RICAM, Linz, November 18, 2019

Integers in Stochastic Optimization

Rüdiger Schultz Chair of Discrete Mathematics and Optimization Faculty of Mathematics, University of Duisburg-Essen

$$\Phi(t) = \min\{y^+ + y^- : y^+ - y^- = t, y^+ \in \mathbf{R}_+, y^- \in \mathbf{R}_+\}$$

 $= \max\{tu : -1 \le u \le 1\} = |t|$ Newsboy – Inventory Problem,

$$\Phi(t) = \min\{y^+ + y^- : y^+ - y^- = t, y^+ \in \mathbf{R}_+, y^- \in \mathbf{R}_+\}$$

 $= \max\{tu \ : \ -1 \leq u \leq 1\} = |t| \quad \text{Newsboy - Inventory Problem},$

Minor modification with major impact:

$$\Phi(t) = \min\left\{\frac{1}{2}v + y^+ + y^- : v + y^+ - y^- = t, v \in \mathbb{Z}_+, y^+ \in \mathbb{R}_+, y^- \in \mathbb{R}_+\right\}$$

$$\Phi(t) = \min\{y^+ + y^- : y^+ - y^- = t, y^+ \in \mathbf{R}_+, y^- \in \mathbf{R}_+\}$$

 $= \max\{tu \ : \ -1 \leq u \leq 1\} = |t| \quad \text{Newsboy - Inventory Problem},$

Minor modification with major impact:

$$\Phi(t) = \min \left\{ \frac{1}{2}v + y^{+} + y^{-} : v + y^{+} - y^{-} = t, v \in \mathbb{Z}_{+}, y^{+} \in \mathbb{R}_{+}, y^{-} \in \mathbb{R}_{+} \right\}$$

= min $\left\{ \frac{1}{2}v + |t - v| : v \in \mathbb{Z}_{+} \right\}.$

$$\Phi(t) = \min\{y^+ + y^- : y^+ - y^- = t, y^+ \in \mathbf{R}_+, y^- \in \mathbf{R}_+\}$$

 $= \max\{tu \ : \ -1 \le u \le 1\} = |t| \quad \text{Newsboy} - \text{Inventory Problem},$

Minor modification with major impact:

$$\Phi(t) = \min\left\{\frac{1}{2}v + y^{+} + y^{-} : v + y^{+} - y^{-} = t, v \in \mathbb{Z}_{+}, y^{+} \in \mathbb{R}_{+}, y^{-} \in \mathbb{R}_{+}\right\}$$

= min $\left\{\frac{1}{2}v + |t - v| : v \in \mathbb{Z}_{+}\right\}.$

$$\begin{split} \Phi(t) &= \min\{v^+ + v^- : y + v^+ - v^- = t, \, y \in I\!\!R_+, \, v^+ \in I\!\!Z_+, v^- \in I\!\!Z_+\} \\ &= \begin{cases} 0 & \text{if } t \ge 0 \\ \lceil -t \rceil & \text{if } t < 0. \end{cases} \end{split}$$

$$\begin{split} \Phi(t) &= \min\{v^+ + v^- : y + v^+ - v^- = t, \, y \in I\!\!R_+, \, v^+ \in I\!\!Z_+, v^- \in I\!\!Z_+\} \\ &= \begin{cases} 0 & \text{if } t \ge 0 \\ \lceil -t \rceil & \text{if } t < 0. \end{cases} \end{split}$$

$$\min\left\{c^{\top}x + q^{\top}y : Tx + Wy = z(\omega), x \in X, y \in Y\right\}$$

$$\min\left\{c^{\top}x + q^{\top}y : Tx + Wy = z(\omega), x \in X, y \in Y\right\}$$

with X, Y (mixed-integer) polyhedra and nonanticipativity

$$x \rightarrow z(\omega) \longrightarrow y = y(x, \omega)$$

$$\min\left\{c^{\top}x + q^{\top}y : Tx + Wy = z(\omega), x \in X, y \in Y\right\}$$

with X, Y (mixed-integer) polyhedra and nonanticipativity

$$x \rightarrow z(\omega) \longrightarrow y = y(x,\omega)$$

or, more explicitly,

$$\min_{x} \left\{ \underbrace{c^{\top}x + \min_{y} \left\{ q^{\top}y : Wy = z(\omega) - Tx, y \in Y \right\}}_{f(x,\omega)} : x \in X \right\}$$

$$\min\left\{c^{\top}x + q^{\top}y : Tx + Wy = z(\omega), x \in X, y \in Y\right\}$$

with X, Y (mixed-integer) polyhedra and nonanticipativity

$$x \rightarrow z(\omega) \longrightarrow y = y(x,\omega)$$

or, more explicitly,

$$\min_{x} \left\{ \underbrace{c^{\top}x + \min_{y} \left\{ q^{\top}y : Wy = z(\omega) - Tx, y \in Y \right\}}_{f(x,\omega)} : x \in X \right\}$$

Stochastic programming is about "optimizing or ranking against each other the random variables f(x, .) as x varies".

Stochastic Integer Programs: Hilbert, Graver, Gordan-Dickson, and Maclagan

with Raymond Hemmecke:

Decomposition of test sets in stochastic integer programming, Mathematical Programming 94 (2003), 323 - 341.

 $\begin{array}{l} \mbox{Gordan+Dickson} \rightarrow \mbox{deterministic, integer vectors} \\ \mbox{Maclagan} \rightarrow \mbox{two-stage stochastic, monomial ideals} \\ \mbox{Nash-Williams, Aschenbrenner+Hemmecke} \rightarrow \mbox{multi-stage stoch., vector trees} \end{array}$

Issues – IP:

▶ Ideal:
$$\mathcal{I} \subseteq k[x_1, ..., x_n]$$
 ideal, if
(i) $0 \in \mathcal{I}$;
(ii) If $f, g \in \mathcal{I}$, then $f + g \in \mathcal{I}$;
(iii) If $f \in \mathcal{I}$ and $h \in k[x]$, then $hf \in \mathcal{I}$

• Ground Set:
$$S := \mathbb{Z}^n$$

▶ Partial Order on \mathbb{Z}^n : $u \sqsubseteq v$, if

 $|u^{(j)} \cdot v^{(j)} \ge 0$ and $|u^{(j)}| \le |v^{(j)}|$ for all components j.

