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Rüdiger Schultz
Chair of Discrete Mathematics and Optimization
Faculty of Mathematics, University of Duisburg-Essen



The Classic Case and Beyond :

Continuous Variables – Convexity !!

Φ(t) = min{y+ + y− : y+ − y− = t, y+ ∈ IR+, y
− ∈ IR+}

= max{tu : −1 ≤ u ≤ 1} = |t| Newsboy – Inventory Problem,

Minor modification with major impact:

Φ(t) = min
{1

2
v + y+ + y− : v + y+ − y− = t, v ∈ ZZ+, y

+ ∈ IR+, y
− ∈ IR+

}
= min

{1

2
v + |t − v | : v ∈ ZZ+

}
.

v = 3
v = 2

v = 0
v = 1

Φ(t) = min
{

1
2
· v + |t− v| : v ∈ Z+

}
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Φ(t) = min{v+ + v− : y + v+ − v− = t, y ∈ IR+, v
+ ∈ ZZ+, v

− ∈ ZZ+}

=

{
0 if t ≥ 0
d−te if t < 0.

.. .
Φ(t) =

{
0 t ≥ 0

⌈−t⌉ t < 0
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Random linear (mixed-integer) program:

min
{
c>x + q>y : Tx + Wy = z(ω), x ∈ X , y ∈ Y

}

with X ,Y (mixed-integer) polyhedra and nonanticipativity

x → z(ω) −→ y = y(x , ω)

or, more explicitly,

min
x

{
c>x + min

y

{
q>y : Wy = z(ω)− Tx , y ∈ Y

}

︸ ︷︷ ︸
f (x,ω)

: x ∈ X

}

Stochastic programmng is about “optimizing or ranking
against each other the random variables f (x , .) as x varies”.



Random linear (mixed-integer) program:

min
{
c>x + q>y : Tx + Wy = z(ω), x ∈ X , y ∈ Y

}

with X ,Y (mixed-integer) polyhedra and nonanticipativity

x → z(ω) −→ y = y(x , ω)

or, more explicitly,

min
x

{
c>x + min

y

{
q>y : Wy = z(ω)− Tx , y ∈ Y

}

︸ ︷︷ ︸
f (x,ω)

: x ∈ X

}

Stochastic programmng is about “optimizing or ranking
against each other the random variables f (x , .) as x varies”.



Random linear (mixed-integer) program:

min
{
c>x + q>y : Tx + Wy = z(ω), x ∈ X , y ∈ Y

}

with X ,Y (mixed-integer) polyhedra and nonanticipativity

x → z(ω) −→ y = y(x , ω)

or, more explicitly,

min
x

{
c>x + min

y

{
q>y : Wy = z(ω)− Tx , y ∈ Y

}

︸ ︷︷ ︸
f (x,ω)

: x ∈ X

}

Stochastic programmng is about “optimizing or ranking
against each other the random variables f (x , .) as x varies”.



Random linear (mixed-integer) program:

min
{
c>x + q>y : Tx + Wy = z(ω), x ∈ X , y ∈ Y

}

with X ,Y (mixed-integer) polyhedra and nonanticipativity

x → z(ω) −→ y = y(x , ω)

or, more explicitly,

min
x

{
c>x + min

y

{
q>y : Wy = z(ω)− Tx , y ∈ Y

}

︸ ︷︷ ︸
f (x,ω)

: x ∈ X

}

Stochastic programmng is about “optimizing or ranking
against each other the random variables f (x , .) as x varies”.



Stochastic Integer Programs:

Hilbert, Graver, Gordan-Dickson, and Maclagan

with Raymond Hemmecke:

Decomposition of test sets in stochastic integer programming,

Mathematical Programming 94 (2003), 323 - 341.



Gordan+Dickson →deterministic, integer vectors
Maclagan → two-stage stochastic, monomial ideals
Nash-Williams, Aschenbrenner+Hemmecke → multi-stage stoch., vector trees



Issues – IP:

I Ideal: I ⊆ k[x1, . . . , xn] ideal, if
(i) 0 ∈ I;
(ii) If f , g ∈ I, then f + g ∈ I;
(iii) If f ∈ I and h ∈ k[x ], then hf ∈ I

I Ground Set: S := Zn

I Partial Order on Zn: u v v , if

|u(j) · v (j) ≥ 0 and |u(j)| ≤ |v (j)| for all components j .

Commonly said “u reduces v”

I The Set B



Optimality Certificates, Test Sets

Definition (Optimality Certificate, Test Set)
A set Tc ⊆ ZZ d is called an optimality certificate (or test set) for the
family of problems

(IP)c,b min{cᵀz : Az = b, z ∈ ZZ d
+}

as b ∈ IR l varies if

1. cᵀt > 0 for all t ∈ Tc , and

2. for every b ∈ IR l and for every non-optimal feasible solution
z0 ∈ ZZ d

+ to Az = b, there exists an improving vector t ∈ Tc such
that z0 − t is feasible.

A set T is called a universal optimality certificate for the family of
problems (IP)c,b as b ∈ IR l and c ∈ IRd vary if it contains an
optimality certificate Tc for every c ∈ IRd .
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Augmentation, Feasibility

Algorithm (Augmentation Algorithm)

Input: a feasible solution z0 to (IP)c,b, an optimality certificate Tc for (IP)c,b

Output: an optimal point zmin of (IP)c,b

while there is t ∈ Tc with cᵀt > 0 such that z0 − t is feasible do

z0 := z0 − t

return z0

Algorithm (Feasible Solution)

Input: a solution z1 ∈ ZZd to Az = b, a universal optimality certificate T for
(IP)c,b
Output: a feasible solution to (IP)c,b or “FAIL” if no such exists

While there is some g ∈ T such that g ≤ z+
1 and ‖(z1 − g)−‖1 < ‖z−1 ‖1 do

z1 := z1 − g

if ‖z−1 ‖1 > 0 then return “FAIL” else return z1
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Definition (Hilbert basis)
Let C be a polyhedral cone with rational generators. A finite set
H = {h1, . . . , ht} ⊆ C ∩ Zd is a Hilbert basis of C if every z ∈ C ∩ Zd has a
representation of the form

z =
t∑

i=1

λihi ,

with non-negative integral multipliers λ1, . . . , λt .

Let Oj be the j th orthant of ZZ d and Hj(A) be the unique minimal Hilbert
basis of the pointed rational cone {v ∈ IRd : Av = 0} ∩Oj .

Lemma (Graver set)
The set

G(A) :=
⋃

Hj(A) \ {0}

is a universal optimality criterion, called the IP Graver set or IP Graver
basis, for the family of problems (IP)c,b as b ∈ IR l and c ∈ IRd vary.
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u v v iff

I u+ ≤ v+ and u− ≤ v− where max{0, u(i)} are the components of u+

and max{0,−u(i)} those of u−.

I u belongs to the same orthant as v (sign compatibility) and its
components are not greater in absolute value than the corresponding
components of v .

Algorithm (Normal Form Algorithm)

Input: a vector s, a set G of vectors
Output: a normal form of s with respect to G

while there is some g ∈ G such that g v s do
s := s − g

return s
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Algorithm (Computing IP Graver Sets)

Input: F =
⋃

f∈F (A)

{f ,−f }, where F (A) is a set of vectors generating ker(A)

over ZZ
Output: a set G which contains the IP Graver set G(A)

G := F
C :=

⋃
f ,g∈G

{f + g} (forming S-vectors)

while C 6= ∅ do
s := an element in C
C := C \ {s}
f := normalForm(s,G)
if f 6= 0 then

C := C ∪
⋃

g∈G
{f + g} (adding S-vectors)

G := G ∪ {f }
return G .



Two-Stage Stochastic Integer Programs

min{cᵀz : ANz = b, z ∈ ZZd
+}

AN :=




A 0 0 · · · 0
T W 0 · · · 0
T 0 W · · · 0
...

...
...

. . .
...

T 0 0 · · · W




with

N denoting the number of scenarios, d = m + Nn,

c = (c0, c1, . . . , cN)
ᵀ := (h, π1q, . . . , πNq)

ᵀ

b = (a, ξ1, . . . , ξN)ᵀ.



We will

I extend the notion of S-vectors

I retain the pattern of the previous completion method

I work on pairs (u,Vu) (defined below) instead of vectors.

I employ a generalization of the Gordan-Dickson Lemma, Maclagan’s
Theorem (Proc. AMS, 2001), to ensure termination of the algorithm.

I see, that the block angular structure of the problem matrix induces a
symmetry structure on the elements of the Graver set.

I see, that the Graver set vectors are formed by a comparably small
number of building blocks.

I compute these building blocks without computing the Graver set.

I reconstruct an improving vector to a given non-optimal feasible
solution, scenario by scenario, using building blocks only.

I find an optimal solution with comparably small effort, once the
building blocks have been computed.



Lemma (u, v1, . . . , vN) ∈ ker(AN) if and only if (u, v1), . . . , (u, vN) ∈ ker(A1).

Definition
Let z = (u, v1, . . . , vN) ∈ ker(AN) and call the vectors u, v1, . . . , vN the
building blocks of z . Denote by GN the Graver test set associated with AN

and collect into HN all those vectors arising as building blocks of some
z ∈ GN . By H∞ denote the set

⋃∞
N=1HN .

The set H∞ contains both m-dimensional vectors u associated with the
first-stage and n-dimensional vectors v related to the second-stage in the
stochastic program. For convenience, we will arrange the vectors in H∞
into pairs (u,Vu).

Definition

For fixed u ∈ H∞, all those vectors v ∈ H∞ are collected into Vu for which

(u, v) ∈ ker(A1).
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Finiteness of H∞

Definition
We say that (u′,Vu′) reduces (u,Vu), or (u′,Vu′) v (u,Vu) for
short, if the following conditions are satisfied:

I u′ v u,

I for every v ∈ Vu there exists a v ′ ∈ Vu′ with v ′ v v ,

I u′ 6= 0 or there exist vectors v ∈ Vu and v ′ ∈ Vu′ with
0 6= v ′ v v .



Theorem (Maclagan 2001)
Let I be an infinite collection of monomial ideals in a polynomial ring.
Then there are two ideals I , J ∈ I with I ⊆ J.

Definition
We associate with (u,Vu), u 6= 0,and with (0,V0) the monomial ideals

I (u,Vu) ∈ Q[x1, . . . , x2m+2n] and I (0,V0) ∈ Q[x1, . . . , x2n]

generated by all the monomials x (u+,u−,v+,v−) with v ∈ Vu, and by all the

monomials x (v+,v−) with v 6= 0 and v ∈ V0, respectively.

Lemma
Let ((u1,Vu1 ), (u2,Vu2 ), . . .) be a sequence of pairs such that
(ui ,Vui ) 6v (uj ,Vuj ) whenever i < j . Then this sequence is finite.

Theorem (Finiteness of H∞)
Given rational matrices A, T , and W of appropriate dimensions, and
let H∞ be defined as above. Then H∞ is a finite set.



Computation of H∞
Idea:

I Retain the completion pattern of Graver set computation, but
work with pairs (u,Vu) instead.

I Define the two main ingredients, S-vectors and normalForm, that
means the operations ⊕ and 	, appropriately.

I Now, the objects f , g , and s all are pairs of the form (u,Vu).

Algorithm (Extended normal form algorithm)

Input: a pair s, a set G of pairs

Output: a normal form of s with respect to G

while there is some g ∈ G such that g v s do s := s 	 g

return s



Algorithm (Compute H∞)

Input: a generating set F of ker(A1) in (u,Vu)-notation to be specified below

Output: a set G which contains H∞

G := F
C :=

⋃
f ,g∈G

{f ⊕ g} (forming S-vectors)

while C 6= ∅ do
s := an element in C
C := C \ {s}
f := normalForm(s,G)

if f 6= (0, {0}) then
C := C ∪

⋃
g∈G∪{f }

{f ⊕ g} (adding S-vectors)

G := G ∪ {f }
return G .



Choose as input the set of building blocks of all vectors in F ∪ {0}
in (u,Vu)-notation. Herein, F is a generating set for ker(A1) over ZZ
which contains a generating set for

{(0, v) : Wv = 0} ⊆ ker(A1)

consisting only of vectors with zero first-stage component.

Definition (S-vectors, Reduction)
Let

(u,Vu)⊕ (u′,Vu′) := (u + u′,Vu + Vu′),

where
Vu + Vu′ := {v + v ′ : v ∈ Vu, v

′ ∈ Vu′}.
Moreover, let

(u,Vu)	 (u′,Vu′) := (u − u′, {v − v ′ : v ∈ Vu, v
′ ∈ Vu′ , v

′ v v}).



Feasibility at Building-Block Level

Define the auxiliary cost function c ′ by

(c ′)(i) :=

{
0 if z

(i)
1 ≥ 0

−1 if z
(i)
1 < 0

, for i = 1, . . . ,m + Nn.



Consider the two-stage program

min{35x1 + 40x2 +
1

N

N∑
ν=1

16yν1 + 19yν2 + 47yν3 + 54yν4 :

x1 + yν1 + yν3 ≥ ξν1 ,

x2 + yν2 + yν4 ≥ ξν2 ,

2yν1 + yν2 ≤ ξν3 ,

yν1 + 2yν2 ≤ ξν4 ,

x1, x2, y
ν
1 , y

ν
2 , y

ν
3 , y

ν
4 ∈ ZZ+}

Here, the random vector ξ ∈ IRs is given by the scenarios ξ1, . . . , ξN , all with equal
probability 1/N. The realizations of (ξν1 , ξ

ν
2 ) and (ξν3 , ξ

ν
4 ) are given by uniform

grids (of differing granularity) in the squares [300, 500]× [300, 500] and
[0, 2000]× [0, 2000], respectively. Timings are given in CPU seconds on a SUN
Enterprise 450, 300 MHz Ultra-SPARC.
It took 3.3 seconds to compute H∞ altogether consisting of 1438 building blocks
arranged into 25 pairs (u,Vu). Aug(H∞) then gives the times needed to augment
the solution x1 = x2 = yν1 = yν2 = 0, yν3 = ξν1 , and yν4 = ξν2 , ν = 1, . . .N to
optimality.

Example (ξ1, ξ2)-grid (ξ3, ξ4)-grid scen. var. Aug(H∞) CPLEX dualdec
1 5× 5 3× 3 225 902 1.52 0.63 > 1800
2 5× 5 21× 21 11025 44102 66.37 696.10 −
3 9× 9 21× 21 35721 142886 180.63 > 1 day −

Although further exploration is necessary, the above table seems to indicate linear
dependence of the computing time on the number N of scenarios, once H∞ has
been computed.



II

Unit Commitment – A Recurring Issue in Power
Management



Step Back in Time for 101 years

1915

Zschornewitz
Biggest lignite-fired thermal power station of its time inaugurated.

I Build within one year (Groundbreaking March 24, 1915, First Turbine
(16 MW) in Operation December 15, 1915, 1916: 8×16 MW installed)
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Unit Commitment

I is the problem of determining switching and operational decisions,

I for a system of power producing units, over some time horizon,

I so that all relevant technological and economical conditions are met.

1985 VEAG in (East Germany)

2006 Virtual Power Plant
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Specification (Mixed-Integer Linear Program – When Deterministic)

Unit Commitment for a hydro-thermal system (early VEAG + Vattenfall)

min
{
c>1 ξ1 + c>2 ξ2 : A1ξ1 + A2ξ2 = b, ξ1 ∈ X1, ξ2 ∈ X2

}
Variables:

I ξ1: start-up/shut-down for thermal units,

I ξ2: all remaining, i.e., power output, pumping/generating in pumped-storage
(psp), water levels in psp, auxillary variables for modeling specific effects.

Objective:

I affinely linear fuel costs for operation and piece-wise constant for switching
of thermal units

Constraints:

I connecting units: load balances, reserve balances, ramping

I for individual units: output bounds, minimum up- and down-times, water
management in psp,
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Unit Commitment under Uncertainty Fourty Years Ago

I Before deregulation, power producers optimized costs by fuel cost
minimization, with power demand as major source of uncertainty.

I TV sets consumed more energy than today. Their operation had to be
included when estimating power demand, at least during certain
periods of the day.

I In the 1970ies and 1980ies Heavyweight Boxing was a very popular
spectator sport (Ali, Frazier, Foreman etc.), in West and East
Germany.

I Time zone difference and duration of fight (knock-out: if at all and
when) produced random variables that were hard to handle ... and
(induced) water consumption was uncertain, too!
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Specification (continued)

Unit Commitment with random load

f (ξ1, ω) = [c>1 ξ1 + min
ξ2∈X2

{
c>2 ξ2 : A2ξ2 = b(ω)− A1ξ1

}
, ω ∈ Ω

QE(ξ1) :=

∫
Ω

[
c>1 ξ1 + min

ξ2∈X2

{
c>2 ξ2 : A2ξ2 = b(ω)− A1ξ1

}]
P(dω)

Variables:

I ξ1 ∈ X1: start-up/shut-down for thermal units,

I ξ2(ω): all remaining, i.e., power output, pumping/generating in
pumped-storage (psp), water levels in psp, auxillary variables for modeling
specific effects.

