Stein Variational Newton \& other Sampling-Based Inference Methods

Robert Scheichl

IWR
Universität Heidelberg

Collaborators:
G. Detommaso (Bath); T. Cui (Monash); A. Spantini \& Y. Marzouk (MIT); K. Anaya-Izquierdo \& S. Dolgov (Bath); C. Fox (Otago)

RICAM Special Semester on Optimization

Workshop 3 - Optimization and Inversion under Uncertainty Linz, November 11, 2019

Inverse Problems

Inverse Problems

$y \in \mathbb{R}^{N_{y}}$
Data y are limited in number, noisy, and indirect.
$x \in X$
Parameter x often a function (discretisation needed).
$F: X \rightarrow \mathbb{R}^{N_{y}}$
Continuous, bounded, and sufficiently smooth.

Bayesian interpretation

The (physical) model gives $\pi(y \mid x)$, the conditional probability of observing y given x. However, to predict, control, optimise or quantify uncertainty, the interest is often really in $\pi(x \mid y)$, the conditional probability of possible causes x given the observed data y - the inverse problem:

Bayesian interpretation

The (physical) model gives $\pi(y \mid x)$, the conditional probability of observing y given x. However, to predict, control, optimise or quantify uncertainty, the interest is often really in $\pi(x \mid y)$, the conditional probability of possible causes x given the observed data y - the inverse problem:

$$
\pi_{\mathrm{pos}}(x):=\underbrace{\pi(x \mid y) \propto \pi(y \mid x) \pi_{\mathrm{pr}}(x)}_{\text {Bayes' rule }}
$$

Bayesian interpretation

The (physical) model gives $\pi(y \mid x)$, the conditional probability of observing y given x. However, to predict, control, optimise or quantify uncertainty, the interest is often really in $\pi(x \mid y)$, the conditional probability of possible causes x given the observed data y - the inverse problem:

$$
\pi_{\mathrm{pos}}(x):=\underbrace{\pi(x \mid y) \propto \pi(y \mid x) \pi_{\mathrm{pr}}(x)}_{\text {Bayes' rule }}
$$

Extract information from $\pi_{\text {pos }}$ (means, covariances, event probabilities, predictions) by evaluating posterior expectations:

$$
\mathbb{E}_{\pi_{\mathrm{pos}}}[h(x)]=\int h(x) \pi_{\mathrm{pos}}(x) d x
$$

Bayes' Rule and Classical Inversion

Classically [Hadamard, 1923]: Inverse map " $F^{-1 "}(y \rightarrow x)$ is typically ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

Bayes' Rule and Classical Inversion

Classically [Hadamard, 1923]: Inverse map " $F^{-1 \text { " }}(y \rightarrow x)$ is typically ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

- least squares solution \hat{x} is maximum likelihood estimate
- prior distribution π_{pr} "acts" as regulariser - well-posedness !
- solution of regularised least squares problem is maximum a posteriori (MAP) estimator

Bayes' Rule and Classical Inversion

Classically [Hadamard, 1923]: Inverse map " $F^{-1 \text { " }}(y \rightarrow x)$ is typically ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

- least squares solution \hat{x} is maximum likelihood estimate
- prior distribution π_{pr} "acts" as regulariser - well-posedness !
- solution of regularised least squares problem is maximum a posteriori (MAP) estimator

However, in the Bayesian setting, the full posterior $\pi_{\text {pos }}$ contains more information than the MAP estimator alone, e.g. the posterior covariance matrix reveals components of x that are (relatively) more or less certain.

Bayes' Rule and Classical Inversion

Classically [Hadamard, 1923]: Inverse map " $F^{-1 \text { " }}(y \rightarrow x)$ is typically ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

- least squares solution \hat{x} is maximum likelihood estimate
- prior distribution π_{pr} "acts" as regulariser - well-posedness !
- solution of regularised least squares problem is maximum a posteriori (MAP) estimator

However, in the Bayesian setting, the full posterior $\pi_{\text {pos }}$ contains more information than the MAP estimator alone, e.g. the posterior covariance matrix reveals components of x that are (relatively) more or less certain.

- Possible to sample/explore via Metropolis-Hastings MCMC (in theory)

Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density $\pi_{\text {pos }}$) analytically (at least approximately) for more efficient inference.

Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density $\pi_{\text {pos }}$) analytically (at least approximately) for more efficient inference.

This is a challenging task since:

- $x \in \mathbb{R}^{d}$ is typically high-dimensional (e.g., discretised function)
- $\pi_{\text {pos }}$ is in general non-Gaussian
(even if π_{pr} and observation noise are Gaussian)
- evaluations of likelihood may be expensive (e.g., solution of a PDE)

Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density $\pi_{\text {pos }}$) analytically (at least approximately) for more efficient inference.

This is a challenging task since:

- $x \in \mathbb{R}^{d}$ is typically high-dimensional (e.g., discretised function)
- $\pi_{\text {pos }}$ is in general non-Gaussian (even if π_{pr} and observation noise are Gaussian)
- evaluations of likelihood may be expensive (e.g., solution of a PDE)

Key Tools

Transport Maps, Optimisation, Principle Component Analysis, Model Order Reduction, Hierarchies, Sparsity, Low Rank Approximation

Deterministic Couplings of Probability Measures

Deterministic Couplings of Probability Measures

Core idea [Moselhy, Marzouk, 2012]

- Choose a reference distribution η (e.g., standard Gaussian)
- Seek transport map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\sharp} \eta=\pi$ (or equivalently its inverse $S=T^{-1}$)

Deterministic Couplings of Probability Measures

Core idea [Moselhy, Marzouk, 2012]

- Choose a reference distribution η (e.g., standard Gaussian)
- Seek transport map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\sharp} \eta=\pi$ (or equivalently its inverse $S=T^{-1}$)
- In principle, enables exact (independent, unweighted) sampling!

Deterministic Couplings of Probability Measures

Core idea [Moselhy, Marzouk, 2012]

- Choose a reference distribution η (e.g., standard Gaussian)
- Seek transport map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\sharp} \eta=\pi$ (or equivalently its inverse $S=T^{-1}$)
- In principle, enables exact (independent, unweighted) sampling!
- Satisfying these conditions only approximately can still be useful!

Variational Inference

- Goal: Sampling from target density $\pi(x)$

Variational Inference

- Goal: Sampling from target density $\pi(x)$
- Given a reference density p, find an invertible map \hat{T} such that

$$
\hat{T}:=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} p \| \pi\right)=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(p \| T_{\sharp}^{-1} \pi\right)
$$

where

$$
\begin{aligned}
T_{\sharp}(x) & :=p\left(T^{-1}(x)\right)\left|\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)\right| \quad \ldots \quad \text { push-forward of } p \\
\mathscr{D}_{\mathrm{KL}}(p \| q) & :=\int \log \left(\frac{p(x)}{q(x)}\right) p(x) \mathrm{d} x \ldots
\end{aligned}
$$

Variational Inference

- Goal: Sampling from target density $\pi(x)$
- Given a reference density p, find an invertible map \hat{T} such that

$$
\hat{T}:=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} p \| \pi\right)=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(p \| T_{\sharp}^{-1} \pi\right)
$$

where

$$
\begin{aligned}
T_{\sharp}(x) & :=p\left(T^{-1}(x)\right)\left|\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)\right| \ldots \text { push-forward of } p \\
\mathscr{D}_{\mathrm{KL}}(p \| q) & :=\int \log \left(\frac{p(x)}{q(x)}\right) p(x) \mathrm{d} x \ldots
\end{aligned}
$$

- Advantage of using $\mathscr{D}_{\mathrm{KL}}$: do not need normalising constant for π

Variational Inference

- Goal: Sampling from target density $\pi(x)$
- Given a reference density p, find an invertible map \hat{T} such that

$$
\hat{T}:=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} p \| \pi\right)=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(p \| T_{\sharp}^{-1} \pi\right)
$$

where

$$
\begin{aligned}
T_{\sharp}(x) & :=p\left(T^{-1}(x)\right)\left|\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)\right| \quad \ldots \quad \text { push-forward of } p \\
\mathscr{D}_{\mathrm{KL}}(p \| q) & :=\int \log \left(\frac{p(x)}{q(x)}\right) p(x) \mathrm{d} x \ldots
\end{aligned}
$$

- Advantage of using $\mathscr{D}_{\mathrm{KL}}$: do not need normalising constant for π
- Minimise over some suitable class \mathscr{T} of maps T (where ideally Jacobian determinant $\left|\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)\right|$ is easy to evaluate)

Variational Inference

- Goal: Sampling from target density $\pi(x)$
- Given a reference density p, find an invertible map \hat{T} such that

$$
\hat{T}:=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} p \| \pi\right)=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(p \| T_{\sharp}^{-1} \pi\right)
$$

where

$$
\begin{aligned}
T_{\sharp}(x) & :=p\left(T^{-1}(x)\right)\left|\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)\right| \ldots \text { push-forward of } p \\
\mathscr{D}_{\mathrm{KL}}(p \| q) & :=\int \log \left(\frac{p(x)}{q(x)}\right) p(x) \mathrm{d} x \ldots
\end{aligned}
$$

- Advantage of using $\mathscr{D}_{\mathrm{KL}}$: do not need normalising constant for π
- Minimise over some suitable class \mathscr{T} of maps T (where ideally Jacobian determinant $\left|\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)\right|$ is easy to evaluate)
- To improve: enrich class \mathscr{T} or use samples of $T_{\sharp}^{-1} \pi$ as proposals for MCMC or in importance sampling (see below)

Many Choices ("Architectures") for \mathscr{T} possible

Examples: (list not comprehensive!!)

(1) Optimal Transport \& Knothe-Rosenblatt Rearrangement [Moselhy, Marzouk, 2012], [Marzouk, Moselhy, Parno, Spantini, 2016]
(2) Normalizing Flows [Rezende, Mohamed, 2015] (and related methods in the ML literature)

Many Choices ("Architectures") for \mathscr{T} possible

Examples: (list not comprehensive!!)

(1) Optimal Transport \& Knothe-Rosenblatt Rearrangement [Moselhy, Marzouk, 2012], [Marzouk, Moselhy, Parno, Spantini, 2016]
(2) Normalizing Flows [Rezende, Mohamed, 2015] (and related methods in the ML literature)
(3) Kernel-based variational inference: Stein Variational Methods [Liu, Wang, 2016], [Detommaso, Cui, Spantini, Marzouk, RS, 2018], [Chen, Wu, Chen, O'Leary-Roseberry, Ghattas, arXiv 2019]

Many Choices ("Architectures") for \mathscr{T} possible

Examples: (list not comprehensive!!)

(1) Optimal Transport \& Knothe-Rosenblatt Rearrangement [Moselhy, Marzouk, 2012], [Marzouk, Moselhy, Parno, Spantini, 2016]
(2) Normalizing Flows [Rezende, Mohamed, 2015] (and related methods in the ML literature)
(3) Kernel-based variational inference: Stein Variational Methods [Liu, Wang, 2016], [Detommaso, Cui, Spantini, Marzouk, RS, 2018], [Chen, Wu, Chen, O'Leary-Roseberry, Ghattas, arXiv 2019]
(4) Layers of low-rank maps [Bigoni, Zahm, Spantini, Marzouk, arXiv 2019]
(5) Layers of hierarchical invertible neural networks (HINT) not today! [Detommaso, Kruse, Ardizzone, Rother, Köthe, RS, arXiv 2019]

Many Choices ("Architectures") for \mathscr{T} possible

Examples: (list not comprehensive!!)

(1) Optimal Transport \& Knothe-Rosenblatt Rearrangement [Moselhy, Marzouk, 2012], [Marzouk, Moselhy, Parno, Spantini, 2016]
(2) Normalizing Flows [Rezende, Mohamed, 2015] (and related methods in the ML literature)
(3) Kernel-based variational inference: Stein Variational Methods [Liu, Wang, 2016], [Detommaso, Cui, Spantini, Marzouk, RS, 2018], [Chen, Wu, Chen, O'Leary-Roseberry, Ghattas, arXiv 2019]
(4) Layers of low-rank maps [Bigoni, Zahm, Spantini, Marzouk, arXiv 2019]
(5) Layers of hierarchical invertible neural networks (HINT) not today! [Detommaso, Kruse, Ardizzone, Rother, Köthe, RS, arXiv 2019]
(6) Low-rank tensor approx. \& Knothe-Rosenblatt rearrangement [Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

A Stein Variational Newton (SVN) Method [Detommaso, Cui, Spantini, Marzouk, RS, 2018]

Stein variational gradient descent [Liu, Wang, 2016]

- Construct \hat{T} as a composition of simple maps \hat{T}_{ℓ} :

$$
\hat{T}:=\hat{T}_{1} \circ \cdots \circ \hat{T}_{\ell} \circ \cdots, \quad \text { where } \hat{T}_{\ell}:=I+\hat{Q}_{\ell}
$$

- Stein Variational Gradient Descent (SVGD) picks steepest descent direction in a Reproducing Kernel Hilbert Space (RKHS) \mathscr{H}^{d} with reproducing kernel $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$

Stein variational gradient descent [Liu, Wang, 2016]

- Construct \hat{T} as a composition of simple maps \hat{T}_{ℓ} :

$$
\hat{T}:=\hat{T}_{1} \circ \cdots \circ \hat{T}_{\ell} \circ \cdots, \quad \text { where } \hat{T}_{\ell}:=I+\hat{Q}_{\ell}
$$

- Stein Variational Gradient Descent (SVGD) picks steepest descent direction in a Reproducing Kernel Hilbert Space (RKHS) \mathscr{H}^{d} with reproducing kernel $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$
- Given a reference measure p_{ℓ} in the ℓ th step, define

$$
J_{p_{\ell}}: \mathscr{H}^{d} \rightarrow \mathbb{R} \quad \text { s.t. } \quad J_{p_{\ell}}[Q]:=\mathscr{D}_{\mathrm{KL}}(\underbrace{(I+Q)_{\sharp}}_{T_{\sharp}} p_{\ell} \| \pi)
$$

- Then \hat{Q}_{ℓ} is chosen to satisfy $J_{p_{\ell}}\left[\hat{Q}_{\ell}\right]<J_{p_{\ell}}[0]$

Stein variational gradient descent [Liu, Wang, 2016]

- Construct \hat{T} as a composition of simple maps \hat{T}_{ℓ} :

$$
\hat{T}:=\hat{T}_{1} \circ \cdots \circ \hat{T}_{\ell} \circ \cdots, \quad \text { where } \hat{T}_{\ell}:=I+\hat{Q}_{\ell}
$$

- Stein Variational Gradient Descent (SVGD) picks steepest descent direction in a Reproducing Kernel Hilbert Space (RKHS) \mathscr{H}^{d} with reproducing kernel $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$
- Given a reference measure p_{ℓ} in the ℓ th step, define

$$
J_{p_{\ell}}: \mathscr{H}^{d} \rightarrow \mathbb{R} \quad \text { s.t. } \quad J_{p_{\ell}}[Q]:=\mathscr{D}_{\mathrm{KL}}(\underbrace{(I+Q)_{\sharp}}_{T_{\sharp}} p_{\ell} \| \pi)
$$

- Then \hat{Q}_{ℓ} is chosen to satisfy $J_{p_{\ell}}\left[\hat{Q}_{\ell}\right]<J_{p_{\ell}}[0]$
- SVGD uses (functional) gradient descent in \mathscr{H}^{d} and picks

$$
\hat{Q}_{\ell}(z):=-\nabla J_{p_{\ell}}[\mathbf{0}]=\mathbb{E}_{x \sim p_{\ell}}\left[\nabla_{x} \log \pi(x) k(x, z)+\nabla_{x} k(x, z)\right]
$$

Stein variational gradient descent [Liu, Wang, 2016]

- Finally one defines $p_{\ell+1}:=\left(\hat{T}_{\ell}\right)_{\sharp} p_{\ell}=\left(I+\hat{Q}_{\ell}\right)_{\sharp} p_{\ell}$
- In practice, p_{ℓ} taken as the empirical density of N particles $\left(x_{j}^{(\ell)}\right)_{j=1}^{N}$ (as in filtering or sequential Monte Carlo methods) such that

$$
\hat{Q}_{\ell}(z):=\frac{1}{N} \sum_{j=1}^{N}\left[\nabla_{x} \log \pi\left(x_{i}^{(\ell)}\right) k\left(x_{i}^{(\ell)}, z\right)+\nabla_{x} k\left(x_{i}^{(\ell)}, z\right)\right]
$$

Stein variational gradient descent [Liu, Wang, 2016]

- Finally one defines $p_{\ell+1}:=\left(\hat{T}_{\ell}\right)_{\sharp} p_{\ell}=\left(I+\hat{Q}_{\ell}\right)_{\sharp} p_{\ell}$
- In practice, p_{ℓ} taken as the empirical density of N particles $\left(x_{j}^{(\ell)}\right)_{j=1}^{N}$ (as in filtering or sequential Monte Carlo methods) such that

$$
\hat{Q}_{\ell}(z):=\frac{1}{N} \sum_{j=1}^{N}\left[\nabla_{x} \log \pi\left(x_{i}^{(\ell)}\right) k\left(x_{i}^{(\ell)}, z\right)+\nabla_{x} k\left(x_{i}^{(\ell)}, z\right)\right]
$$

Algorithm 2: Stein variational gradient descent (SVGD)
Input : Particles $\left(x_{j}^{(\ell)}\right)_{j=1}^{N}$, step size ε
Output: Particles $\left(x_{j}^{(\ell+1)}\right)_{j=1}^{N}$
for $j=1,2, \ldots, N$ do

$$
x_{j}^{(\ell+1)} \leftarrow T_{\ell}\left(x_{j}^{(\ell)}\right):=x_{j}^{(\ell)}+\varepsilon \hat{Q}_{\ell}\left(x_{j}^{(\ell)}\right)
$$

end for

1st Improvement: Using second-order information

- Particles are evolved sequentially from initial distribution $p_{0}=p$ to final distribution $p_{L} \approx \pi$.

1st Improvement: Using second-order information

- Particles are evolved sequentially from initial distribution $p_{0}=p$ to final distribution $p_{L} \approx \pi$.
- SVGD is a deterministic first-order optimisation algorithm. We can accelerate it by introducing second-order information!

1st Improvement: Using second-order information

- Particles are evolved sequentially from initial distribution $p_{0}=p$ to final distribution $p_{L} \approx \pi$.
- SVGD is a deterministic first-order optimisation algorithm. We can accelerate it by introducing second-order information!
- Representing $\hat{Q}_{\ell}(x)=\sum_{j=1}^{N} c_{j} k_{j}(x)$, where $k_{j}(x):=k\left(x, x_{j}^{(\ell)}\right)$, the (exact) Newton step can be computed by solving the linear system

$$
H c=g
$$

where

$$
\begin{aligned}
H_{m n} & :=\mathbb{E}_{p_{\ell}}\left[-\nabla^{2} \log \pi k_{m} k_{n}+\nabla k_{m} \nabla k_{n}^{\top}\right], & m, n & =1, \ldots, N, \\
g_{m} & :=\mathbb{E}_{p_{\ell}}\left[\nabla \log \pi k_{m}+\nabla k_{m}\right], & m & =1, \ldots, N .
\end{aligned}
$$

1st Improvement: Using second-order information

- Particles are evolved sequentially from initial distribution $p_{0}=p$ to final distribution $p_{L} \approx \pi$.
- SVGD is a deterministic first-order optimisation algorithm. We can accelerate it by introducing second-order information!
- Representing $\hat{Q}_{\ell}(x)=\sum_{j=1}^{N} c_{j} k_{j}(x)$, where $k_{j}(x):=k\left(x, x_{j}^{(\ell)}\right)$, the (exact) Newton step can be computed by solving the linear system

$$
H c=g
$$

where

$$
\begin{aligned}
H_{m n} & :=\mathbb{E}_{p_{\ell}}\left[-\nabla^{2} \log \pi k_{m} k_{n}+\nabla k_{m} \nabla k_{n}^{\top}\right], & m, n & =1, \ldots, N, \\
g_{m} & :=\mathbb{E}_{p_{\ell}}\left[\nabla \log \pi k_{m}+\nabla k_{m}\right], & m & =1, \ldots, N .
\end{aligned}
$$

- In practice, use block-diagonal approximation (inexact Newton)

$$
\mathbb{H}_{m m} c_{m}=g_{m}, \quad \text { for } m=1, \ldots, N, \quad \text { and set } \quad \hat{Q}_{\ell}\left(x_{m}\right)=c_{m} .
$$

A Stein variational Newton method

Algorithm 3: Stein variational (inexact) Newton

Input : Particles $\left(x_{j}^{(\ell)}\right)_{j=1}^{N}$, step size ε
Output: Particles $\left(x_{j}^{(\ell+1)}\right)_{j=1}^{N}$
1: for $m=1,2, \ldots, N$ do
2: \quad Evaluate gradient g_{m} and Hessian $\mathbb{H}_{m m}$, replacing $\nabla^{2} \log \pi$ with Gauss-Newton approximation (only needs gradient info and is SPD)
3: Solve linear system

$$
\mathbb{H}_{m m} c_{m}=g_{m} \quad \text { and set } \quad \hat{Q}_{\ell}\left(x_{m}^{(\ell)}\right):=c_{m}
$$

4: Update particle m :

$$
x_{m}^{(\ell+1)} \leftarrow x_{m}^{(\ell)}+\varepsilon \hat{Q}_{\ell}\left(x_{m}^{(\ell)}\right)
$$

5: end for

2nd Improvement: Kernel based on Hessian information

- [Liu, Wang, 2016] chose simple isotropic Gaussian kernel

$$
k(x, z)=\exp \left(-\gamma\|x-z\|_{2}^{2}\right)
$$

- However, kernel should mimic the shape of the target distribution

2nd Improvement: Kernel based on Hessian information

- [Liu, Wang, 2016] chose simple isotropic Gaussian kernel

$$
k(x, z)=\exp \left(-\gamma\|x-z\|_{2}^{2}\right)
$$

- However, kernel should mimic the shape of the target distribution
- We use a scaled \& averaged Hessian (available at no extra cost!):

$$
M \approx \frac{1}{d} \mathbb{E}_{p_{\ell}}\left[-\nabla^{2} \log \pi\right]
$$

and then construct the (data-informed) kernel

$$
k(x, z)=\exp \left(-\frac{1}{2}\|x-z\|_{M}^{2}\right)
$$

(In practice, use Gauss-Newton Hessian approximation \mathbb{H} and MC average.)

Test Case 1: two-dimensional "double-banana"

- Reference distribution (prior): $p=N(0, I)$
- Forward model: $\mathscr{F}(x)=\log \left(\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}\right)$ (Rosenbrock function)
- Observation: $y=\mathscr{F}\left(x_{\text {true }}\right)+\xi$, with $x_{\text {true }} \sim N(0, I), \xi \sim N(0,0.09 /)$
- Number of particles: $N=1000$
- Compare SVN-H, SVN-I, SVGD-H and SVGD-I ("H" stands for scaled Hessian kernel and "I" stands for isotropic kernel)

SVGD-H -- 19 iterations

SVGD-I -- 14 iterations

SVGD-H -- 92 iterations

SVN-H -- 100 iterations

SVGD-H -- 183 iterations

Test Case 2: 100-dimensional conditional diffusion

- Reference distribution: $p=N(0, C)$ with $C\left(t, t^{\prime}\right)=\min \left(t, t^{\prime}\right)$
- Forward model: $\mathscr{F}(u)=\left[\hat{u}_{t_{5}}, \hat{u}_{t_{10}}, \ldots, \hat{u}_{t_{100}}\right]^{\top} \in \mathbb{R}^{20}$, where $\left(\hat{u}_{t_{i}}\right)_{i=1}^{100}$ is the Euler-Maruyama discretisation of

$$
d u_{t}=\frac{\beta u\left(1-u^{2}\right)}{\left(1+u^{2}\right)} d t+d x_{t}, \quad u_{0}=0
$$

for $t \in[0,1]$ with step size $\Delta t=1 / 100$

- Observation: $y=\mathscr{F}\left(x_{\text {true }}\right)+\xi$ with $x_{\text {true }} \sim N(0, I), \xi \sim N(0,0.01 I)$
- Number of particles: $N=1000$
- Compare SVN-H, SVN-I, SVGD-H and SVGD-I
("H" stands for scaled Hessian kernel and "I" stands for isotropic kernel)

Compare SVN-H with Hamiltonian MCMC (HMC)

Approximation and Sampling of Multivariate Probability Distributions in the Tensor Train Decomposition [Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

Recall: General Variational Inference

- In general, in Variational Inference aim to find

$$
\underset{\tau}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp \eta} \eta \pi\right)
$$

Recall: General Variational Inference

- In general, in Variational Inference aim to find

$$
\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} \eta \| \pi\right)
$$

- Note

$$
\mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} \eta \| \pi\right)=-\mathbb{E}_{\boldsymbol{u} \sim \eta}[\log \pi(\boldsymbol{T}(\boldsymbol{u}))+\log |\operatorname{det} \nabla \boldsymbol{T}(\boldsymbol{u})|]+\text { const }
$$

- Particularly useful family are Knothe-Rosenblatt rearrangements (see [Marzouk, Moshely, Parno, Spantini, 2016]):

$$
T(x)=\left[\begin{array}{l}
T_{1}\left(x_{1}\right) \\
T_{2}\left(x_{1}, x_{2}\right) \\
\vdots \\
T_{d}\left(x_{1}, x_{2}, \ldots, x_{d}\right)
\end{array}\right]
$$

Then: $\quad \log |\operatorname{det} \nabla \boldsymbol{T}(\boldsymbol{u})|=\sum_{k} \log \partial_{x_{k}} T^{k}$

Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, \exists ! triangular map satisfying $T_{\sharp \eta}=\pi$ (for abs. cont. η, π on \mathbb{R}^{d})
Can be computed explicitly via Conditional Distribution Sampling¹:

Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, \exists ! triangular map satisfying $T_{\sharp} \eta=\pi$ (for abs. cont. η, π on \mathbb{R}^{d})
Can be computed explicitly via Conditional Distribution Sampling ${ }^{1}$:

- Any density factorises into product of conditional densities:

$$
\pi\left(x_{1}, \ldots, x_{d}\right)=\pi_{1}\left(x_{1}\right) \pi_{2}\left(x_{2} \mid x_{1}\right) \cdots \pi_{d}\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)
$$

- Can sample (up to normalisation with known scaling factor)

$$
x_{k} \sim \pi_{k}\left(x_{k} \mid x_{1}, \ldots, x_{k-1}\right) \sim \int \pi\left(x_{1}, \ldots, x_{d}\right) d x_{k+1} \cdots d x_{d}
$$

${ }^{1}$ Rosenblatt '52; Devroye '86; Hormann, Leydold, Derflinger '04

Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, \exists ! triangular map satisfying $T_{\sharp} \eta=\pi$ (for abs. cont. η, π on \mathbb{R}^{d})
Can be computed explicitly via Conditional Distribution Sampling ${ }^{1}$:

- Any density factorises into product of conditional densities:

$$
\pi\left(x_{1}, \ldots, x_{d}\right)=\pi_{1}\left(x_{1}\right) \pi_{2}\left(x_{2} \mid x_{1}\right) \cdots \pi_{d}\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)
$$

- 1st step: Produce sample x_{1}^{i} via $1 D C D F$-inversion from

$$
\pi_{1}\left(x_{1}\right) \sim \int \pi\left(x_{1}, x_{2}, \ldots, x_{d}\right) d x_{2} \cdots d x_{d}
$$

${ }^{1}$ Rosenblatt '52; Devroye '86; Hormann, Leydold, Derflinger '04

Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, \exists ! triangular map satisfying $T_{\sharp} \eta=\pi$ (for abs. cont. η, π on \mathbb{R}^{d})
Can be computed explicitly via Conditional Distribution Sampling ${ }^{1}$:

- Any density factorises into product of conditional densities:

$$
\pi\left(x_{1}, \ldots, x_{d}\right)=\pi_{1}\left(x_{1}\right) \pi_{2}\left(x_{2} \mid x_{1}\right) \cdots \pi_{d}\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)
$$

- 1st step: Produce sample x_{1}^{i} via $1 D C D F$-inversion from

$$
\pi_{1}\left(x_{1}\right) \sim \int \pi\left(x_{1}, x_{2}, \ldots, x_{d}\right) d x_{2} \cdots d x_{d}
$$

- k-th step: Given $x_{1}^{i}, \ldots, x_{k-1}^{i}$, sample x_{k}^{i} via $1 D C D F$-inversion from $\pi_{k}\left(x_{k} \mid x_{1}^{i}, \ldots, x_{k-1}^{i}\right) \sim \int \pi\left(x_{1}^{i}, \ldots, x_{k-1}^{i}, x_{k}, x_{k+1}, \ldots, x_{d}\right) d x_{k+1} \cdots d x_{d}$
${ }^{1}$ Rosenblatt '52; Devroye '86; Hormann, Leydold, Derflinger '04

Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, \exists ! triangular map satisfying $T_{\sharp} \eta=\pi$ (for abs. cont. η, π on \mathbb{R}^{d})
Can be computed explicitly via Conditional Distribution Sampling ${ }^{1}$:

- Any density factorises into product of conditional densities:

$$
\pi\left(x_{1}, \ldots, x_{d}\right)=\pi_{1}\left(x_{1}\right) \pi_{2}\left(x_{2} \mid x_{1}\right) \cdots \pi_{d}\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)
$$

- 1st step: Produce sample x_{1}^{i} via $1 D C D F$-inversion from

$$
\pi_{1}\left(x_{1}\right) \sim \int \pi\left(x_{1}, x_{2}, \ldots, x_{d}\right) d x_{2} \cdots d x_{d}
$$

- k-th step: Given $x_{1}^{i}, \ldots, x_{k-1}^{i}$, sample x_{k}^{i} via $1 D C D F$-inversion from $\pi_{k}\left(x_{k} \mid x_{1}^{i}, \ldots, x_{k-1}^{i}\right) \sim \int \pi\left(x_{1}^{i}, \ldots, x_{k-1}^{i}, x_{k}, x_{k+1}, \ldots, x_{d}\right) d x_{k+1} \cdots d x_{d}$

Problem: $(d-k)$-dimensional integration at k-th step!
${ }^{1}$ Rosenblatt '52; Devroye '86; Hormann, Leydold, Derflinger '04

Low-rank Tensor Approximation of Distributions

Presented already several times

Low-rank tensor decomposition \Leftrightarrow separation of variables:

- Tensor grid with n points per direction (or n polynomial basis fcts.)
- Approximate: $\underbrace{\pi\left(x_{1}, \ldots, x_{d}\right)}_{\text {tensor }} \approx \underbrace{\sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}\right) \pi_{\alpha}^{2}\left(x_{2}\right) \cdots \pi_{\alpha}^{d}\left(x_{d}\right)}_{\text {tensor product decomposition }}$
- Construction, integrals, samples all available at $\mathscr{O}(d n)$ cost !

Tensor Train (TT) surrogates for high-dim. distributions [Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

- Generic - not problem specific ("black box")
- Cross approximation: "sequential" design along 1D lines
- Separable product form: $\tilde{\pi}\left(x_{1}, \ldots, x_{d}\right)=\sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}\right) \ldots \pi_{\alpha}^{d}\left(x_{d}\right)$

Cheap construction/storage \& low \# model evals
linear in d
Cheap integration w.r.t. x
linear in d
Cheap samples via conditional distribution method (see below)

Tensor Train (TT) surrogates for high-dim. distributions [Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

- Generic - not problem specific ("black box")
- Cross approximation: "sequential" design along 1D lines
- Separable product form: $\tilde{\pi}\left(x_{1}, \ldots, x_{d}\right)=\sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}\right) \ldots \pi_{\alpha}^{d}\left(x_{d}\right)$

Cheap construction/storage \& low \# model evals
linear in d
Cheap integration w.r.t. x linear in d
Cheap samples via conditional distribution method (see below)

- Tuneable approximation error ε (by adapting ranks r):
\Longrightarrow cost \& storage (poly)logarithmic in ε

Tensor Train (TT) surrogates for high-dim. distributions [Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

- Generic - not problem specific ("black box")
- Cross approximation: "sequential" design along 1D lines
- Separable product form: $\tilde{\pi}\left(x_{1}, \ldots, x_{d}\right)=\sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}\right) \ldots \pi_{\alpha}^{d}\left(x_{d}\right)$

Cheap construction/storage \& low \# model evals
linear in d
Cheap integration w.r.t. x linear in d
Cheap samples via conditional distribution method (see below)

- Tuneable approximation error ε (by adapting ranks r): \Longrightarrow cost \& storage (poly)logarithmic in ε
- Many known ways to use this surrogate for fast inference! (as proposals for MCMC, as control variates, importance weighting, ...)

A Theoretical Result

[Rohrbach, Dolgov, Grasedyck, RS, in preparation]

For Gaussian distributions $\pi(x)$ we have the following result: Let

$$
\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad x \mapsto \exp \left(-\frac{1}{2} x^{T} \Sigma x\right)
$$

and define

$$
\Sigma:=\left[\begin{array}{cc}
\Sigma_{11}^{(k)} & \Gamma_{k}^{T} \\
\Gamma_{k} & \Sigma_{22}^{(k)}
\end{array}\right] \quad \text { where } \quad \Gamma_{k} \in \mathbb{R}^{(d-k) \times k} .
$$

A Theoretical Result

[Rohrbach, Dolgov, Grasedyck, RS, in preparation]

For Gaussian distributions $\pi(x)$ we have the following result: Let

$$
\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad x \mapsto \exp \left(-\frac{1}{2} x^{T} \Sigma x\right)
$$

and define

$$
\Sigma:=\left[\begin{array}{cc}
\Sigma_{11}^{(k)} & \Gamma_{k}^{T} \\
\Gamma_{k} & \Sigma_{22}^{(k)}
\end{array}\right] \quad \text { where } \quad \Gamma_{k} \in \mathbb{R}^{(d-k) \times k} .
$$

Theorem. Let Σ be SPD with $\lambda_{\text {min }}>0, \rho:=\max _{k} \operatorname{rank}\left(\Gamma_{k}\right)$ and $\sigma:=\max _{k, i} \sigma_{i}^{(k)}$, where $\sigma_{i}^{(k)}$ are the singular values of Γ_{k}. Then, for all $\varepsilon>0$, there exists TT-approximation $\tilde{\pi}_{\varepsilon}$ s.t.

$$
\left\|\pi-\tilde{\pi}_{\varepsilon}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq \varepsilon\|\pi\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

and the TT-ranks of $\tilde{\pi}_{\varepsilon}$ are bounded by

$$
r \leq\left(\left(1+7 \frac{\sigma}{\lambda_{\text {min }}}\right) \log \left(7 \rho \frac{d}{\varepsilon}\right)\right)^{\rho}
$$

Conditional Distribution Sampler for TT (TT-CD sampler)

For the TT approximation

$$
\tilde{\pi}(x)=\sum_{\substack{\alpha_{k}=1 \\ 0<k<d}}^{r_{k}} \pi_{\alpha_{1}}^{1}\left(x_{1}\right) \cdot \pi_{\alpha_{1}, \alpha_{2}}^{2}\left(x_{2}\right) \cdot \pi_{\alpha_{2}, \alpha_{3}}^{3}\left(x_{3}\right) \cdots \pi_{\alpha_{d-1}}^{d}\left(x_{d}\right)
$$

the k-th step of the CD sampler, given $x_{1}^{i}, \ldots, x_{k-1}^{i}$, simplifies to

$$
\begin{aligned}
\tilde{\pi}_{k}\left(x_{k} \mid x_{1}^{i}, \ldots, x_{k-1}^{i}\right) \sim & \sum_{\alpha_{1}, \ldots, \alpha_{d-1}} \pi_{\alpha_{1}}^{1}\left(x_{1}^{i}\right) \cdots \pi_{\alpha_{k-2}, \alpha_{k-1}}^{k-1}\left(x_{k-1}^{i}\right) \cdots \\
& \cdots \pi_{\alpha_{k-1}, \alpha_{k}}^{k}\left(x_{k}\right) \cdots \\
& \ldots \int \pi_{\alpha_{k}, \alpha_{k+1}}^{k+1}\left(x_{k+1}\right) d x_{k+1} \cdots \int \pi_{\alpha_{d-1}}^{d}\left(x_{d}\right) d x_{d}
\end{aligned}
$$

Conditional Distribution Sampler for TT (TT-CD sampler)

For the TT approximation

$$
\tilde{\pi}(x)=\sum_{\substack{\alpha_{k}=1 \\ 0<k<d}}^{r_{k}} \pi_{\alpha_{1}}^{1}\left(x_{1}\right) \cdot \pi_{\alpha_{1}, \alpha_{2}}^{2}\left(x_{2}\right) \cdot \pi_{\alpha_{2}, \alpha_{3}}^{3}\left(x_{3}\right) \cdots \pi_{\alpha_{d-1}}^{d}\left(x_{d}\right)
$$

the k-th step of the CD sampler, given $x_{1}^{i}, \ldots, x_{k-1}^{i}$, simplifies to

$$
\begin{aligned}
\tilde{\pi}_{k}\left(x_{k} \mid x_{1}^{i}, \ldots, x_{k-1}^{i}\right) \sim & \sum_{\alpha_{1}, \ldots, \alpha_{d-1}} \pi_{\alpha_{1}}^{1}\left(x_{1}^{i}\right) \cdots \pi_{\alpha_{k-2}, \alpha_{k-1}}^{k-1}\left(x_{k-1}^{i}\right) \cdots \\
& \cdots \pi_{\alpha_{k-1}, \alpha_{k}}^{k}\left(x_{k}\right) \cdots \\
& \ldots \int \pi_{\alpha_{k}, \alpha_{k+1}}^{k+1}\left(x_{k+1}\right) d x_{k+1} \cdots \int \pi_{\alpha_{d-1}}^{d}\left(x_{d}\right) d x_{d}
\end{aligned}
$$

How to use TT-CD sampler to estimate $\mathbb{E}_{\pi} Q$?

Problem: We are sampling from approximate $\tilde{\pi}=\pi+\mathscr{O}(\varepsilon)$.

How to use TT-CD sampler to estimate $\mathbb{E}_{\pi} Q$?

Problem: We are sampling from approximate $\tilde{\pi}=\pi+\mathscr{O}(\varepsilon)$.
Option 0 :

- Biased estimator $\mathbb{E}_{\pi} Q \approx \mathbb{E}_{\tilde{\pi}} Q$ via i.i.d. MC quadrature

How to use TT-CD sampler to estimate $\mathbb{E}_{\pi} Q$?

Problem: We are sampling from approximate $\tilde{\pi}=\pi+\mathscr{O}(\varepsilon)$.

Option 0 :

- Biased estimator $\mathbb{E}_{\pi} Q \approx \mathbb{E}_{\tilde{\pi}} Q$ via i.i.d. MC quadrature
- Can use QMC "seeds" instead of random ones

Sampling from exact π : Unbiased estimates of $\mathbb{E}_{\pi} Q$

Option 1: Use $\left\{x_{\tilde{\pi}}^{i}\right\}$ as (i.i.d.) proposals in Metropolis-Hastings:

- Accept proposal $x_{\tilde{\pi}}^{i}$ with probability $\alpha=\min \left(1, \frac{\pi\left(x_{\tilde{\pi}}^{i}\right) \tilde{\pi}\left(x_{\pi}^{i-1}\right)}{\pi\left(x_{\pi}^{i-1}\right) \tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)}\right)$
- Can prove that rejection rate $\sim \varepsilon$ and IACT $\tau \sim 1+\varepsilon$

Sampling from exact π : Unbiased estimates of $\mathbb{E}_{\pi} Q$

Option 1: Use $\left\{x_{\tilde{\pi}}^{i}\right\}$ as (i.i.d.) proposals in Metropolis-Hastings:

- Accept proposal $x_{\tilde{\pi}}^{i}$ with probability $\alpha=\min \left(1, \frac{\pi\left(x_{\tilde{\pi}}^{i}\right) \tilde{\pi}\left(x_{\pi}^{i-1}\right)}{\pi\left(x_{\pi}^{i-1}\right) \tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)}\right)$
- Can prove that rejection rate $\sim \varepsilon$ and IACT $\tau \sim 1+\varepsilon$

Option 2: Use $\tilde{\pi}$ for importance weighting + QMC quadrature:

$$
\mathbb{E}_{\pi} Q \approx \frac{1}{Z} \frac{1}{N} \sum_{i=1}^{N} Q\left(x_{\tilde{\pi}}^{i}\right) \frac{\pi\left(x_{\tilde{\pi}}^{i}\right)}{\tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)} \quad \text { with } \quad Z=\frac{1}{N} \sum_{i=1}^{N} \frac{\pi\left(x_{\tilde{\pi}}^{i}\right)}{\tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)}
$$

- We can use an unbiased (randomised) QMC rule for both integrals.

Sampling from exact π : Unbiased estimates of $\mathbb{E}_{\pi} Q$

Option 1: Use $\left\{x_{\tilde{\pi}}^{i}\right\}$ as (i.i.d.) proposals in Metropolis-Hastings:

- Accept proposal $x_{\tilde{\pi}}^{i}$ with probability $\alpha=\min \left(1, \frac{\pi\left(x_{\tilde{\pi}}^{i}\right) \tilde{\pi}\left(x_{\pi}^{i-1}\right)}{\pi\left(x_{\pi}^{i-1}\right) \tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)}\right)$
- Can prove that rejection rate $\sim \varepsilon$ and IACT $\tau \sim 1+\varepsilon$

Option 2: Use $\tilde{\pi}$ for importance weighting + QMC quadrature:

$$
\mathbb{E}_{\pi} Q \approx \frac{1}{Z} \frac{1}{N} \sum_{i=1}^{N} Q\left(x_{\tilde{\pi}}^{i}\right) \frac{\pi\left(x_{\tilde{\pi}}^{i}\right)}{\tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)} \quad \text { with } \quad Z=\frac{1}{N} \sum_{i=1}^{N} \frac{\pi\left(x_{\tilde{\pi}}^{i}\right)}{\tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)}
$$

- We can use an unbiased (randomised) QMC rule for both integrals.

Option 3: Use biased QMC estimator as a control variate (MLMCMC)

Numerical experiments: (Artificial) Inverse Diffusion Problem

$$
\begin{aligned}
& -\nabla \kappa(s, x) \nabla u=0 \quad s \in(0,1)^{2} \\
& \left.u\right|_{s_{1}=0}=1,\left.\quad u\right|_{s_{1}=1}=0 \\
& \left.\frac{\partial u}{\partial n}\right|_{s_{2}=0}=\left.\frac{\partial u}{\partial n}\right|_{s_{2}=1}=0 .
\end{aligned}
$$

- Karhunen-Loève expansion ${ }^{2}$ of $\log \kappa(s, x)=\sum_{k=1}^{d} \phi_{k}(s) x_{k}$ with prior

$$
x_{k} \sim U[-1,1],\left\|\phi_{k}\right\|_{\infty}=\mathscr{O}\left(k^{-\frac{3}{2}}\right) \& d=11 .^{k=1}
$$

${ }^{2}$ Eigel, Pfeffer, Schneider, 2016.

Numerical experiments: (Artificial) Inverse Diffusion Problem

$$
\begin{aligned}
& -\nabla \kappa(s, x) \nabla u=0 \quad s \in(0,1)^{2} \\
& \left.u\right|_{s_{1}=0}=1,\left.\quad u\right|_{s_{1}=1}=0 \\
& \left.\frac{\partial u}{\partial n}\right|_{s_{2}=0}=\left.\frac{\partial u}{\partial n}\right|_{s_{2}=1}=0 .
\end{aligned}
$$

- Karhunen-Loève expansion ${ }^{2}$ of $\log \kappa(s, x)=\sum_{k=1}^{d} \phi_{k}(s) x_{k}$ with prior $x_{k} \sim U[-1,1],\left\|\phi_{k}\right\|_{\infty}=\mathscr{O}\left(k^{-\frac{3}{2}}\right) \& d=11$.
- Discretisation with bilinear FEs on uniform mesh with $h=1 / 64$.
${ }^{2}$ Eigel, Pfeffer, Schneider, 2016.

Numerical experiments: (Artificial) Inverse Diffusion Problem

$$
\begin{aligned}
& -\nabla \kappa(s, x) \nabla u=0 \quad s \in(0,1)^{2} \\
& \left.u\right|_{s_{1}=0}=1,\left.\quad u\right|_{s_{1}=1}=0 \\
& \left.\frac{\partial u}{\partial n}\right|_{s_{2}=0}=\left.\frac{\partial u}{\partial n}\right|_{s_{2}=1}=0
\end{aligned}
$$

- Karhunen-Loève expansion ${ }^{2}$ of $\log \kappa(s, x)=\sum_{k=1}^{d} \phi_{k}(s) x_{k}$ with prior $x_{k} \sim U[-1,1],\left\|\phi_{k}\right\|_{\infty}=\mathscr{O}\left(k^{-\frac{3}{2}}\right) \& d=11$.
- Discretisation with bilinear FEs on uniform mesh with $h=1 / 64$.
- Data: average pressure in 9 locations (synthetic, i.e. for some s^{*})
${ }^{2}$ Eigel, Pfeffer, Schneider, 2016.

Numerical experiments: (Artificial) Inverse Diffusion Problem

$$
\begin{aligned}
& -\nabla \kappa(s, x) \nabla u=0 \quad s \in(0,1)^{2} \\
& \left.u\right|_{s_{1}=0}=1,\left.\quad u\right|_{s_{1}=1}=0 \\
& \left.\frac{\partial u}{\partial n}\right|_{s_{2}=0}=\left.\frac{\partial u}{\partial n}\right|_{s_{2}=1}=0 .
\end{aligned}
$$

- Karhunen-Loève expansion ${ }^{2}$ of $\log \kappa(s, x)=\sum_{k=1}^{d} \phi_{k}(s) x_{k}$ with prior $x_{k} \sim U[-1,1],\left\|\phi_{k}\right\|_{\infty}=\mathscr{O}\left(k^{-\frac{3}{2}}\right) \& d=11$.
- Discretisation with bilinear FEs on uniform mesh with $h=1 / 64$.
- Data: average pressure in 9 locations (synthetic, i.e. for some s^{*})
- Qol: probability that flux exceeds 1.5
${ }^{2}$ Eigel, Pfeffer, Schneider, 2016.

Comparison against DRAM (for inverse diffusion problem)

TT-MH TT conditional distribution samples (iid) as proposals for MCMC TT-qIW TT surrogate for importance sampling with QMC DRAM Delayed Rejection Adaptive Metropolis [Haario et al, 2006]

Comparison against DRAM (for inverse diffusion problem)

noise level $\sigma_{e}^{2}=0.01$

noise level $\sigma_{e}^{2}=0.001$

TT-MH TT conditional distribution samples (iid) as proposals for MCMC TT-qIW TT surrogate for importance sampling with QMC DRAM Delayed Rejection Adaptive Metropolis [Haario et al, 2006]

Samples - Comparison TT-CD vs. DRAM

DRAM

TT-MH (i.i.d. seeds)

Conclusions

- Inverse Problems under Uncertainty - Variational Inference
- Central idea: characterise complex/intractable distributions by constructing deterministic couplings
- Central tool: Optimisation of Kullback-Leibler divergence

Conclusions

- Inverse Problems under Uncertainty - Variational Inference
- Central idea: characterise complex/intractable distributions by constructing deterministic couplings
- Central tool: Optimisation of Kullback-Leibler divergence
- Many types of approximation classes (non-exhaustive):
- Sparse maps, decomposable maps, neural nets
- Kernel-based approaches
- Low rank structure

Conclusions

- Inverse Problems under Uncertainty - Variational Inference
- Central idea: characterise complex/intractable distributions by constructing deterministic couplings
- Central tool: Optimisation of Kullback-Leibler divergence
- Many types of approximation classes (non-exhaustive):
- Sparse maps, decomposable maps, neural nets
- Kernel-based approaches
- Low rank structure
- Main Topic 1: Newton-acceleration and data-informed kernels for Stein Variational Methods
- Main Topic 2: TT surrogates for efficient samplers in high dimensions
- Use approximate maps to accelerate MCMC or in importance sampler

References

(1) Moselhy, Marzouk, Bayesian inference with optimal maps, J Comput Phys 231, 2012 [arXiv:1109.1516]
(2) Rezende, Mohamed, Variational inference with normalizing flows, ICML'15 Proc. 32nd Inter. Conf. Machine Learning, Vol. 37, 2015 [arXiv:1505.05770]
(3) Marzouk, Moselhy, Parno, Spantini, Sampling via measure transport: An introduction, Handbook of Uncertainty Quantification (Ghanem, Higdon, Owhadi, Eds.), 2016 [arXiv:1602.05023]
(3) Liu, Wang, Stein variational gradient descent: A general purpose Bayesian inference algorithm, NIPS 2016, Vol. 29, 2016 [arXiv:1608.04471]
(5) Detommaso, Cui, Spantini, Marzouk, RS, A Stein variational Newton method, NIPS 2018, Vol. 31, 2018 [arXiv:1806.03085]
(6) Dolgov, Anaya-Izquierdo, Fox, RS, Approximation and sampling of multivariate probability distributions in the tensor train decomposition, Statistics \& Comput. (online first), 2019 [arXiv:1810.01212]
(7) Detommaso, Kruse, Ardizzone, Rother, Köthe, RS, HINT: Hierarchical invertible neural transport for general \& sequential Bayesian inference, 2019 [arXiv:1905.10687]