Commonly said "u reduces v"

 $\blacktriangleright \text{ The Set } B$

Optimality Certificates, Test Sets

Optimality Certificates, Test Sets

Definition (Optimality Certificate, Test Set) A set $\mathcal{T}_c \subseteq \mathbb{Z}^d$ is called an optimality certificate (or test set) for the family of problems

 $(IP)_{c,b}$ min{ $c^{\mathsf{T}}z: Az = b, z \in \mathbb{Z}_+^d$ }

as $b \in \mathbb{R}^{\prime}$ varies if

- 1. $c^{\mathsf{T}}t > 0$ for all $t \in \mathcal{T}_c$, and
- 2. for every $b \in \mathbb{R}^{l}$ and for every non-optimal feasible solution $z_{0} \in \mathbb{Z}_{+}^{d}$ to Az = b, there exists an improving vector $t \in \mathcal{T}_{c}$ such that $z_{0} t$ is feasible.

Optimality Certificates, Test Sets

Definition (Optimality Certificate, Test Set) A set $\mathcal{T}_c \subseteq \mathbb{Z}^d$ is called an optimality certificate (or test set) for the family of problems

 $(IP)_{c,b}$ min $\{c^{\mathsf{T}}z: Az = b, z \in \mathbb{Z}_+^d\}$

as $b \in \mathbb{R}^{\prime}$ varies if

- 1. $c^{\mathsf{T}}t > 0$ for all $t \in \mathcal{T}_c$, and
- 2. for every $b \in \mathbb{R}^{l}$ and for every non-optimal feasible solution $z_{0} \in \mathbb{Z}_{+}^{d}$ to Az = b, there exists an improving vector $t \in \mathcal{T}_{c}$ such that $z_{0} t$ is feasible.

A set \mathcal{T} is called a universal optimality certificate for the family of problems $(IP)_{c,b}$ as $b \in \mathbb{R}^{l}$ and $c \in \mathbb{R}^{d}$ vary if it contains an optimality certificate \mathcal{T}_{c} for every $c \in \mathbb{R}^{d}$.

Augmentation, Feasibility

```
Algorithm (Augmentation Algorithm)
```

Input: a feasible solution z_0 to $(IP)_{c,b}$, an optimality certificate \mathcal{T}_c for $(IP)_{c,b}$ Output: an optimal point z_{\min} of $(IP)_{c,b}$

<u>return</u> z_0

Algorithm (Augmentation Algorithm)

Input: a feasible solution z_0 to $(IP)_{c,b}$, an optimality certificate \mathcal{T}_c for $(IP)_{c,b}$ Output: an optimal point z_{\min} of $(IP)_{c,b}$

while there is $t \in \mathcal{T}_c$ with $c^{\mathsf{T}}t > 0$ such that $z_0 - t$ is feasible <u>do</u>

$$z_0 := z_0 - t$$

<u>return</u> z_0

Algorithm (Feasible Solution)

Input: a solution $z_1 \in \mathbb{Z}^d$ to Az = b, a universal optimality certificate \mathcal{T} for $\overline{(IP)_{c,b}}$ Output: a feasible solution to $(IP)_{c,b}$ or "FAIL" if no such exists

 $\begin{array}{l} \underline{\text{While}} \text{ there is some } g \in \mathcal{T} \text{ such that } g \leq z_1^+ \text{ and } \|(z_1 - g)^-\|_1 < \|z_1^-\|_1 \text{ do} \\ z_1 := z_1 - g \\ \underline{\text{if }} \|z_1^-\|_1 > 0 \text{ then return "FAIL" } \underline{\text{else return }} z_1 \end{array}$

Definition (Hilbert basis)

Let C be a polyhedral cone with rational generators. A finite set $H = \{h_1, \ldots, h_t\} \subseteq C \cap \mathbb{Z}^d$ is a Hilbert basis of C if every $z \in C \cap \mathbb{Z}^d$ has a representation of the form

$$z=\sum_{i=1}^t\lambda_ih_i,$$

with non-negative integral multipliers $\lambda_1, \ldots, \lambda_t$.

Definition (Hilbert basis)

Let C be a polyhedral cone with rational generators. A finite set $H = \{h_1, \ldots, h_t\} \subseteq C \cap \mathbb{Z}^d$ is a Hilbert basis of C if every $z \in C \cap \mathbb{Z}^d$ has a representation of the form

$$z=\sum_{i=1}^t\lambda_ih_i,$$

with non-negative integral multipliers $\lambda_1, \ldots, \lambda_t$.

Let \mathbb{O}_j be the j^{th} orthant of \mathbb{Z}^d and $H_j(A)$ be the unique minimal Hilbert basis of the pointed rational cone $\{v \in \mathbb{R}^d : Av = 0\} \cap \mathbb{O}_j$.

Definition (Hilbert basis)

Let C be a polyhedral cone with rational generators. A finite set $H = \{h_1, \ldots, h_t\} \subseteq C \cap \mathbb{Z}^d$ is a Hilbert basis of C if every $z \in C \cap \mathbb{Z}^d$ has a representation of the form

$$z=\sum_{i=1}^t\lambda_ih_i,$$

with non-negative integral multipliers $\lambda_1, \ldots, \lambda_t$.

Let \mathbb{O}_j be the j^{th} orthant of \mathbb{Z}^d and $H_j(A)$ be the unique minimal Hilbert basis of the pointed rational cone $\{v \in \mathbb{R}^d : Av = 0\} \cap \mathbb{O}_j$.

Lemma (Graver set)

$$\mathcal{G}(A) := \bigcup H_j(A) \setminus \{0\}$$

is a universal optimality criterion, called the IP Graver set or IP Graver basis, for the family of problems $(IP)_{c,b}$ as $b \in \mathbb{R}^{l}$ and $c \in \mathbb{R}^{d}$ vary.

$u \sqsubseteq v$ iff

▶ $u^+ \leq v^+$ and $u^- \leq v^-$ where max{0, $u^{(i)}$ } are the components of u^+ and max{0, $-u^{(i)}$ } those of u^- .

$u \sqsubseteq v$ iff

- ▶ $u^+ \leq v^+$ and $u^- \leq v^-$ where max $\{0, u^{(i)}\}$ are the components of u^+ and max $\{0, -u^{(i)}\}$ those of u^- .
- ► u belongs to the same orthant as v (sign compatibility) and its components are not greater in absolute value than the corresponding components of v.

$u \sqsubseteq v$ iff

- ▶ $u^+ \leq v^+$ and $u^- \leq v^-$ where max{0, $u^{(i)}$ } are the components of u^+ and max{0, $-u^{(i)}$ } those of u^- .
- u belongs to the same orthant as v (sign compatibility) and its components are not greater in absolute value than the corresponding components of v.

Algorithm (Normal Form Algorithm)

Input: a vector s, a set G of vectors Output: a normal form of s with respect to G

while there is some $g \in G$ such that $g \sqsubseteq s \text{ do}$ s := s - greturn s

Algorithm (Computing IP Graver Sets)

$$G := F$$

$$C := \bigcup_{f,g \in G} \{f + g\}$$
(forming S-vectors)

$$\begin{array}{l} \underline{\text{while}} \ \ C \neq \emptyset \ \underline{\text{do}} \\ s := \text{ an element in } C \\ C := C \setminus \{s\} \\ f := \text{ normalForm}(s, G) \\ \underline{\text{if }} f \neq 0 \ \underline{\text{then}} \\ C := C \cup \bigcup_{g \in G} \{f + g\} \\ G := G \cup \{f\} \end{array}$$
(adding S-vectors)

return G.

Two-Stage Stochastic Integer Programs

$$\min\{c^{\mathsf{T}}z:A_Nz=b,z\in\mathbb{Z}_+^d\}$$

$$A_{N} := \begin{pmatrix} A & 0 & 0 & \cdots & 0 \\ T & W & 0 & \cdots & 0 \\ T & 0 & W & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ T & 0 & 0 & \cdots & W \end{pmatrix}$$

with

N denoting the number of scenarios, d = m + Nn, $c = (c_0, c_1, \dots, c_N)^{\mathsf{T}} := (h, \pi_1 q, \dots, \pi_N q)^{\mathsf{T}}$ $b = (a, \xi^1, \dots, \xi^N)^{\mathsf{T}}$.

We will

- extend the notion of S-vectors
- retain the pattern of the previous completion method
- work on pairs (u, V_u) (defined below) instead of vectors.
- employ a generalization of the Gordan-Dickson Lemma, Maclagan's Theorem (Proc. AMS, 2001), to ensure termination of the algorithm.
- see, that the block angular structure of the problem matrix induces a symmetry structure on the elements of the Graver set.
- see, that the Graver set vectors are formed by a comparably small number of building blocks.
- compute these building blocks without computing the Graver set.
- reconstruct an improving vector to a given non-optimal feasible solution, scenario by scenario, using building blocks only.
- find an optimal solution with comparably small effort, once the building blocks have been computed.

Lemma $(u, v_1, \ldots, v_N) \in \text{ker}(A_N)$ if and only if $(u, v_1), \ldots, (u, v_N) \in \text{ker}(A_1)$.

Definition

Let $z = (u, v_1, \ldots, v_N) \in \text{ker}(A_N)$ and call the vectors u, v_1, \ldots, v_N the building blocks of z. Denote by \mathcal{G}_N the Graver test set associated with A_N and collect into \mathcal{H}_N all those vectors arising as building blocks of some $z \in \mathcal{G}_N$. By \mathcal{H}_∞ denote the set $\bigcup_{N=1}^{\infty} \mathcal{H}_N$. **Lemma** $(u, v_1, \ldots, v_N) \in \text{ker}(A_N)$ if and only if $(u, v_1), \ldots, (u, v_N) \in \text{ker}(A_1)$.

Definition

Let $z = (u, v_1, \ldots, v_N) \in \text{ker}(A_N)$ and call the vectors u, v_1, \ldots, v_N the building blocks of z. Denote by \mathcal{G}_N the Graver test set associated with A_N and collect into \mathcal{H}_N all those vectors arising as building blocks of some $z \in \mathcal{G}_N$. By \mathcal{H}_∞ denote the set $\bigcup_{N=1}^{\infty} \mathcal{H}_N$.

The set \mathcal{H}_{∞} contains both *m*-dimensional vectors *u* associated with the first-stage and *n*-dimensional vectors *v* related to the second-stage in the stochastic program. For convenience, we will arrange the vectors in \mathcal{H}_{∞} into pairs (u, V_u) .

Definition

For fixed $u \in \mathcal{H}_{\infty}$, all those vectors $v \in \mathcal{H}_{\infty}$ are collected into V_u for which $(u, v) \in ker(A_1)$.

Finiteness of \mathcal{H}_{∞}

Definition

We say that $(u', V_{u'})$ reduces (u, V_u) , or $(u', V_{u'}) \sqsubseteq (u, V_u)$ for short, if the following conditions are satisfied:

- ► $u' \sqsubseteq u$,
- for every $v \in V_u$ there exists a $v' \in V_{u'}$ with $v' \sqsubseteq v$,
- $u' \neq 0$ or there exist vectors $v \in V_u$ and $v' \in V_{u'}$ with $0 \neq v' \sqsubseteq v$.

Theorem (Maclagan 2001)

Let \mathcal{I} be an infinite collection of monomial ideals in a polynomial ring. Then there are two ideals $I, J \in \mathcal{I}$ with $I \subseteq J$.

Definition

We associate with (u, V_u) , $u \neq 0$, and with $(0, V_0)$ the monomial ideals

$$I(u, V_u) \in Q[x_1, \dots, x_{2m+2n}]$$
 and $I(0, V_0) \in Q[x_1, \dots, x_{2n}]$

generated by all the monomials $x^{(u^+, u^-, v^+, v^-)}$ with $v \in V_u$, and by all the monomials $x^{(v^+, v^-)}$ with $v \neq 0$ and $v \in V_0$, respectively.

Lemma

Let $((u_1, V_{u_1}), (u_2, V_{u_2}), \ldots)$ be a sequence of pairs such that $(u_i, V_{u_i}) \not\sqsubseteq (u_j, V_{u_i})$ whenever i < j. Then this sequence is finite.

Theorem (Finiteness of H_{∞})

Given rational matrices A, T, and W of appropriate dimensions, and let \mathcal{H}_{∞} be defined as above. Then \mathcal{H}_{∞} is a finite set.

Computation of \mathcal{H}_{∞}

Idea:

- ▶ Retain the completion pattern of Graver set computation, but work with pairs (u, V_u) instead.
- ▶ Define the two main ingredients, S-vectors and normalForm, that means the operations ⊕ and ⊖, appropriately.
- ▶ Now, the objects f, g, and s all are pairs of the form (u, V_u) .

Algorithm (Extended normal form algorithm)

 $\underline{Input:} a pair s, a set G of pairs$ Output: a normal form of s with respect to G

while there is some $g \in G$ such that $g \sqsubseteq s \ do$ $s := s \ominus g$ return s

Algorithm (Compute \mathcal{H}_{∞})

Input: a generating set F of ker (A_1) in (u, V_u) -notation to be specified below Output: a set G which contains \mathcal{H}_{∞}

G := F $C := \bigcup_{f,g \in G} \{ f \oplus g \}$

(forming S-vectors)

$$\begin{split} \underline{\text{while }} & C \neq \emptyset \ \underline{\text{do}} \\ & s := \text{ an element in } C \\ & C := C \setminus \{s\} \\ & f := \text{ normalForm}(s, G) \\ & \underline{\text{if }} f \neq (0, \{0\}) \ \underline{\text{then}} \\ & C := C \cup \bigcup_{g \in G \cup \{f\}} \{f \oplus g\} \\ & G := G \cup \{f\} \end{split}$$
(adding S-vectors)

 $\underline{\operatorname{return}} G.$
Choose as input the set of building blocks of all vectors in $F \cup \{0\}$ in (u, V_u) -notation. Herein, F is a generating set for ker (A_1) over \mathbb{Z} which contains a generating set for

$$\{(0, v): Wv = 0\} \subseteq \ker(A_1)$$

consisting only of vectors with zero first-stage component.

Definition (S-vectors, Reduction) Let

$$(u, V_u) \oplus (u', V_{u'}) := (u + u', V_u + V_{u'}),$$

where

$$V_u + V_{u'} := \{v + v' : v \in V_u, v' \in V_{u'}\}.$$

Moreover, let

$$(u, V_u) \ominus (u', V_{u'}) := (u - u', \{v - v' : v \in V_u, v' \in V_{u'}, v' \sqsubseteq v\}).$$

Feasibility at Building-Block Level

Define the auxiliary cost function c^\prime by

$$(c')^{(i)} := \begin{cases} 0 & \text{if } z_1^{(i)} \ge 0 \\ -1 & \text{if } z_1^{(i)} < 0 \end{cases}$$
, for $i = 1, \dots, m + Nn$

Consider the two-stage program

$$\min\{35x_1 + 40x_2 + \frac{1}{N} \sum_{\nu=1}^{N} 16y_1^{\nu} + 19y_2^{\nu} + 47y_3^{\nu} + 54y_4^{\nu} : \\ x_1 + y_1^{\nu} + y_3^{\nu} \ge \xi_1^{\nu}, \\ x_2 + y_2^{\nu} + y_4^{\nu} \ge \xi_2^{\nu}, \\ 2y_1^{\nu} + y_2^{\nu} \le \xi_2^{\nu}, \\ y_1^{\nu} + 2y_2^{\nu} \le \xi_4^{\nu}, \\ x_1, x_2, y_1^{\nu}, y_2^{\nu}, y_3^{\nu}, y_4^{\nu} \in \mathbb{Z}_+ \}$$

Here, the random vector $\xi \in \mathbb{R}^s$ is given by the scenarios ξ^1, \ldots, ξ^N , all with equal probability 1/N. The realizations of $(\xi_1^{\nu}, \xi_2^{\nu})$ and $(\xi_3^{\nu}, \xi_4^{\nu})$ are given by uniform grids (of differing granularity) in the squares $[300, 500] \times [300, 500]$ and $[0, 2000] \times [0, 2000]$, respectively. Timings are given in CPU seconds on a SUN Enterprise 450, 300 MHz Ultra-SPARC.

It took 3.3 seconds to compute \mathcal{H}_{∞} altogether consisting of 1438 building blocks arranged into 25 pairs (u, V_u) . Aug (\mathcal{H}_{∞}) then gives the times needed to augment the solution $x_1 = x_2 = y_1^{\nu} = y_2^{\nu} = 0$, $y_3^{\nu} = \xi_1^{\nu}$, and $y_4^{\nu} = \xi_2^{\nu}$, $\nu = 1, \ldots N$ to optimality.

Example	(ξ_1, ξ_2) -grid	(ξ_3, ξ_4) -grid	scen.	var.	$\operatorname{Aug}(\mathcal{H}_{\infty})$	CPLEX	dualdec
1	5×5	3 × 3	225	902	1.52	0.63	> 1800
2	5×5	21×21	11025	44102	66.37	696.10	_
3	9×9	21×21	35721	142886	180.63	> 1 day	_

Although further exploration is necessary, the above table seems to indicate linear dependence of the computing time on the number N of scenarios, once \mathcal{H}_{∞} has been computed.

Π

Unit Commitment – A Recurring Issue in Power Management

Step Back in Time for 101 years

Step Back in Time for 101 years 1915

Biggest lignite-fired thermal power station of its time inaugurated.

Biggest lignite-fired thermal power station of its time inaugurated.

Biggest lignite-fired thermal power station of its time inaugurated.

 Build within one year (Groundbreaking March 24, 1915, First Turbine (16 MW) in Operation December 15, 1915, 1916: 8×16 MW installed)

Biggest lignite-fired thermal power station of its time inaugurated.

 Build within one year (Groundbreaking March 24, 1915, First Turbine (16 MW) in Operation December 15, 1915, 1916: 8×16 MW installed) Remarkable:

In operation until 30.06.1992

Remarkable:

In operation until 30.06.1992

Unit Commitment

- ▶ is the problem of determining switching and operational decisions,
- ▶ for a system of power producing units, over some time horizon,
- ▶ so that all relevant technological and economical conditions are met.

Unit Commitment

- ▶ is the problem of determining switching and operational decisions,
- ▶ for a system of power producing units, over some time horizon,
- ▶ so that all relevant technological and economical conditions are met.

1985 VEAG in (East Germany)

Unit Commitment

- ▶ is the problem of determining switching and operational decisions,
- ▶ for a system of power producing units, over some time horizon,
- ▶ so that all relevant technological and economical conditions are met.

2006 Virtual Power Plant

1985 VEAG in (East Germany)

- FC ; Fuel cells
- GT : Gas turbines
- HPP : Hydro power plants
- PV : Photovoltaics
- WT : Wind turbines

Specification (Mixed-Integer Linear Program – When Deterministic) Unit Commitment for a hydro-thermal system (early VEAG + Vattenfall) Specification (Mixed-Integer Linear Program – When Deterministic)

Unit Commitment for a hydro-thermal system (early VEAG + Vattenfall)

$$\min\left\{c_1^{\top}\xi_1 + c_2^{\top}\xi_2 \ : \ A_1\xi_1 + A_2\xi_2 = b, \ \xi_1 \in X_1, \ \xi_2 \in X_2\right\}$$

Variables:

- ▶ ξ_1 : start-up/shut-down for thermal units,
- ξ₂: all remaining, i.e., power output, pumping/generating in pumped-storage (psp), water levels in psp, auxillary variables for modeling specific effects.

Specification (Mixed-Integer Linear Program – When Deterministic)

Unit Commitment for a hydro-thermal system (early VEAG + Vattenfall)

$$\min\left\{c_1^{\top}\xi_1 + c_2^{\top}\xi_2 \ : \ A_1\xi_1 + A_2\xi_2 = b, \ \xi_1 \in X_1, \ \xi_2 \in X_2\right\}$$

Variables:

- ▶ ξ_1 : start-up/shut-down for thermal units,
- ξ₂: all remaining, i.e., power output, pumping/generating in pumped-storage (psp), water levels in psp, auxillary variables for modeling specific effects.

Objective:

 affinely linear fuel costs for operation and piece-wise constant for switching of thermal units Specification (Mixed-Integer Linear Program – When Deterministic)

Unit Commitment for a hydro-thermal system (early VEAG + Vattenfall)

$$\min\left\{c_1^{\top}\xi_1 + c_2^{\top}\xi_2 \ : \ A_1\xi_1 + A_2\xi_2 = b, \ \xi_1 \in X_1, \ \xi_2 \in X_2\right\}$$

Variables:

- ▶ ξ_1 : start-up/shut-down for thermal units,
- ξ₂: all remaining, i.e., power output, pumping/generating in pumped-storage (psp), water levels in psp, auxillary variables for modeling specific effects.

Objective:

 affinely linear fuel costs for operation and piece-wise constant for switching of thermal units

Constraints:

- connecting units: load balances, reserve balances, ramping
- for individual units: output bounds, minimum up- and down-times, water management in psp,

Unit Commitment Under UNCERTAINTY in the 1970ies and 1980ies

Unit Commitment Under UNCERTAINTY in the 1970ies and 1980ies

 Before deregulation, power producers optimized costs by fuel cost minimization, with power demand as major source of uncertainty.

- Before deregulation, power producers optimized costs by fuel cost minimization, with power demand as major source of uncertainty.
- TV sets consumed more energy than today. Their operation had to be included when estimating power demand, at least during certain periods of the day.

- Before deregulation, power producers optimized costs by fuel cost minimization, with power demand as major source of uncertainty.
- TV sets consumed more energy than today. Their operation had to be included when estimating power demand, at least during certain periods of the day.
- ▶ In the 1970ies and 1980ies Heavyweight Boxing was a very popular spectator sport (Ali, Frazier, Foreman etc.), in West and East Germany.

- Before deregulation, power producers optimized costs by fuel cost minimization, with power demand as major source of uncertainty.
- TV sets consumed more energy than today. Their operation had to be included when estimating power demand, at least during certain periods of the day.
- ▶ In the 1970ies and 1980ies Heavyweight Boxing was a very popular spectator sport (Ali, Frazier, Foreman etc.), in West and East Germany.
- ▶ Time zone difference and duration of fight (knock-out: if at all and when) produced random variables that were hard to handle ...

- Before deregulation, power producers optimized costs by fuel cost minimization, with power demand as major source of uncertainty.
- TV sets consumed more energy than today. Their operation had to be included when estimating power demand, at least during certain periods of the day.
- ▶ In the 1970ies and 1980ies Heavyweight Boxing was a very popular spectator sport (Ali, Frazier, Foreman etc.), in West and East Germany.
- ► Time zone difference and duration of fight (knock-out: if at all and when) produced random variables that were hard to handle ... and (induced) water consumption was uncertain, too!

- Before deregulation, power producers optimized costs by fuel cost minimization, with power demand as major source of uncertainty.
- TV sets consumed more energy than today. Their operation had to be included when estimating power demand, at least during certain periods of the day.
- ▶ In the 1970ies and 1980ies Heavyweight Boxing was a very popular spectator sport (Ali, Frazier, Foreman etc.), in West and East Germany.
- ► Time zone difference and duration of fight (knock-out: if at all and when) produced random variables that were hard to handle ... and (induced) water consumption was uncertain, too!

Unit Commitment with random load

Unit Commitment with random load

$$f(\xi_{1},\omega) = [c_{1}^{\top}\xi_{1} + \min_{\xi_{2}\in X_{2}} \left\{ c_{2}^{\top}\xi_{2} : A_{2}\xi_{2} = b(\omega) - A_{1}\xi_{1} \right\}, \omega \in \Omega$$
$$Q_{\mathbb{E}}(\xi_{1}) := \int_{\Omega} \left[c_{1}^{\top}\xi_{1} + \min_{\xi_{2}\in X_{2}} \left\{ c_{2}^{\top}\xi_{2} : A_{2}\xi_{2} = b(\omega) - A_{1}\xi_{1} \right\} \right] \mathbb{P}(d\omega)$$

Unit Commitment with random load

$$f(\xi_{1},\omega) = [c_{1}^{\top}\xi_{1} + \min_{\xi_{2} \in X_{2}} \left\{ c_{2}^{\top}\xi_{2} : A_{2}\xi_{2} = b(\omega) - A_{1}\xi_{1} \right\}, \omega \in \Omega$$
$$Q_{\mathbb{E}}(\xi_{1}) := \int_{\Omega} \left[c_{1}^{\top}\xi_{1} + \min_{\xi_{2} \in X_{2}} \left\{ c_{2}^{\top}\xi_{2} : A_{2}\xi_{2} = b(\omega) - A_{1}\xi_{1} \right\} \right] \mathbb{P}(d\omega)$$

Variables:

- ▶ $\xi_1 \in X_1$: start-up/shut-down for thermal units,
- ▶ $\xi_2(\omega)$: all remaining, i.e., power output, pumping/generating in pumped-storage (psp), water levels in psp, auxiliary variables for modeling specific effects.

Unit Commitment with random load

$$f(\xi_{1},\omega) = [c_{1}^{\top}\xi_{1} + \min_{\xi_{2} \in X_{2}} \left\{ c_{2}^{\top}\xi_{2} : A_{2}\xi_{2} = b(\omega) - A_{1}\xi_{1} \right\}, \omega \in \Omega$$
$$Q_{\mathbb{E}}(\xi_{1}) := \int_{\Omega} \left[c_{1}^{\top}\xi_{1} + \min_{\xi_{2} \in X_{2}} \left\{ c_{2}^{\top}\xi_{2} : A_{2}\xi_{2} = b(\omega) - A_{1}\xi_{1} \right\} \right] \mathbb{P}(d\omega)$$

Variables:

- ▶ $\xi_1 \in X_1$: start-up/shut-down for thermal units,
- ▶ $\xi_2(\omega)$: all remaining, i.e., power output, pumping/generating in pumped-storage (psp), water levels in psp, auxiliary variables for modeling specific effects.

Objective:

 $f(\xi_1,.)$ random cost profile for operation and switching of thermal units inuced by start-up/shut-down scheme ξ_1

 $Q_{\mathbb{E}}(\xi_1) := \int_{\Omega} f(\xi_1, \omega) \, \mathbb{P}(d\omega) - - - ext{Expected Value - Risk Neutral Model}$

Unit Commitment under Uncertainty over the Years

Unit Commitment under Uncertainty over the Years

$$\min_{x} \left\{ \underbrace{c^{\top}x + \min_{y} \left\{ q^{\top}y : Wy = h(\omega) - Tx, y \in Y \right\}}_{f(x,\omega)} : x \in X \right\}$$

1985: Load the only quantity with relevant uncertainty -Risk neutral models, only !

 $f(x, z(\omega)) - \text{total cost for up/down regime } x \text{ under random load } z(\omega)$

Unit Commitment under Uncertainty over the Years

$$\min_{x} \left\{ \underbrace{c^{\top}x + \min_{y} \left\{ q^{\top}y : Wy = h(\omega) - Tx, y \in Y \right\}}_{f(x,\omega)} : x \in X \right\}$$

1985: Load the only quantity with relevant uncertainty -Risk neutral models, only !

 $f(x, z(\omega)) - \text{total cost for up/down regime } x \text{ under random load } z(\omega)$

▶ 2006: After deregulation omnipresent uncertainty at input (renewables) and output sides. - Risk aversion became more and more indispensable !

 $f(x, z(\omega)) -$

total cost for a quisition x of a vpp under random power in- and outputs \boldsymbol{z}
Unit Commitment under Uncertainty over the Years

$$\min_{x} \left\{ \underbrace{c^{\top}x + \min_{y} \left\{ q^{\top}y : Wy = h(\omega) - Tx, y \in Y \right\}}_{f(x,\omega)} : x \in X \right\}$$

1985: Load the only quantity with relevant uncertainty -Risk neutral models, only !

 $f(x, z(\omega))$ – total cost for up/down regime x under random load $z(\omega)$

▶ 2006: After deregulation omnipresent uncertainty at input (renewables) and output sides. - Risk aversion became more and more indispensable !

 $f(x, z(\omega)) -$

total cost for a quisition x of a vpp under random power in- and outputs \boldsymbol{z}

2010: Congestion and capacity management under uncertain in- and outputs

 $f(x, z(\omega)) -$

x pre-commitment so that renewables' inflow z compensated with minimal re-commitment/re-dispatch and without overloading grid components

Ш

Some Thoughts on Suitable Mathematics

Viewpoints

(I) Ill-posed optimization problem Destructive – remove stochasticity swiftly,

 $\min \left\{ f(x,\omega) \ : \ x \in X \right\}$

As long as ω is unknown, it makes no sense to address optimality.

Remedy:

Arrive at a deterministic problem by "removing ω in formal manner".

- ▶ Replace ω by its expectation $\mathbb{E}[\omega]$ and solve min $\{f(x, \mathbb{E}[\omega]) : x \in X\}$
- ► Consider expected value $\mathbb{E}[f(x, \omega)]$ and solve min { $\mathbb{E}[f(x, \omega)] : x \in X$ }
- Apply a statistical parameter S and solve min $\{S[f(x,\omega)] : x \in X\}$

(II) Optimizing or ranking in a family of random variables Constructive: Be happy about having stochastic information on the uncertain problem ingredients. Make active use of it.

$${f(x,.):\Omega \to \mathbb{R}}_{x \in X}$$

Remedy:

Arrive at a deterministic problem by implementing your attitude towards risk .

▶ Risk neutral: Apply expectation \mathbb{E} to $f(x, \omega)$ and solve

 $\min \left\{ \mathbb{E}\left[f(x,\omega)\right] : x \in X \right\}$

• Risk averse by criterion: Apply some risk measure \mathcal{R} and solve

 $\min \left\{ \mathcal{R}\left[f(x,\omega)\right] : x \in X \right\}$

▶ Risk averse by constraint: Rank according to some stochastic order. Introduce a benchmark random variable $b(\omega)$ leading to the constraint

 $\{x \in X : f(x,\omega) \preceq b(\omega)\}$

Solution by Scenario Decomposition

$$Q_{\mathbb{E}}(\xi_1) := \int_{\Omega} \left[c_1^{\top} \xi_1 + \min_{\xi_2 \in X_2} \left\{ c_2^{\top} \xi_2 : A_2 \xi_2(\omega) = b(\omega) - A_1 \xi_1 \right\} \right] \mathbb{P}(d\omega)$$

Assume the rhs $b(\omega)$ is the only random ingredient, and let it follow a finite discrete probability distribution

with scenarios $b_1, \ldots, b_{\omega}, \ldots, b_S$ and probabilities $\pi_1, \ldots, \pi_{\omega}, \ldots, \pi_S$

Then $\min\{Q_{\mathbb{E}}(\xi_1) : \xi_1 \in X_1\}$ is equivalent to the following large-scale block angular mixed-integer linear program

$$\min \left\{ c_{1}^{\top}\xi_{1} + \sum_{\omega=1}^{S} \pi_{\omega}c_{2}^{\top}\xi_{2\omega} : A_{1}\xi_{1} + A_{2}\xi_{21} = b_{1} \\ \vdots & \ddots & \vdots \\ A_{1}\xi_{1} + A_{2}\xi_{2\omega} = b_{\omega} \\ \vdots & \ddots & \vdots \\ A_{1}\xi_{1} + A_{5}\xi_{2S} = b_{5} \\ \xi_{1} \in X_{1}, \ \xi_{2\omega} \in X_{2}, \ \omega = 1, \dots, S \right\}$$

Scenario Decomposition

Basic Idea: Lagrangean Relaxation of Nonanticipativity[Carøe/Sch.1999]:

Scenario Decomposition

Basic Idea: Lagrangean Relaxation of Nonanticipativity[Carøe/Sch.1999]: Introduce copies $\xi_{11}, \ldots, \xi_{1\omega}, \ldots, \xi_{1s}$ of ξ_1 and add $\xi_{11} = \ldots = \xi_{1\omega} = \ldots = \xi_{1s}$. Then apply Lagrangean Relaxation on the chain of identites.

Scenario Decomposition

Basic Idea: Lagrangean Relaxation of Nonanticipativity [Carøe/Sch.1999]: Introduce copies $\xi_{11}, \ldots, \xi_{1\omega}, \ldots, \xi_{1S}$ of ξ_1 and add $\xi_{11} = \ldots = \xi_{1\omega} = \ldots = \xi_{1S}$. Then apply Lagrangean Relaxation on the chain of identites.

This includes solving the Lagrangean Dual which is a non-differentiable convex optimization problem.

 Objective function of the Lagrangean dual involves a minimization which is separable with respect to the scenarios.

- Objective function of the Lagrangean dual involves a minimization which is separable with respect to the scenarios.
- Regaining primal feasibility after maximization in the Lagrangean dual benefits from simplicity of relaxed constraints (chain of identities).

- Objective function of the Lagrangean dual involves a minimization which is separable with respect to the scenarios.
- Regaining primal feasibility after maximization in the Lagrangean dual benefits from simplicity of relaxed constraints (chain of identities).
- ▶ Duality gap inevitable, unless problem "is not really integer". If gap inacceptable then imbedding into branch-and-bound on $\xi_1 \in X_1$.

- Objective function of the Lagrangean dual involves a minimization which is separable with respect to the scenarios.
- Regaining primal feasibility after maximization in the Lagrangean dual benefits from simplicity of relaxed constraints (chain of identities).
- ▶ Duality gap inevitable, unless problem "is not really integer". If gap inacceptable then imbedding into branch-and-bound on $\xi_1 \in X_1$.

This works nicely as long as mixed-integer linear programming formulation has the block structure

Ш

Congestion Management in Power Nets

Load Flow Models - AC, DC, Ohmic Losses

Graph G = (V, E) (undirected)

with nodes $v \in V = \{1, \dots, n\}$, edges $e \in E \subseteq V \times V$.

Load Flow Models - AC, DC, Ohmic Losses

Graph G = (V, E) (undirected)

with nodes $v \in V = \{1, \dots, n\}$, edges $e \in E \subseteq V \times V$.

AC Model with Voltage in Polar Coordinates

Load Flow Models – AC, DC, Ohmic Losses

Graph G = (V, E) (undirected)

with nodes $v \in V = \{1, \ldots, n\}$, edges $e \in E \subseteq V \times V$.

AC Model with Voltage in Polar Coordinates

For all nodes v, voltage as complex number $U_v e^{j\theta_v}$ with modulus U_v and voltage angle θ_v , for slack node $U_1 = 1, \theta_1 = 0$.

Load Flow Models - AC, DC, Ohmic Losses

Graph G = (V, E) (undirected)

with nodes $v \in V = \{1, \ldots, n\}$, edges $e \in E \subseteq V \times V$.

AC Model with Voltage in Polar Coordinates

For all nodes v, voltage as complex number $U_v e^{j\theta_v}$ with modulus U_v and voltage angle θ_v , for slack node $U_1 = 1, \theta_1 = 0$.

Moreover, for all $e = vl \in E$.

▶ Difference of Voltage Angles $\theta_{vl} = \theta_v - \theta_l$,

Load Flow Models – AC, DC, Ohmic Losses

Graph G = (V, E) (undirected)

with nodes $v \in V = \{1, \ldots, n\}$, edges $e \in E \subseteq V \times V$.

AC Model with Voltage in Polar Coordinates

For all nodes v, voltage as complex number $U_v e^{j\theta_v}$ with modulus U_v and voltage angle θ_v , for slack node $U_1 = 1, \theta_1 = 0$.

Moreover, for all $e = vI \in E$.

- ▶ Difference of Voltage Angles $\theta_{vl} = \theta_v \theta_l$,
- Active Load Flow p_{vl} ,
- Reactive Load Flow q_{vl} .

Load Flow Models – AC, DC, Ohmic Losses

Graph G = (V, E) (undirected)

with nodes $v \in V = \{1, \ldots, n\}$, edges $e \in E \subseteq V \times V$.

AC Model with Voltage in Polar Coordinates

For all nodes v, voltage as complex number $U_v e^{i\theta_v}$ with modulus U_v and voltage angle θ_v , for slack node $U_1 = 1, \theta_1 = 0$.

Moreover, for all $e = vI \in E$.

- ► Difference of Voltage Angles $\theta_{vl} = \theta_v \theta_l$,
- Active Load Flow p_{vl} ,
- Reactive Load Flow q_{vl} .

For all edges in E (AC) Load Flow Equations

 $p_{vl} = U_v^2 g_{vl} - U_v U_l g_{vl} \cos \theta_{vl} - U_v U_l b_{vl} \sin \theta_{vl} \qquad \forall vl \in E$

 $\boldsymbol{q}_{vl} = \boldsymbol{U}_{v} \boldsymbol{U}_{l} \boldsymbol{b}_{vl} \cos \theta_{vl} - \boldsymbol{U}_{v} \boldsymbol{U}_{l} \boldsymbol{g}_{vl} \sin \theta_{vl} - \boldsymbol{U}_{v}^{2} (\boldsymbol{b}_{vl} + \boldsymbol{b}_{vl}^{0}) \quad \forall vl \in \boldsymbol{E}$

Simplification

Simplification

► $\theta_{vl} \approx 0 \quad \forall vl \in E$ hence sin $\theta_{vl} \approx \theta_{vl}$ und cos $\theta_{vl} \approx 1$

Simplification

- ► $\theta_{vl} \approx 0 \quad \forall vl \in E$ hence sin $\theta_{vl} \approx \theta_{vl}$ und cos $\theta_{vl} \approx 1$
- ► $U_v = 1 \quad \forall v \in V$

Simplification

- ► $\theta_{vl} \approx 0 \quad \forall vl \in E$ hence sin $\theta_{vl} \approx \theta_{vl}$ und cos $\theta_{vl} \approx 1$
- $U_v = 1 \quad \forall v \in V$
- ▶ No reactive power components.

Simplification

- ► $\theta_{vl} \approx 0 \quad \forall vl \in E$ hence sin $\theta_{vl} \approx \theta_{vl}$ und cos $\theta_{vl} \approx 1$
- $U_v = 1 \quad \forall v \in V$
- ▶ No reactive power components.

From AC equations, only the first remains and becomes:

DC Load Flow Equation

$$p_{vl} = b_{vl}(\theta_l - \theta_v)$$
 for all $vl \in E$

Loss on $vl \in E$

$$\nu_{vl} = g_{vl}(U_v^2 + U_l^2) - 2g_{vl}U_vU_l\cos\left(\theta_v - \theta_l\right) \qquad \forall vl \in E$$

Loss on $vl \in E$

$$\nu_{vl} = g_{vl}(U_v^2 + U_l^2) - 2g_{vl}U_vU_l\cos\left(\theta_v - \theta_l\right) \qquad \forall vl \in E$$

From DC assumptions, $U_v = U_l = 1$ is employed. However, $\cos\,\theta_{vl} \approx 1$ is not.

Loss on $vl \in E$

$$\nu_{vl} = g_{vl}(U_v^2 + U_l^2) - 2g_{vl}U_vU_l\cos\left(\theta_v - \theta_l\right) \qquad \forall vl \in E$$

From DC assumptions, $U_v = U_l = 1$ is employed. However, $\cos \theta_{vl} \approx 1$ is not.

 $\nu_{vl} = 2g_{vl}(1 - \cos \theta_{vl})$ Relaxation $\nu_{vl} \ge 2g_{vl}(1 - \cos \theta_{vl})$

Loss on $vl \in E$

$$\nu_{vl} = g_{vl}(U_v^2 + U_l^2) - 2g_{vl}U_vU_l\cos\left(\theta_v - \theta_l\right) \qquad \forall vl \in E$$

From DC assumptions, $U_v = U_l = 1$ is employed. However, $\cos \theta_{vl} \approx 1$ is not.

 $\nu_{vl} = 2g_{vl}(1 - \cos \theta_{vl})$ Relaxation $\nu_{vl} \ge 2g_{vl}(1 - \cos \theta_{vl})$

Congestion Management under Inflow of Renewables

 Optimal pre-commitment/ pre-dispatch to avoid grid congestion with re-dispatch/re-commitment.

- Optimal pre-commitment/ pre-dispatch to avoid grid congestion with re-dispatch/re-commitment.
- DC model with Ohmic losses and polyhedral approximation of convex nonlinearities. incl. code.

- Optimal pre-commitment/ pre-dispatch to avoid grid congestion with re-dispatch/re-commitment.
- DC model with Ohmic losses and polyhedral approximation of convex nonlinearities. incl. code.
- Mixed-integer linear models with switching.

- Optimal pre-commitment/ pre-dispatch to avoid grid congestion with re-dispatch/re-commitment.
- DC model with Ohmic losses and polyhedral approximation of convex nonlinearities. incl. code.
- Mixed-integer linear models with switching.
- Stochastics, decomposition.

- Optimal pre-commitment/ pre-dispatch to avoid grid congestion with re-dispatch/re-commitment.
- DC model with Ohmic losses and polyhedral approximation of convex nonlinearities. incl. code.
- Mixed-integer linear models with switching.
- Stochastics, decomposition.
- Variation of wind infeed rate from 40 via 80 to 100%.

Based on a realistic model of the German power grid, for a given load situation and wind infeed, a cost minimal infeed is sought for which no grid components become overloaded.

Based on a realistic model of the German power grid, for a given load situation and wind infeed, a cost minimal infeed is sought for which no grid components become overloaded.

Proceeding/Results:

Based on a realistic model of the German power grid, for a given load situation and wind infeed, a cost minimal infeed is sought for which no grid components become overloaded.

Proceeding/Results:

▶ Code evaluation (MILP approximation) by

Based on a realistic model of the German power grid, for a given load situation and wind infeed, a cost minimal infeed is sought for which no grid components become overloaded.

Proceeding/Results:

- ▶ Code evaluation (MILP approximation) by
 - Comparison with dispatch derived via merit order

Based on a realistic model of the German power grid, for a given load situation and wind infeed, a cost minimal infeed is sought for which no grid components become overloaded.

Proceeding/Results:

- ▶ Code evaluation (MILP approximation) by
 - Comparison with dispatch derived via merit order
 - ► Double checking flows with commercial solver NEPLAN with switching decisions and fixed by our code.
- ▶ Evaluation of losses over-estimation caused by relaxation.

Congestion Management under Inflow of Renewables - Wind Numerical Tests

Congestion Management under Inflow of Renewables - Wind Numerical Tests

		Ref.	Opt.	Opt.	Ref.	Opt.	Opt.
		(AC)	(DoDu)	(AC)	(AC)	(DoDu)	(AC)
Wind	[-]		40%			80%	
Generation Cost	[T€]	1231	1200	1201	971	986	987
Import	[MW]	5347	5882	5882	5347	5483	5483
Export	[MW]	3472	3125	3125	3472	3125	3125
Grid Losses	[MW]	444	424	434	1016	700	709
Overload of							
grid components	[-]	no	no	no	yes	no	no

Congestion Management under Inflow of Renewables - Wind Numerical Tests

		Ref.	Opt.	Opt.	Ref.	Opt.	Opt.
		(AC)	(DoDu)	(AC)	(AC)	(DoDu)	(AC)
Wind	[-]		40%			80%	
Generation Cost	[T€]	1231	1200	1201	971	986	987
Import	[MW]	5347	5882	5882	5347	5483	5483
Export	[MW]	3472	3125	3125	3472	3125	3125
Grid Losses	[MW]	444	424	434	1016	700	709
Overload of							
grid components	[-]	no	no	no	yes	no	no

		Ref.	Opt.	Opt.
		(AC)	(DoDu)	(AC)
Wind	[-]		100%	
Generation Cost	[T€]	858	945	945
Import	[MW]	5437	5483	5483
Export	[MW]	3472	3125	3125
Grid Losses	[MW]	1468	762	768
Overload of				
grid components	[-]	yes	no	no