Objective:

f (ξ1, .) random cost profile for operation and switching of thermal units
inuced by start-up/shut-down scheme ξ1

QE(ξ1) :=

∫
Ω
f (ξ1, ω)P(dω)−−− Expected Value – Risk Neutral Model
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Unit Commitment under Uncertainty over the Years

min
x

{
c>x + min

y

{
q>y : Wy = h(ω)− Tx , y ∈ Y

}
︸ ︷︷ ︸

f (x,ω)

: x ∈ X

}

I 1985: Load the only quantity with relevant uncertainty -
Risk neutral models, only !

f (x , z(ω))− total cost for up/down regime x under random load z(ω)

I 2006: After deregulation omnipresent uncertainty at input (renewables) and
output sides. - Risk aversion became more and more indispensable !

f (x , z(ω)) −
total cost for aquisition x of a vpp under random power in- and outputs z

I 2010: Congestion and capacity management under uncertain in- and outputs

f (x , z(ω)) −
x pre-commitment so that renewables’ inflow z compensated with

minimal re-commitment/re-dispatch and without overloading grid components
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III

Some Thoughts on Suitable Mathematics



Viewpoints

(I) Ill-posed optimization problem
Destructive – remove stochasticity swiftly,

min {f (x , ω) : x ∈ X}

As long as ω is unknown, it makes no sense to address optimality.

Remedy:

Arrive at a deterministic problem by “removing ω in formal manner”.

I Replace ω by its expectation E[ω] and solve min {f (x ,E[ω]) : x ∈ X}
I Consider expected value E [f (x , ω)] and solve min {E [f (x , ω)] : x ∈ X}
I Apply a statistical parameter S and solve min {S [f (x , ω)] : x ∈ X}



(II) Optimizing or ranking in a family of random variables
Constructive: Be happy about havng stochastic information on the
uncertain problem ingredients. Make active use of it.

{f (x , .) : Ω→ R}x∈X
Remedy:

Arrive at a deterministic problem by implementing your attitude towards
risk .

I Risk neutral: Apply expectation E to f (x , ω) and solve

min {E [f (x , ω)] : x ∈ X}

I Risk averse by criterion: Apply some risk measure R and solve

min {R [f (x , ω)] : x ∈ X}

I Risk averse by constraint: Rank according to some stochastic order.
Introduce a benchmark random variable b(ω) leading to the constraint

{x ∈ X : f (x , ω) � b(ω)}



Solution by Scenario Decomposition

QE(ξ1) :=

∫
Ω

[
c>1 ξ1 + min

ξ2∈X2

{
c>2 ξ2 : A2ξ2(ω) = b(ω)− A1ξ1

}]
P(dω)

Assume the rhs b(ω) is the only random ingredient, and let it follow a finite
discrete probability distribution

with scenarios b1, . . . , bω , . . . , bS and probabilities π1, . . . , πω , . . . , πS

Then min{QE(ξ1) : ξ1 ∈ X1} is equivalent to the following large-scale block
angular mixed-integer linear program

min
{
c>1 ξ1 +

S∑
ω=1

πωc
>
2 ξ2ω : A1ξ1 + A2ξ21 = b1

...
. . .

...

A1ξ1 + A2ξ2ω = bω

...
. . .

...

A1ξ1 + ASξ2S = bS

ξ1 ∈ X1, ξ2ω ∈ X2, ω = 1, . . . , S
}



Scenario Decomposition

Basic Idea: Lagrangean Relaxation of Nonanticipativity[Carøe/Sch.1999]:

Introduce copies ξ11, . . . , ξ1ω, . . . , ξ1S of ξ1 and add ξ11 = . . . = ξ1ω = . . . = ξ1S .

Then apply Lagrangean Relaxation on the chain of identites.
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This includes solving the Lagrangean Dual which is a non-differentiable
convex optimization problem.
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Procedure:

I Objective function of the Lagrangean dual involves a minimization
which is separable with respect to the scenarios.

I Regaining primal feasibility after maximization in the Lagrangean
dual benefits from simplicity of relaxed constraints (chain of
identities).

I Duality gap inevitable, unless problem “is not really integer”. If gap
inacceptable then imbedding into branch-and-bound on ξ1 ∈ X1.

This works nicely as long as mixed-integer linear programming formulation
has the block structure
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III

Congestion Management in Power Nets



Load Flow Models – AC, DC, Ohmic Losses

Graph G = (V ,E) (undirected)

with nodes v ∈ V = {1, . . . , n}, edges e ∈ E ⊆ V × V .

AC Model with Voltage in Polar Coordinates

For all nodes v , voltage as complex number Uve
jθv with modulus Uv and

voltage angle θv , for slack node U1 = 1, θ1 = 0.

Moreover, for all e = vl ∈ E .

I Difference of Voltage Angles θvl = θv − θl ,
I Active Load Flow pvl ,

I Reactive Load Flow qvl .

For all edges in E (AC) Load Flow Equations

pvl = U2
v gvl − UvUlgvl cos θvl − UvUlbvl sin θvl ∀vl ∈ E

qvl = UvUlbvl cos θvl − UvUlgvl sin θvl − U2
v (bvl + b0

vl) ∀vl ∈ E
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AC Model with Voltage in Polar Coordinates

For all nodes v , voltage as complex number Uve
jθv with modulus Uv and

voltage angle θv , for slack node U1 = 1, θ1 = 0.

Moreover, for all e = vl ∈ E .

I Difference of Voltage Angles θvl = θv − θl ,
I Active Load Flow pvl ,

I Reactive Load Flow qvl .

For all edges in E (AC) Load Flow Equations

pvl = U2
v gvl − UvUlgvl cos θvl − UvUlbvl sin θvl ∀vl ∈ E

qvl = UvUlbvl cos θvl − UvUlgvl sin θvl − U2
v (bvl + b0

vl) ∀vl ∈ E



Load Flow Models

DC

Simplification

I θvl ≈ 0 ∀vl ∈ E hence sin θvl ≈ θvl und cos θvl ≈ 1

I Uv = 1 ∀v ∈ V

I No reactive power components.

From AC equations, only the first remains and becomes:

DC Load Flow Equation

pvl = bvl(θl − θv ) for all vl ∈ E
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Load Flow Models

DC Load Flow with Ohmic Losses

0

2

Mkl

1/gkl

kl22

Loss on vl ∈ E

νvl = gvl (U
2
v + U2

l )− 2gvlUvUl cos (θv − θl ) ∀vl ∈ E

From DC assumptions, Uv = Ul = 1 is employed. However, cos θvl ≈ 1 is not.

νvl = 2gvl (1− cos θvl ) Relaxation νvl ≥ 2gvl (1− cos θvl )
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Congestion Management under Inflow of Renewables

with Edmund Handschin, Christian Rehtanz (TU Dortmund), and:

Sebastian Kuhn (Mathematics, PhD 2008),
Daniel Waniek (Energy Science, PhD 2011)

I Optimal pre-commitment/
pre-dispatch to avoid grid congestion
with re-dispatch/re-commitment.

I DC model with Ohmic losses and
polyhedral approximation of convex
nonlinearities. incl. code.

I Mixed-integer linear models with
switching.

I Stochastics, decomposition.

I Variation of wind infeed rate from 40
via 80 to 100%.
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Case Study:

Based on a realistic model of the German power grid, for a given load
situation and wind infeed, a cost minimal infeed is sought for which no grid
components become overloaded.

Proceeding/Results:

I Code evaluation (MILP approximation) by

I Comparison with dispatch derived via merit order
I Double checking flows with commercial solver NEPLAN with

switching decisions and fixed by our code.

I Evaluation of losses over-estimation caused by relaxation.
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Congestion Management under Inflow of Renewables - Wind

Numerical Tests

Ref. Opt. Opt. Ref. Opt. Opt.
(AC) (DoDu) (AC) (AC) (DoDu) (AC)

Wind [-] 40 % 80 %
Generation Cost [Te] 1231 1200 1201 971 986 987
Import [MW] 5347 5882 5882 5347 5483 5483
Export [MW] 3472 3125 3125 3472 3125 3125
Grid Losses [MW] 444 424 434 1016 700 709
Overload of
grid components [-] no no no yes no no

Ref. Opt. Opt.
(AC) (DoDu) (AC)

Wind [-] 100 %
Generation Cost [Te] 858 945 945
Import [MW] 5437 5483 5483
Export [MW] 3472 3125 3125
Grid Losses [MW] 1468 762 768
Overload of
grid components [-] yes no no
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