Robust Optimization Approaches for PDE-Constrained Problems under Uncertainty

Stefan Ulbrich
Department of Mathematics
TU Darmstadt, Germany

Joint work with Philip Kolvenbach, Oliver Lass, and Adrian Sichau and in parts with Alessandro Alla, Michael Hinze, Sebastian Schöps and Herbert De Gersem

Supported by DFG within SFB 805 and by BMBF within SIMUROM/PASIROM

Optimization and Inversion under Uncertainty, RICAM, Linz, November 13, 2019

Outline

TECHNISCHE

- Robust formulation of PDE-constrained optimization with uncertain data
- (First and) second order approximation of the robust counterpart
- Equivalent reformulations for second order approximation using optimality or duality theory
- Nonsmooth reduced formulation
- Update strategy for the expansion point
- Invoking reduced order models with error estimation
- Application to shape optimization of synchronous motors and for the elastodynamic wave equation
- Conclusion and outlook

PDE-Constrained Optimization under Uncertainty

Uncertain PDE-Constrained Optimization Problem

$$
\begin{array}{ll}
\min _{\substack{ \\
\text { s.t. } \\
\text { s.t. }}} & h_{0}(y, x ; p) \\
& h_{i}(y, x ; p) \leq 0, \quad i \in I, \\
& C(y, x ; p)=0 . \tag{P}
\end{array}
$$

- Typically nonconvex, design variables x, state y, uncertain parameters p
- $h_{0}, h_{i}: Y \times X \times \mathbb{R}^{n_{p}} \rightarrow \mathbb{R}, C: Y \times X \times \mathbb{R}^{n_{p}} \rightarrow Z$ sufficiently smooth
- $C(y, x ; p)=0$ has a unique solution $y=y(x ; p)$ for all relevant x, p
- $\partial_{y} C \in \mathcal{L}(Y, Z)$ is invertible

PDE-Constrained Optimization under Uncertainty

Uncertain PDE-Constrained Optimization Problem

$$
\begin{align*}
& h_{0}(y, x ; p) \\
& h_{i}(y, x ; p) \leq 0, \quad i \in I \tag{P}\\
& C(y, x ; p)=0
\end{align*}
$$

- Typically nonconvex, design variables x, state y, uncertain parameters p
- $h_{0}, h_{i}: Y \times X \times \mathbb{R}^{n_{p}} \rightarrow \mathbb{R}, C: Y \times X \times \mathbb{R}^{n_{p}} \rightarrow Z$ sufficiently smooth
- $C(y, x ; p)=0$ has a unique solution $y=y(x ; p)$ for all relevant x, p
- $\partial_{y} C \in \mathcal{L}(Y, Z)$ is invertible

Uncertainty to be considered:

- Parameter p is uncertain with $p \in \mathcal{U}_{p}=\left\{p \in \mathbb{R}^{n_{p}}:\|p-\bar{p}\|_{B_{p}} \leq 1\right\}$ $\|v\|_{B}:=\left(v^{\top} B v\right)^{1 / 2}$ for a symmetric positive definite matrix B
- p can also be coefficients in an expansion, e.g. Karhunen-Loéve expansion
- Constraint-wise uncertainties also possible
- Also possible: Design x uncertain, $x \in \mathcal{U}_{x}=\left\{x \in X=\mathbb{R}^{n_{x}}:\|x-\bar{x}\|_{B_{x}} \leq 1\right\}$

Robust Optimization - Basic Idea

Uncertain Optimization Problem

$$
\begin{array}{cl}
\min _{x} & \hat{h}_{0}(x ; p) \tag{Pr}\\
\text { s.t. } & \hat{h}_{i}(x ; p) \leq 0, \quad i \in I .
\end{array}
$$

Assumption: Parameter p is uncertain. We only know that $p \in \mathcal{U}_{p}$.

Robust Optimization - Basic Idea

Uncertain Optimization Problem

$$
\begin{array}{cl}
\min _{x} & \hat{h}_{0}(x ; p) \tag{Pr}\\
\text { s.t. } & \hat{h}_{i}(x ; p) \leq 0, \quad i \in I .
\end{array}
$$

Assumption: Parameter p is uncertain. We only know that $p \in \mathcal{U}_{p}$.
Consider the "Robust Counterpart" of (Pr):
$\min _{x} \max _{p \in \mathcal{U}_{p}} \hat{h}_{0}(x ; p)$
s.t. $\quad \hat{h}_{i}(x ; p) \leq 0 \quad \forall p \in \mathcal{U}_{p}, i \in I$.
[e.g. Ben-Tal, Bertsimas, El Ghaoui, Nemirovski, Nesterov, Zowe,...]
Optimization and Inversion under Uncertainty, RICAM, Linz, 2019 November 13, 2019 | S. Ulbrich | 4

Robust Optimization - Basic Idea

Uncertain Optimization Problem

$$
\begin{array}{cl}
\min _{x} & \hat{h}_{0}(x ; p) \tag{Pr}\\
\text { s.t. } & \hat{h}_{i}(x ; p) \leq 0, \quad i \in I
\end{array}
$$

Assumption: Parameter p is uncertain. We only know that $p \in \mathcal{U}_{p}$.
Consider the "Robust Counterpart" of (Pr):

$$
\begin{array}{ll}
\min _{x} & \max _{p \in \mathcal{U}_{p}} \hat{h}_{0}(x ; p) \\
\text { s.t. } & \hat{h}_{i}(x ; p) \leq 0 \quad \forall p \in \mathcal{U}_{p}, i \in I .
\end{array} \quad \Longleftrightarrow \begin{array}{ll}
\min _{x} & \max _{p \in \mathcal{U}_{p}} \hat{h}_{0}(x ; p) \\
\text { s.t. } & \max _{p \in \mathcal{U}_{p}} \hat{h}_{i}(x ; p) \leq 0, \quad i \in I .
\end{array}
$$

[e.g. Ben-Tal, Bertsimas, El Ghaoui, Nemirovski, Nesterov, Zowe,...]
Optimization and Inversion under Uncertainty, RICAM, Linz, 2019 November 13, 2019 | S. Ulbrich | 4

Relation to Probabilistic Constraints

$$
\begin{array}{ll}
\min _{x} & \max _{p \in \mathcal{U}_{p}} \hat{h}_{0}(x ; p) \\
\text { s.t. } & \max _{p \in \mathcal{U}_{p}} \hat{h}_{i}(x ; p) \leq 0, \quad i \in I .
\end{array}
$$

If \mathcal{U}_{p} is confidence region for the random variable p of probability α then the solution x satisfies the constraints with probability $\geq \alpha$.

Alternative approach:

Probabilistic constraints, e.g. [Prékopa 95, Henrion, Römisch 10, Van Ackooij, Henrion 14, Chen, Ghattas et al. 18].

PDE-Constrained Optimization under Uncertainty

Uncertain PDE-Constrained Optimization Problem

$$
\begin{array}{ll}
\min _{y \in Y, x \in X} & h_{0}(y, x ; p) \\
\text { s.t. } & h_{i}(y, x ; p) \leq 0, \quad i \in I, \\
& C(y, x ; p)=0 .
\end{array}
$$

- Typically nonconvex, design variables x, state y, uncertain parameters p
- $h_{0}, h_{i}: Y \times X \times \mathbb{R}^{n_{p}} \rightarrow \mathbb{R}, C: Y \times X \times \mathbb{R}^{n_{p}} \rightarrow Z$ sufficiently smooth
- $C(y, x ; p)=0$ has a unique solution $y=y(x ; p)$ for all relevant x, p
- $\partial_{y} C \in \mathcal{L}(Y, Z)$ is invertible

Uncertainty to be considered

- Parameter p is uncertain with $p \in \mathcal{U}_{p}=\left\{p \in \mathbb{R}^{n_{p}}:\|p-\bar{p}\|_{B_{p}} \leq 1\right\}$ $\|v\|_{B}:=\sqrt{v^{\top} B v}$ for a symmetric positive definite matrix B
- Also possible: Design x uncertain, $x \in \mathcal{U}_{x}=\left\{x \in X=\mathbb{R}^{n_{x}}:\|x-\bar{x}\|_{B_{x}} \leq 1\right\}$

Robust Formulation of (P)

Worst-case values of objective function and inequality constraints:

$$
\begin{aligned}
h_{i}^{\mathrm{Wc}}(x):= & \max _{y \in Y, s \in \mathbb{R}^{n_{p}}} \\
\underset{ }{\text { s.t. }} \quad & h_{i}(y, x ; \bar{p}+s) \\
& C(y, x ; \bar{p}+s)=0,\|s\|_{B_{p}} \leq 1 .
\end{aligned}
$$

Reduced formulation:

$$
h_{i}^{\mathrm{wc}}(x):=\max _{s \in \mathbb{R}^{n_{p}}} \hat{h}_{i}(x ; \bar{p}+s):=h_{i}(y(x ; \bar{p}+s), x ; \bar{p}+s) \text { s.t. }\|s\|_{B_{p}} \leq 1
$$

where $C(y(x ; \bar{p}+s), x ; \bar{p}+s)=0$.

Robust Formulation of (P)

Worst-case values of objective function and inequality constraints:

$$
\begin{aligned}
& h_{i}^{\mathrm{Wc}}(x):= \max _{y \in Y, s \in \mathbb{R}^{n_{p}}} \\
& \quad h_{i}(y, x ; \bar{p}+s) \\
& \text { s.t. } \quad C(y, x ; \bar{p}+s)=0,\|s\|_{B_{p}} \leq 1 .
\end{aligned}
$$

Reduced formulation:

$$
h_{i}^{\mathrm{wc}}(x):=\max _{s \in \mathbb{R}^{n_{p}}} \hat{h}_{i}(x ; \bar{p}+s):=h_{i}(y(x ; \bar{p}+s), x ; \bar{p}+s) \text { s.t. }\|s\|_{B_{p}} \leq 1
$$

where $C(y(x ; \bar{p}+s), x ; \bar{p}+s)=0$.

