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Random linear (mixed-integer) program:
min{ch +q'y: Tx+ Wy =zw), xeX, ye Y}
with X, Y (mixed-integer) polyhedra and nonanticipativity
x = zZlw) — y=y(xw)

or, more explicitly,

min{ch+ min{qu: Wy = z(w) — Tx,y € Y} : XEX}
x y

f(x,w)

Stochastic programmng is about “optimizing or ranking
against each other the random variables f(x,.) as x varies”.




Stochastic Integer Programs:

Hilbert, Graver, Gordan-Dickson, and Maclagan

with Raymond Hemmecke:

Decomposition of test sets in stochastic integer programming,
Mathematical Programming 94 (2003), 323 - 341.



Gordan+Dickson —deterministic, integer vectors
Maclagan — two-stage stochastic, monomial ideals
Nash-Williams, Aschenbrenner+Hemmecke — multi-stage stoch., vector trees



Issues — IP:

> Ideal: 7 C k[xq, ..., x,] ideal, if
(i) 0 e T,
(ii) If f,g € Z, then f + g € T;
(iii) If f € 7 and h € k[x], then hf € T

» Ground Set: S :=7Z"
» Partial Order on Z": uLC v, if
W v >0 and |u¥| <|vV)|  for all components j.

Commonly said “u reduces v”

» The Set B
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Definition (Optimality Certificate, Test Set)
A set T. C Z9 is called an optimality certificate (or test set) for the
family of problems

(IP)c.b min{cTz: Az =b, z € Z%}

as b € R' varies if
1. cTt >0 for all t € 7¢, and

2. for every b € R' and for every non-optimal feasible solution
2y € Zﬂ to Az = b, there exists an improving vector t € 7. such
that zyg — t is feasible.

A set T is called a universal optimality certificate for the family of
problems (IP).p as b € R and ¢ € R? vary if it contains an
optimality certificate T for every c € RY.
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Output: an optimal point Zmin of (IP)c s
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Augmentation, Feasibility

Algorithm (Augmentation Algorithm)

Input: a feasible solution zy to (IP)c,p, an optimality certificate T¢ for (IP)c s
Output: an optimal point Zmin of (IP)c s
while there is t € 7¢ with cTt > 0 such that zy — t is feasible do

zp:=2z9— t

return zg

Algorithm (Feasible Solution)

Input: a solution z; € Z9 to Az = b, a universal optimality certificate T~ for

(IP)c,b
Output: a feasible solution to (/P)¢, or “FAIL” if no such exists

While there is some g € 7 such that g < z; and ||(z1 — g) 7 ||l1 < ||z |l1 do
z1=21— 8
if ||z, |l1 > O then return “FAIL” else return z




Definition (Hilbert basis)
Let C be a polyhedral cone with rational generators. A finite set
H = {hi,...,h:} C CNZis a Hilbert basis of C if every z € C NZ% has a
representation of the form
t
zZ = Z )\,‘/’1,‘7
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with non-negative integral multipliers A1, ..., A:.
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Definition (Hilbert basis)
Let C be a polyhedral cone with rational generators. A finite set
H = {hi,...,h:} C CNZis a Hilbert basis of C if every z € C NZ% has a
representation of the form
t
zZ = Z )\,‘/’1,‘7
i=1

with non-negative integral multipliers A1, ..., A:.

Let @; be the j* orthant of Z? and H;(A) be the unique minimal Hilbert
basis of the pointed rational cone {v € R? : Av = 0} N Q.

Lemma (Graver set)
The set
G(A) = J Hi(4)\ {0}
is a universal optimality criterion, called the I[P Graver set or IP Graver
basis, for the family of problems (IP)c» as b € R' and c € R? vary.
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ulC viff
» vt < v’ and u~ < v~ where max{0, u(i)} are the components of u™
and max{0, —u?} those of u~.

> u belongs to the same orthant as v (sign compatibility) and its
components are not greater in absolute value than the corresponding
components of v.

Algorithm (Normal Form Algorithm)

Input: a vector s, a set G of vectors
Output: a normal form of s with respect to G

while there is some g € G such that g C s do
s:=s5s—g
return s



Algorithm (Computing IP Graver Sets)

Input: F = |J {f,—f}, where F(A) is a set of vectors generating ker(A)

fEF(A)
over Z

Output: a set G which contains the IP Graver set G(A)

G:=F
C= U {f+eg}
f,.eeG

while C # 0 do
s := an element in C

C:=C\{s}
f := normalForm(s, G)
if £ # 0 then
C=Ccu U{f+g}
g€G
G :=GU{f}

return G.

(forming S-vectors)

(adding S-vectors)



Two-Stage Stochastic Integer Programs

min{cTz: Ayz=b,z € Zﬂ}

A 0 0 0
T W 0 0
Ay=| T 0 W 0
T 0o 0 --- W

with
N denoting the number of scenarios, d = m+ Nn,
Cc = (Co, Cly---y C/\/).r = (h,7r1q, NN ,7qu)T

b= (a&t,... N



We will

>
>
>
>

extend the notion of S-vectors
retain the pattern of the previous completion method
work on pairs (u, V,) (defined below) instead of vectors.

employ a generalization of the Gordan-Dickson Lemma, Maclagan’s
Theorem (Proc. AMS, 2001), to ensure termination of the algorithm.

see, that the block angular structure of the problem matrix induces a
symmetry structure on the elements of the Graver set.

see, that the Graver set vectors are formed by a comparably small
number of building blocks.

» compute these building blocks without computing the Graver set.

reconstruct an improving vector to a given non-optimal feasible
solution, scenario by scenario, using building blocks only.

find an optimal solution with comparably small effort, once the
building blocks have been computed.
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Definition

Let z = (u,v1,...,vn) € ker(An) and call the vectors u, vi, ..., vy the
building blocks of z. Denote by Gy the Graver test set associated with Ay
and collect into Hy all those vectors arising as building blocks of some

z € Gn. By Hoo denote the set Uy, Hn.



Lemma (u,vi,...,vy) € ker(Ay) if and only if (v, v1),. .., (u, vv) € ker(A1).

Definition

Let z = (u,v1,...,vn) € ker(An) and call the vectors u, vi, ..., vy the
building blocks of z. Denote by Gy the Graver test set associated with Ay
and collect into Hy all those vectors arising as building blocks of some

z € Gn. By Hoo denote the set Uy, Hn.

The set Ho contains both m-dimensional vectors u associated with the
first-stage and n-dimensional vectors v related to the second-stage in the
stochastic program. For convenience, we will arrange the vectors in Hoo
into pairs (u, V).

Definition
For fixed u € Hoo, all those vectors v € Hoo are collected into V,, for which
(u,v) € ker(Ar).



Finiteness of H

Definition
We say that (v', V) reduces (u, V,)), or (v, V) C (u, V,) for
short, if the following conditions are satisfied:
» u' Cu,
» for every v € V,, there exists a v/ € V,, with v/ C v,
» ' # 0 or there exist vectors v € V, and v/ € V,, with
0#£Vv Cv.



Theorem (Maclagan 2001)
Let Z be an infinite collection of monomial ideals in a polynomial ring.
Then there are two ideals I, J € Z with | C J.

Definition
We associate with (u, V,), u # 0,and with (0, Vo) the monomial ideals

I(u, Vi) € Q[xi, .. ., Xom+2n] and 1(0, Vo) € Q[x1, ..., Xxan]

generated by all the monomials xWHuT V) with v e V., and by all the
(vtv™

monomials x ) with v # 0 and v € W, respectively.

Lemma
Let ((u1, Vi), (t2, Vi), - . .) be a sequence of pairs such that
(ui, Vi) € (uj, Vi) whenever i < j. Then this sequence is finite.

Theorem (Finiteness of Hy)
Given rational matrices A, T, and W of appropriate dimensions, and
let Hoo be defined as above. Then Ho is a finite set.




Computation of H.,

Idea:

» Retain the completion pattern of Graver set computation, but
work with pairs (u, V,,) instead.

» Define the two main ingredients, S-vectors and normalForm, that
means the operations ® and ©, appropriately.

> Now, the objects f, g, and s all are pairs of the form (u, V,).

Algorithm (Extended normal form algorithm)

Input: a pair s, a set G of pairs
Output: a normal form of s with respect to G

while there is some g € G such that g Csdo s:=sog

return s



Algorithm (Compute Hoo)
Input: a generating set F of ker(A;) in (u, V,)-notation to be specified below
Output: a set G which contains Heo

G:=F
C:= U {feg} (forming S-vectors)
f.geG

while C # 0 do

s := an element in C

C:=C\{s}

f := normalForm(s, G)

c=Ccu U {fegt (adding S-vectors)
geEGU{f}
G:=GU{f}

return G.



Choose as input the set of building blocks of all vectors in F U {0}
in (u, V,)-notation. Herein, F is a generating set for ker(A;) over Z
which contains a generating set for

{(0,v) : Wv =0} C ker(A;)

consisting only of vectors with zero first-stage component.

Definition (S-vectors, Reduction)
Let
(u, V,)® (U, V) = (u+d, V, + V),

where
Vio+ Ve ={v+v :veV,veV,}

Moreover, let

(, V) (W, Vy)=@Ww—-du,{v-v:veV,v eV, Vv Cv}.



Feasibility at Building-Block Level

Define the auxiliary cost function ¢’ by

- 0o iftz?>0 .
D= tv= " ,fori=1,...,m+ Nn.
() -1 ifZ" <o



Consider the two-stage program

N

1
min{35x1 +40% + D C16yy + 19y + 4Tyy + 54y
v=1
x+y+ys =2 &,
xx+yi+yi > &,
i +yy <&,
n+2n <&,
X1, %2, ¥1,¥3, Y5 ¥a € Zy}
Here, the random vector £ € R* is given by the scenarios &£!,...,¢N, all with equal

probability 1/N. The realizations of (£1,£5) and (&4, &)) are given by uniform
grids (of differing granularity) in the squares [300,500] x [300, 500] and

[0,2000] x [0,2000], respectively. Timings are given in CPU seconds on a SUN
Enterprise 450, 300 MHz Ultra-SPARC.

It took 3.3 seconds to compute Hoo altogether consisting of 1438 building blocks
arranged into 25 pairs (u, Vi). Aug(Hoo) then gives the times needed to augment
the solution x3 =xp = yy =y =0,y =&, and yy =&, v=1,... N to
optimality.

Example (&1, &p)-grid (&3, &4)-grid  scen. var. Aug(Hoo) CPLEX dualdec
1 5Xx5 3x3 225 902 1.52 0.63 > 1800
2 5x5 21 x 21 11025 44102 66.37 696.10 -
3 9xX9 21 x 21 35721 142886 180.63 > 1 day —

Although further exploration is necessary, the above table seems to indicate linear
dependence of the computing time on the number N of scenarios, once H has
been computed.



IT

Unit Commitment — A Recurring Issue in Power
Management
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VEAG
Kraftwerke und Verbundnetz
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Unit Commitment
» is the problem of determining switching and operational decisions,
» for a system of power producing units, over some time horizon,

» so that all relevant technological and economical conditions are met.

2006 Virtual Power Plant

1985 VEAG in (East Germany)

VEREINIGTE ENERGIEWERKE
AKTIENGESELLSCHAFT

CHP : Combined heat and power units
FC : Fuel cells

GT : Gas turbines

HPP : Hydro power plants
PV : Photovoltaics

WT : Wind turbines
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Specification (Mixed-Integer Linear Program — When Deterministic)

Unit Commitment for a hydro-thermal system (early VEAG + Vattenfall)

min {Cl-rfl + C;EQ DAL+ Al =0b, 1€ X, & € XQ}

Variables:

> &;: start-up/shut-down for thermal units,

> &: all remaining, i.e., power output, pumping/generating in pumped-storage
(psp), water levels in psp, auxillary variables for modeling specific effects.

Objective:

» affinely linear fuel costs for operation and piece-wise constant for switching
of thermal units

Constraints:

> connecting units: load balances, reserve balances, ramping

» for individual units: output bounds, minimum up- and down-times, water
management in psp,
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Specification (continued)
Unit Commitment with random load
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fenw) = [o/ &+ min {e &+ Ao =blw) ~Aita},weQ

Qe(&1) ::/Q |:C1T§1 + min. {chg  Asbnr = b(w) — Alfl}} P(dw)



Specification (continued)

Unit Commitment with random load
_ T . Te . _ _
f(&1,w) = [q &+ (min {Cg & 1 Ay = b(w) A1£1} ,wEQ

Qe(&1) 2:/Q {C;fl +Ef21"£9(2 {C2T€2 D Axé = b(w) — Alfl}} P(dw)

Variables:

> & € Xi: start-up/shut-down for thermal units,

» &(w): all remaining, i.e., power output, pumping/generating in
pumped-storage (psp), water levels in psp, auxillary variables for modeling
specific effects.



Specification (continued)

Unit Commitment with random load
fenw) = [ef &+ min {&: Mo =bw) -Aa}wen
0s(6) = [ [erer+ mig {2 + Anga = ) — s} | Peo)

Variables:

> & € Xi: start-up/shut-down for thermal units,

» &(w): all remaining, i.e., power output, pumping/generating in
pumped-storage (psp), water levels in psp, auxillary variables for modeling
specific effects.

Objective:
f(&1,.) random cost profile for operation and switching of thermal units
inuced by start-up/shut-down scheme &;

Qr(&) = / f(&1,w)P(dw) — — — Expected Value — Risk Neutral Model
Q
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Unit Commitment under Uncertainty over the Years

min{ch-i- min{qu: Wy = h(w)—Tx,yEY} : XEX}
x y

f(x,w)

> 1985: Load the only quantity with relevant uncertainty -
Risk neutral models, only !

f(x,z(w)) — total cost for up/down regime x under random load z(w)

> 2006: After deregulation omnipresent uncertainty at input (renewables) and
output sides. - Risk aversion became more and more indispensable !

fx,z(w)) -

total cost for aquisition x of a vpp under random power in- and outputs z

» 2010: Congestion and capacity management under uncertain in- and outputs

fx,2(w)) -
x pre-commitment so that renewables’ inflow z compensated with

minimal re-commitment/re-dispatch and without overloading grid components



I1T
Some Thoughts on Suitable Mathematics



Viewpoints

(I) Tll-posed optimization problem
Destructive — remove stochasticity swiftly,

min {f(x,w) : x € X}
As long as w is unknown, it makes no sense to address optimality.

Remedy:

Arrive at a deterministic problem by “removing w in formal manner”.
> Replace w by its expectation E[w] and solve min {f(x,E[w]) : x € X}
> Consider expected value E [f(x,w)] and solve min {E [f(x,w)] : x € X}
> Apply a statistical parameter S and solve min {S [f(x,w)] : x € X}



(IT) Optimizing or ranking in a family of random variables
Constructive: Be happy about havng stochastic information on the
uncertain problem ingredients. Make active use of it.

{f(x,.): Q2 — R}xex

Remedy:
Arrive at a deterministic problem by implementing your attitude towards
risk .

> Risk neutral: Apply expectation E to f(x,w) and solve
min {E [f(x,w)] : x € X}

> Risk averse by criterion: Apply some risk measure R and solve
min {R [f(x,w)] : x € X}

> Risk averse by constraint: Rank according to some stochastic order.
Introduce a benchmark random variable b(w) leading to the constraint

{xeX : f(x,w) = b(w)}



Solution by Scenario Decomposition
as(e) = [ [T+ min {0+ Anaw) = ble) — Mer}| (a)
Q §2€Xz
Assume the rhs b(w) is the only random ingredient, and let it follow a finite
discrete probability distribution
with scenarios  bi,...,by,...,bs and probabilities m1,...,7w,...,Ts

Then min{Qg(&1) : & € X1} is equivalent to the following large-scale block
angular mixed-integer linear program

s
min {C1T€1 D T bw 0 Al + Ak = b
w=1
A&y + Ao, = by,
A1 + Aséas = bs

&1 € Xy, £2w€X2,w:1,...,5}
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Scenario Decomposition
Basic Idea: Lagrangean Relaxation of Nonanticipativity[Carge/Sch.1999]:
Introduce copies 11, -+, 1w, ---,&1s of & and add &1 = ... = &1 = ... = &is.

Then apply Lagrangean Relaxation on the chain of identites.

0 o

This includes solving the Lagrangean Dual which is a non-differentiable
convex optimization problem.
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Procedure:

» Objective function of the Lagrangean dual involves a minimization
which is separable with respect to the scenarios.

> Regaining primal feasibility after maximization in the Lagrangean
dual benefits from simplicity of relaxed constraints (chain of
identities).

» Duality gap inevitable, unless problem “is not really integer”. If gap
inacceptable then imbedding into branch-and-bound on & € X;.

This works nicely as long as mixed-integer linear programming formulation
has the block structure




III

Congestion Management in Power Nets
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Load Flow Models — AC, DC, Ohmic Losses
Graph G = (V, E) (undirected)

with nodesve V={1,...,n},edgesec EC V x V.

AC Model with Voltage in Polar Coordinates

For all nodes v , voltage as complex number U,e®* with modulus U, and
voltage angle 0,, for slack node U; = 1,6; = 0.

Moreover, for all e = vl € E.
» Difference of Voltage Angles 6, =0, — 6,
» Active Load Flow py,
» Reactive Load Flow qu.

For all edges in E (AC) Load Flow Equations

pu = Ulgy— U,Ugycos 6, — U,Ubysin 6, vl e E
qu = U,Ubycos 0, — U,Ugasin 0, — U(by+ b%) Vvie E
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Load Flow Models
DC

Simplification
» 0,~0 VYvlie E hencesin 6, =~ 60, und cos 0, = 1
» U, =1 VYveV
» No reactive power components.

From AC equations, only the first remains and becomes:

DC Load Flow Equation

pu = bu(0, —6,) for all vi € E
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ALz,

Losson vl € E
vy = gu(U% 4+ U?) —2g,U,Ujcos (0, —0)) Vvl €E

From DC assumptions, U, = U; = 1 is employed. However, cos 0,; =~ 1 is not.
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Congestion Management under Inflow of Renewables

with Edmund Handschin, Christian Rehtanz (TU Dortmund), and:

Sebastian Kuhn (Mathematics, PhD 2008),
Daniel Waniek (Energy Science, PhD 2011)

o
®: f éﬁﬂ » Optimal pre-commitment/
m ® pre-dispatch to avoid grid congestion
T with re-dispatch/re-commitment.
» DC model with Ohmic losses and
polyhedral approximation of convex
nonlinearities. incl. code.

> Mixed-integer linear models with
switching.
> Stochastics, decomposition.

» Variation of wind infeed rate from 40
via 80 to 100%.
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Case Study:

Based on a realistic model of the German power grid, for a given load
situation and wind infeed, a cost minimal infeed is sought for which no grid
components become overloaded.

Proceeding/Results:

> Code evaluation (MILP approximation) by

» Comparison with dispatch derived via merit order
» Double checking flows with commercial solver NEPLAN with
switching decisions and fixed by our code.

» Evaluation of losses over-estimation caused by relaxation.
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Numerical Tests

Ref. Opt. Opt. Ref. Opt. Opt.
(AC) (DoDu) (AC) | (AC) (DoDu) (AC)
Wind -] 40 % 80 %
Generation Cost [T€] 1231 1200 1201 971 986 987
Import [MW] 5347 5882 5882 5347 5483 5483
Export MW] 3472 3125 3125 3472 3125 3125
Grid Losses [MW] 444 424 434 1016 700 709
Overload of
grid components [-] no no no yes no no
Ref. Opt. Opt.
(AC) (DoDu) (AC)
Wind B 100%
Generation Cost [T€] 858 945 945
Import MW] 5437 5483 5483
Export MW] | 3472 3125 3125
Grid Losses [MW] | 1468 762 768
Overload of
grid components [-] yes no no




