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Inverse Problems

Data Parameter

y = F ( x ) + e

forward model (PDE) observation/model errors

y ∈ RNy

x ∈ X

F : X → RNy

Data y are limited in number, noisy, and indirect.

Parameter x often a function (discretisation needed).

Continuous, bounded, and sufficiently smooth.
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Bayesian interpretation

The (physical) model gives π(y |x), the conditional probability of observing
y given x . However, to predict, control, optimise or quantify uncertainty,
the interest is often really in π(x |y), the conditional probability of possible
causes x given the observed data y – the inverse problem:

πpos (x) := π (x |y) ∝ π (y |x)πpr (x)︸ ︷︷ ︸
Bayes’ rule

Extract information from πpos (means, covariances, event probabilities,
predictions) by evaluating posterior expectations:

Eπpos [h(x)] =

∫
h(x)πpos(x)dx
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Bayes’ Rule and Classical Inversion

Classically [Hadamard, 1923]: Inverse map “F−1” (y → x) is typically
ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

least squares solution x̂ is maximum likelihood estimate

prior distribution πpr “acts” as regulariser – well-posedness !

solution of regularised least squares problem is maximum a posteriori
(MAP) estimator

However, in the Bayesian setting, the full posterior πpos contains more
information than the MAP estimator alone, e.g. the posterior covariance
matrix reveals components of x that are (relatively) more or less certain.

Possible to sample/explore via Metropolis-Hastings MCMC (in theory)
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Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density πpos) analytically
(at least approximately) for more efficient inference.

This is a challenging task since:

x ∈ Rd is typically high-dimensional (e.g., discretised function)

πpos is in general non-Gaussian
(even if πpr and observation noise are Gaussian)

evaluations of likelihood may be expensive (e.g., solution of a PDE)

Key Tools
Transport Maps, Optimisation, Principle Component Analysis, Model
Order Reduction, Hierarchies, Sparsity, Low Rank Approximation

R. Scheichl (Heidelberg) Stein Variational Newton & More RICAM 11/11/19 5 / 33



Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density πpos) analytically
(at least approximately) for more efficient inference.

This is a challenging task since:

x ∈ Rd is typically high-dimensional (e.g., discretised function)

πpos is in general non-Gaussian
(even if πpr and observation noise are Gaussian)

evaluations of likelihood may be expensive (e.g., solution of a PDE)

Key Tools
Transport Maps, Optimisation, Principle Component Analysis, Model
Order Reduction, Hierarchies, Sparsity, Low Rank Approximation

R. Scheichl (Heidelberg) Stein Variational Newton & More RICAM 11/11/19 5 / 33



Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density πpos) analytically
(at least approximately) for more efficient inference.

This is a challenging task since:

x ∈ Rd is typically high-dimensional (e.g., discretised function)

πpos is in general non-Gaussian
(even if πpr and observation noise are Gaussian)

evaluations of likelihood may be expensive (e.g., solution of a PDE)

Key Tools
Transport Maps, Optimisation, Principle Component Analysis, Model
Order Reduction, Hierarchies, Sparsity, Low Rank Approximation

R. Scheichl (Heidelberg) Stein Variational Newton & More RICAM 11/11/19 5 / 33



Deterministic Couplings of Probability Measures

⇡(✓) p(r)

⇡̃(r)

T (✓)

T̃ (✓)

Figure 2-1: Illustration of exact and inexact transformations coming from T and T̃
respectively. The exact map pushes the target measure ⇡ to the standard Gaussian
reference p while the approximate map only captures some of the structure in ⇡,
producing an approximation p̃ to the reference Gaussian.

µr does not contain any point masses and the cost function c(✓, T (✓)) is quadratic.
Details of the existence and uniqueness proofs can also be found in [102].

Being a form of regularization, the cost function in (2.2) defines the form and
structure of the optimal transport map. For illustration, consider the case when
✓ ⇠ N(0, I) and r ⇠ N(0,⌃) for some covariance matrix ⌃. In this Gaussian example,

the transport map will be linear: r
i.d.
= ⌃1/2✓, where ⌃1/2 is any one of the many

square roots of ⌃. Two possible matrix square roots are the Cholesky factor, and the
eigenvalue square root. Interestingly, when the cost is given by

cEig(✓, T (✓)) = k✓ � T (✓)k2, (2.3)

the optimal square root, ⌃1/2, will be defined by the eigenvalue decomposition of ⌃,
but when the cost is given by the limit of a a weighted quadratic defined by

cRos(✓, T (✓)) = lim
t!0

DX

k=1

tk�1|✓k � Tk(✓)|, (2.4)

the optimal square root, ⌃1/2, will be defined by the Cholesky decomposition of ⌃.
In the more general nonlinear and non-Gaussian setting, this latter cost is shown by
[22] and [15] to yield the well-known Rosenblatt transformation from [91].

The Cholesky factor is a special case of the Rosenblatt transformation, which it-
self is just a multivariate generalization of using cumulative distribution functions to
transform between univariate random variables (i.e., the “CDF trick”). Importantly,
the lower triangular structure present in the Cholesky factor, which makes inverting

31
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 T

 η  π

Core idea [Moselhy, Marzouk, 2012]

Choose a reference distribution η (e.g., standard Gaussian)

Seek transport map T : Rd → Rd such that T]η = π
(or equivalently its inverse S = T−1)

In principle, enables exact (independent, unweighted) sampling!

Satisfying these conditions only approximately can still be useful!
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Variational Inference

Goal: Sampling from target density π(x)

Given a reference density p, find an invertible map T̂ such that

T̂ := argmin
T

DKL(T] p ‖π) = argmin
T

DKL(p ‖T−1] π)

where

T](x):= p
(
T−1(x)

)
| det

(
∇xT

−1(x)
)
| . . . push-forward of p

DKL(p ‖ q):=

∫
log

(
p(x)

q(x)

)
p(x) dx . . . Kullback-Leibler divergence

Advantage of using DKL: do not need normalising constant for π

Minimise over some suitable class T of maps T
(where ideally Jacobian determinant | det

(
∇xT

−1(x)
)
| is easy to evaluate)

To improve: enrich class T or use samples of T−1] π as
proposals for MCMC or in importance sampling (see below)
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Many Choices (“Architectures”) for T possible

Examples: (list not comprehensive!!)

1 Optimal Transport & Knothe-Rosenblatt Rearrangement
[Moselhy, Marzouk, 2012], [Marzouk, Moselhy, Parno, Spantini, 2016]

2 Normalizing Flows [Rezende, Mohamed, 2015]

(and related methods in the ML literature)

3 Kernel-based variational inference: Stein Variational Methods
[Liu, Wang, 2016], [Detommaso, Cui, Spantini, Marzouk, RS, 2018],

[Chen, Wu, Chen, O’Leary-Roseberry, Ghattas, arXiv 2019]

4 Layers of low-rank maps [Bigoni, Zahm, Spantini, Marzouk, arXiv 2019]

5 Layers of hierarchical invertible neural networks (HINT) not today!

[Detommaso, Kruse, Ardizzone, Rother, Köthe, RS, arXiv 2019]

6 Low-rank tensor approx. & Knothe-Rosenblatt rearrangement
[Dolgov, Anaya-Izquierdo, Fox, RS, 2019]
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6 Low-rank tensor approx. & Knothe-Rosenblatt rearrangement
[Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

R. Scheichl (Heidelberg) Stein Variational Newton & More RICAM 11/11/19 8 / 33



Many Choices (“Architectures”) for T possible

Examples: (list not comprehensive!!)

1 Optimal Transport & Knothe-Rosenblatt Rearrangement
[Moselhy, Marzouk, 2012], [Marzouk, Moselhy, Parno, Spantini, 2016]

2 Normalizing Flows [Rezende, Mohamed, 2015]

(and related methods in the ML literature)

3 Kernel-based variational inference: Stein Variational Methods
[Liu, Wang, 2016], [Detommaso, Cui, Spantini, Marzouk, RS, 2018],

[Chen, Wu, Chen, O’Leary-Roseberry, Ghattas, arXiv 2019]

4 Layers of low-rank maps [Bigoni, Zahm, Spantini, Marzouk, arXiv 2019]

5 Layers of hierarchical invertible neural networks (HINT) not today!

[Detommaso, Kruse, Ardizzone, Rother, Köthe, RS, arXiv 2019]

6 Low-rank tensor approx. & Knothe-Rosenblatt rearrangement
[Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

R. Scheichl (Heidelberg) Stein Variational Newton & More RICAM 11/11/19 8 / 33



A Stein Variational Newton (SVN) Method
[Detommaso, Cui, Spantini, Marzouk, RS, 2018]
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Stein variational gradient descent [Liu, Wang, 2016]

Construct T̂ as a composition of simple maps T̂`:

T̂ := T̂1 ◦ · · · ◦ T̂` ◦ · · · , where T̂` := I + Q̂`

Stein Variational Gradient Descent (SVGD) picks steepest descent
direction in a Reproducing Kernel Hilbert Space (RKHS) H d with
reproducing kernel k : Rd × Rd → R

Given a reference measure p` in the `th step, define

Jp` : H d → R s.t. Jp` [Q] := DKL

(
(I + Q)]︸ ︷︷ ︸

T]

p` ‖π
)

Then Q̂` is chosen to satisfy Jp` [Q̂`] < Jp` [0]

SVGD uses (functional) gradient descent in H d and picks

Q̂`(z) := −∇Jp` [0] = Ex∼p` [∇x log π(x)k(x , z) +∇xk(x , z)]
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Stein variational gradient descent [Liu, Wang, 2016]

Finally one defines p`+1 := (T̂`)]p` = (I + Q̂`)]p`

In practice, p` taken as the empirical density of N particles
(
x
(`)
j

)N
j=1

(as in filtering or sequential Monte Carlo methods) such that

Q̂`(z) :=
1

N

N∑

j=1

[
∇x log π(x

(`)
i )k(x

(`)
i , z) +∇xk(x

(`)
i , z)

]

Algorithm 1: Stein variational gradient descent (SVGD)

Input : Particles (x
(`)
j )Nj=1, step size ε

Output: Particles (x
(`+1)
j )Nj=1

for j = 1, 2, . . . ,N do

x
(`+1)
j ← T`(x

(`)
j ) := x

(`)
j + εQ̂`(x

(`)
j )

end for
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1st Improvement: Using second-order information

Particles are evolved sequentially from initial distribution p0 = p to
final distribution pL ≈ π.

SVGD is a deterministic first-order optimisation algorithm.
We can accelerate it by introducing second-order information!

Representing Q̂`(x) =
∑N

j=1 cjkj(x), where kj(x) := k(x , x
(`)
j ), the

(exact) Newton step can be computed by solving the linear system

Hc = g
where

Hmn := Ep` [−∇2 log π km kn +∇km∇k>n ], m, n = 1, . . . ,N,

gm := Ep` [∇ log π km +∇km], m = 1, . . . ,N.

In practice, use block-diagonal approximation (inexact Newton)

Hmmcm = gm , for m = 1, . . . ,N, and set Q̂`(xm) = cm .
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A Stein variational Newton method

Algorithm 3: Stein variational (inexact) Newton

Input : Particles (x
(`)
j )Nj=1, step size ε

Output: Particles (x
(`+1)
j )Nj=1

1: for m = 1, 2, . . . ,N do

2: Evaluate gradient gm and Hessian Hmm, replacing ∇2 log π with
Gauss-Newton approximation (only needs gradient info and is SPD)

3: Solve linear system

Hmmcm = gm and set Q̂`(x
(`)
m ) := cm

4: Update particle m:

x
(`+1)
m ← x

(`)
m + εQ̂`(x

(`)
m )

5: end for
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2nd Improvement: Kernel based on Hessian information

[Liu, Wang, 2016] chose simple isotropic Gaussian kernel

k(x , z) = exp(−γ‖x − z‖22)

However, kernel should mimic the shape of the target distribution

We use a scaled & averaged Hessian (available at no extra cost!):

M ≈ 1

d
Ep` [−∇2 log π]

and then construct the (data-informed) kernel

k(x , z) = exp

(
−1

2
‖x − z‖2M

)

(In practice, use Gauss-Newton Hessian approximation H and MC average.)
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Test Case 1: two-dimensional “double-banana”

Reference distribution (prior): p = N(0, I )

Forward model: F (x) = log
(
(1− x1)2 + 100(x2 − x21 )2

)

(Rosenbrock function)

Observation: y = F (xtrue) + ξ, with xtrue ∼ N(0, I ), ξ ∼ N(0, 0.09I )

Number of particles: N = 1000

Compare SVN-H, SVN-I, SVGD-H and SVGD-I
(“H” stands for scaled Hessian kernel and “I” stands for isotropic kernel)
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Test Case 2: 100-dimensional conditional diffusion

Reference distribution: p = N(0,C ) with C (t, t ′) = min(t, t ′)

Forward model: F (u) = [ût5 , ût10 , . . . , ût100 ]> ∈ R20, where (ûti )
100
i=1

is the Euler-Maruyama discretisation of

dut =
βu (1− u2)

(1 + u2)
dt + dxt , u0 = 0

for t ∈ [0, 1] with step size ∆t = 1/100

Observation: y = F (xtrue) + ξ with xtrue ∼ N(0, I ), ξ ∼ N(0, 0.01I )

Number of particles: N = 1000

Compare SVN-H, SVN-I, SVGD-H and SVGD-I
(“H” stands for scaled Hessian kernel and “I” stands for isotropic kernel)
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SVN-H -- 10 iterations
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Compare SVN-H with Hamiltonian MCMC (HMC)
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Approximation and Sampling of Multivariate Probability
Distributions in the Tensor Train Decomposition

[Dolgov, Anaya-Izquierdo, Fox, RS, 2019]
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Recall: General Variational Inference

In general, in Variational Inference aim to find

argmin
T

DKL(T]η ||π)

Note

DKL(T]η ||π) = −Eu∼η
[

log π(T (u)) + log | det∇T (u)|
]

+ const

Particularly useful family are Knothe-Rosenblatt rearrangements
(see [Marzouk, Moshely, Parno, Spantini, 2016]):

T (x) =




T1(x1)
T2(x1, x2)
...
Td(x1, x2, . . . , xd)




Then: log | det∇T (u)| =
∑

k log ∂xkT
k
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Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, ∃! triangular map satisfying T]η = π (for abs. cont. η, π on Rd)

Can be computed explicitly via Conditional Distribution Sampling1:

Any density factorises into product of conditional densities:

π(x1, . . . , xd) = π1(x1)π2(x2|x1) · · ·πd(xd |x1, . . . , xd−1)

Can sample (up to normalisation with known scaling factor)

xk ∼ πk(xk |x1, . . . , xk−1) ∼
∫
π(x1, . . . , xd)dxk+1 · · · dxd

k-th step: Given x i1, . . . , x
i
k−1, sample x ik via 1D CDF-inversion from

πk(xk |x i1, . . . , x ik−1) ∼
∫
π(x i1, . . . , x

i
k−1, xk , xk+1, . . . , xd)dxk+1 · · · dxd

Problem: (d − k)-dimensional integration at k-th step!

1Rosenblatt ’52; Devroye ’86; Hormann, Leydold, Derflinger ’04
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π(x1, . . . , xd) = π1(x1)π2(x2|x1) · · ·πd(xd |x1, . . . , xd−1)

1st step: Produce sample x i1 via 1D CDF-inversion from

π1(x1) ∼
∫
π(x1, x2, . . . , xd)dx2 · · · dxd

k-th step: Given x i1, . . . , x
i
k−1, sample x ik via 1D CDF-inversion from

πk(xk |x i1, . . . , x ik−1) ∼
∫
π(x i1, . . . , x

i
k−1, xk , xk+1, . . . , xd)dxk+1 · · · dxd

Problem: (d − k)-dimensional integration at k-th step!

1Rosenblatt ’52; Devroye ’86; Hormann, Leydold, Derflinger ’04
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Low-rank Tensor Approximation of Distributions
Presented already several times

Low-rank tensor decomposition ⇔ separation of variables:

n

O(nd)

 

O(dn)

Tensor grid with n points per direction (or n polynomial basis fcts.)

Approximate: π(x1, . . . , xd)︸ ︷︷ ︸
tensor

≈
∑
|α|≤r

π1α(x1)π2α(x2) · · ·πdα(xd)
︸ ︷︷ ︸

tensor product decomposition

Construction, integrals, samples all available at O(dn) cost !
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Tensor Train (TT) surrogates for high-dim. distributions
[Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

Generic – not problem specific (“black box”)

Cross approximation: “sequential” design along 1D lines

Separable product form: π̃(x1, . . . , xd) =
∑
|α|≤r π

1
α(x1) . . . πd

α(xd)

Cheap construction/storage & low # model evals linear in d

Cheap integration w.r.t. x linear in d

Cheap samples via conditional distribution method linear in d
(see below)

Tuneable approximation error ε (by adapting ranks r):

=⇒ cost & storage (poly)logarithmic in ε

Many known ways to use this surrogate for fast inference!
(as proposals for MCMC, as control variates, importance weighting, . . . )
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A Theoretical Result
[Rohrbach, Dolgov, Grasedyck, RS, in preparation]

For Gaussian distributions π(x) we have the following result: Let

π : Rd → R, x 7→ exp
(
−1

2x
TΣx

)

and define

Σ :=

[
Σ
(k)
11 ΓT

k

Γk Σ
(k)
22

]
where Γk ∈ R(d−k)×k .

Theorem. Let Σ be SPD with λmin > 0, ρ := maxk rank(Γk) and

σ := maxk,i σ
(k)
i , where σ

(k)
i are the singular values of Γk . Then,

for all ε > 0, there exists TT-approximation π̃ε s.t.

‖π − π̃ε‖L2(Rd ) ≤ ε‖π‖L2(Rd )

and the TT-ranks of π̃ε are bounded by

r ≤
((

1 + 7 σ
λmin

)
log
(
7 ρ d

ε

))ρ
.
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Conditional Distribution Sampler for TT (TT-CD sampler)

For the TT approximation

π̃(x) =

rk∑

αk=1
0<k<d

π1α1
(x1) · π2α1,α2

(x2) · π3α2,α3
(x3) · · ·πdαd−1

(xd)

the k-th step of the CD sampler, given x i1, . . . , x
i
k−1, simplifies to

π̃k(xk |x i1, . . . , x ik−1) ∼
∑

α1,...,αd−1

π1α1
(x i1) · · ·πk−1αk−2,αk−1

(x ik−1) . . .

. . . πkαk−1,αk
(xk) . . .

. . .

∫
πk+1
αk ,αk+1

(xk+1)dxk+1 · · ·
∫
πdαd−1

(xd)dxd

To sample: Simple 1D CDF-inversion linear in d
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How to use TT-CD sampler to estimate EπQ ?

Problem: We are sampling from approximate π̃ = π + O(ε).