Robust Counterpart of (P)

$$
\begin{array}{ll}
\min _{x \in X} & h_{0}^{\mathrm{wc}}(x) \tag{R}\\
\text { s.t. } & h_{i}^{\mathrm{wc}}(x) \leq 0, \quad i \in I
\end{array}
$$

Robust Formulation of (P)

Worst-case values of objective function and inequality constraints:

$$
\begin{aligned}
& h_{i}^{\mathrm{Wc}}(x):= \max _{y \in Y, s \in \mathbb{R}^{n_{p}}} \\
& \quad h_{i}(y, x ; \bar{p}+s) \\
& \text { s.t. } \quad C(y, x ; \bar{p}+s)=0,\|s\|_{B_{p}} \leq 1 .
\end{aligned}
$$

Reduced formulation:

$$
h_{i}^{\mathrm{wc}}(x):=\max _{s \in \mathbb{R}^{n_{p}}} \hat{h}_{i}(x ; \bar{p}+s):=h_{i}(y(x ; \bar{p}+s), x ; \bar{p}+s) \text { s.t. }\|s\|_{B_{p}} \leq 1
$$

where $C(y(x ; \bar{p}+s), x ; \bar{p}+s)=0$.

Robust Counterpart of (P)

$$
\begin{array}{ll}
\min _{x \in X} & h_{0}^{\mathrm{wc}}(x) \tag{R}\\
\text { s.t. } & h_{i}^{\mathrm{wc}}(x) \leq 0, \quad i \in I .
\end{array}
$$

In the nonconvex case (R) is in general computationally intractable!

Approximation of Robust Formulation of (P)

Robust Counterpart of (P)

$$
\begin{array}{cl}
\min _{x \in X} & h_{0}^{\mathrm{wc}}(x):=\max _{p \in \mathcal{U}_{p}} \hat{h}_{0}(x ; p) \\
\text { s.t. } & h_{i}^{\text {wc }}(x):=\max _{p \in \mathcal{U}_{p}} \hat{h}_{i}(x ; p) \leq 0, \quad i \in I . \tag{R}
\end{array}
$$

In the nonconvex case (R) is in general computationally intractable!
Possible approaches:
Approximate $h^{\text {wc }}$ by $\tilde{h}^{\text {wc }}$ such that $\tilde{h}^{\text {wc }}$ and $\nabla \tilde{h}^{\text {wc }}$ can be computed efficiently or $\tilde{h}^{\text {wc }}$ can be characterized conveniently by differentiable constraints.

- Linearize $\hat{h}_{i}(x ; p)$ w.r.t. $p \quad$ [Diehl, Bock, Kostina 06; Zhang 07]
- In this talk: Approximate $\hat{h}_{i}(x ; p)$ by second order Taylor expansion w.r.t. p [Sichau 13; Lass, SU 17; Alla, Hinze, Lass, Kolvenbach, SU 19; Kolvenbach, Lass, SU 18; cf. also Houska, Diehl 12; Alexanderian, Petra, Stadler, Ghattas 16; Chen, Villa, Ghattas 18; Milz, Ulbrich 19]

[^0]
Approximation of Robust Formulation of (P)

Approximated Robust Counterpart of (P)

$\min _{x \in X}$
$x \in X$
s.t.

$$
\begin{align*}
& \tilde{h}_{0}^{\text {wc }}(x):=\max _{p \in \mathcal{U}_{p}} \hat{h}_{0}^{\text {appr }}(x ; p) \\
& \tilde{h}_{i}^{\text {wc }}(x):=\max _{p \in \mathcal{U}_{p}} \hat{h}_{i}^{\text {appr }}(x ; p) \leq 0, \quad i \in I . \tag{RA}
\end{align*}
$$

In the nonconvex case (R) is in general computationally intractable!
Possible approaches:
Approximate h^{wc} by \tilde{h}^{wc} such that \tilde{h}^{wc} and $\nabla \tilde{h}^{\mathrm{wc}}$ can be computed efficiently or $\tilde{h}^{\text {wc }}$ can be characterized conveniently by differentiable constraints.

- Linearize $\hat{h}_{i}(x ; p)$ w.r.t. p [Diehl, Bock, Kostina 06, Zhang 07]
- In this talk: Approximate $\hat{h}_{i}(x ; p)$ by second order Taylor expansion w.r.t. p [Sichau 13; Lass, SU 17; Alla, Hinze, Lass, Kolvenbach, SU 19; Kolvenbach, Lass, SU 18; cf. also Houska, Diehl 12; Alexanderian, Petra, Stadler, