,Lµn)→ 0, sufficiently smooth Φ and f ∈ L1
µ0

(R) with ∇f (x?) 6= 0,
then

Vµn,µ0 (f ) ∼ nd/2−1, n→∞.

⇒ Prior importance sampling becomes less efficient as posterior concentrates
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Laplace-Based Importance Sampling

Choose ν = Lµn , i.e.,

Xm ∼ N(xn,Cn), wn(x) = exp(−n[Φ(x)− T2Φ(x ; xn)])

where T2Φ(·; xn) denotes Taylor polynomial of order 2 of Φ at MAP point xn

Applied, e.g., for fast Bayesian optimal experimental design [Beck et al., 2018]

Existence of Vµn,Lµn
(f ) not ensured & requires at least quadratic growth of Φ

Theorem ([Schillings, S., Wacker, 2019])

Given dH(µn,Lµn)→ 0, sufficiently smooth Φ, and f ∈ L2
µ0

(R), we have∣∣∣∣∣
∑M

m=1 wn(Xm) f (Xm)∑M
m=1 wn(Xm)

− Eµn [f ]

∣∣∣∣∣ ∈ oP(n−δ), δ < 1/2.

⇒ Laplace-based importance sampling becomes more efficient as n→∞
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Simple Example

Prior: µ0 = U ([− 1
2 ,

1
2 ]d), noise: ε ∼ N(0, n−1Id), forward: G = (G1, . . . ,Gd),

G1(x) = exp(x1/5), G2(x) = x2 − x2
1 , G3(x) = x3, G4(x) = 2x4 + x2

1
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Next

1 Laplace Approximation

2 Markov Chain Monte Carlo

3 Importance Sampling

4 Quasi Monte Carlo
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Quasi-Monte Carlo Integration

For uniform prior µ0 = U ([− 1
2 ,

1
2 ]d) approximate integrals

∫
[− 1

2 ,
1
2 ]d

f e−nΦ dµ0 ≈
1

M

M∑
m=1

e−nΦ(Xm) f (Xm)

using randomly shifted lattice rules [Sloan, Kuo, Joe, 2002] where

Xm = frac
(mz

M
+ ∆

)
− 1

2
, z ∈ {1, . . . ,N − 1}d , ∆ ∼ U ([−1

2
,

1

2
]d)

Problem: For increasing n→∞ the usual bound for the mean squared error

E

[∣∣∣Zn −
1

M

M∑
m=1

e−nΦ(Xm)
∣∣∣2]

behaves like nd/2 [Schillings, S., Wacker, 2019]
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Laplace-based Quasi-Monte Carlo

Apply Laplace-based transform

Tn(x) := xn + τC 1/2
n x , x ∈ [−1

2
,

1

2
]d

to move lattice points Xm where µn concentrates (τ ensuring Tn(x) ∈ [− 1
2 ,

1
2 ]d).
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Laplace-based Quasi-Monte Carlo

Apply Laplace-based transform

Tn(x) := xn + τC 1/2
n x , x ∈ [−1

2
,

1

2
]d

to move lattice points Xm where µn concentrates (τ ensuring Tn(x) ∈ [− 1
2 ,

1
2 ]d).

Lemma ([Schillings, S., Wacker, 2019])

Given dH(Lµn , µn)→ 0 and sufficiently smooth Φ we obtain for the transformed
shifted lattice rule

1

Z 2
n

E

[∣∣∣Zn −
det(τC

1/2
n )

M

M∑
m=1

e−nΦ(Tn(Xm))
∣∣∣2] ≤ C (τ,M) ∈ O(n0).

⇒ Bounded relative error for computing decaying Zn → 0
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Simple Example cont’d

Prior: µ0 = U ([− 1
2 ,

1
2 ]d), noise: ε ∼ N(0, n−1Id), forward: G = (G1, . . . ,Gd),

G1(x) = exp(x1/5), G2(x) = x2 − x2
1 , G3(x) = x3, G4(x) = 2x4 + x2

1

Relative errors for: Zn, Z ′n =
∫

[− 1
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1
2 ]d

f e−nΦ dµ0, Eµn [f ] =
Z ′n
Zn
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Example: Lognormal Elliptic PDE

Computing posterior mean of log coefficient given noisy data with ε ∼ N(0, 1
n Id):
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Summary

Bayesian inference with informative data requires noise-level robust sampling

Prior-based sampling methods suffer from a decreasing observational noise

Robust sampling methods obtainable by using the Laplace approximation

First theoretical results on noise-level robustness of importance sampling,
MCMC, and QMC

Some open issues:

Spectral gap-robustness for Laplace-based MCMC

Convergence of Laplace approximation and sampling analysis in Hilbert spaces

Beyond Laplace: What to do if posterior concentrates along nonlinear
manifolds?
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