Option 0:

Biased estimator EπQ ≈ Eπ̃Q via i.i.d. MC quadrature

Can use QMC “seeds” instead of random ones
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Sampling from exact π: Unbiased estimates of EπQ

Option 1: Use {x iπ̃} as (i.i.d.) proposals in Metropolis-Hastings:

Accept proposal x iπ̃ with probability α = min

(
1,
π(x iπ̃)π̃(x i−1π )

π(x i−1π )π̃(x iπ̃)

)

Can prove that rejection rate ∼ ε and IACT τ ∼ 1 + ε

Option 2: Use π̃ for importance weighting + QMC quadrature:

EπQ ≈
1

Z

1

N

N∑

i=1

Q(x iπ̃)
π(x iπ̃)

π̃(x iπ̃)
with Z =

1

N

N∑

i=1

π(x iπ̃)

π̃(x iπ̃)

We can use an unbiased (randomised) QMC rule for both integrals.

Option 3: Use biased QMC estimator as a control variate (MLMCMC)
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Numerical experiments: (Artificial) Inverse Diffusion Problem

−∇κ(s, x)∇u = 0 s ∈ (0, 1)2

u|s1=0 = 1, u|s1=1 = 0,

∂u

∂n

∣∣∣
s2=0

=
∂u

∂n

∣∣∣
s2=1

= 0.
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1

Karhunen-Loève expansion2 of log κ(s, x) =
d∑

k=1

φk(s)xk with prior

xk ∼ U[−1, 1], ‖φk‖∞ = O(k−
3
2 ) & d = 11.

Discretisation with bilinear FEs on uniform mesh with h = 1/64.

Data: average pressure in 9 locations (synthetic, i.e. for some s∗)

QoI: probability that flux exceeds 1.5

2Eigel, Pfeffer, Schneider, 2016.
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Comparison against DRAM (for inverse diffusion problem)

noise level σ2e = 0.01

noise level σ2e = 0.001
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TT-MH TT conditional distribution samples (iid) as proposals for MCMC

TT-qIW TT surrogate for importance sampling with QMC

DRAM Delayed Rejection Adaptive Metropolis [Haario et al, 2006]
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Samples – Comparison TT-CD vs. DRAM

DRAM
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Conclusions

Inverse Problems under Uncertainty – Variational Inference

Central idea: characterise complex/intractable distributions by
constructing deterministic couplings

Central tool: Optimisation of Kullback-Leibler divergence

Many types of approximation classes (non-exhaustive):

Sparse maps, decomposable maps, neural nets
Kernel-based approaches
Low rank structure

Main Topic 1: Newton-acceleration and data-informed kernels for
Stein Variational Methods

Main Topic 2: TT surrogates for efficient samplers in high dimensions

Use approximate maps to accelerate MCMC or in importance sampler

R. Scheichl (Heidelberg) Stein Variational Newton & More RICAM 11/11/19 32 / 33



Conclusions

Inverse Problems under Uncertainty – Variational Inference

Central idea: characterise complex/intractable distributions by
constructing deterministic couplings

Central tool: Optimisation of Kullback-Leibler divergence

Many types of approximation classes (non-exhaustive):

Sparse maps, decomposable maps, neural nets
Kernel-based approaches
Low rank structure

Main Topic 1: Newton-acceleration and data-informed kernels for
Stein Variational Methods

Main Topic 2: TT surrogates for efficient samplers in high dimensions

Use approximate maps to accelerate MCMC or in importance sampler

R. Scheichl (Heidelberg) Stein Variational Newton & More RICAM 11/11/19 32 / 33



Conclusions

Inverse Problems under Uncertainty – Variational Inference

Central idea: characterise complex/intractable distributions by
constructing deterministic couplings

Central tool: Optimisation of Kullback-Leibler divergence

Many types of approximation classes (non-exhaustive):

Sparse maps, decomposable maps, neural nets
Kernel-based approaches
Low rank structure

Main Topic 1: Newton-acceleration and data-informed kernels for
Stein Variational Methods

Main Topic 2: TT surrogates for efficient samplers in high dimensions

Use approximate maps to accelerate MCMC or in importance sampler
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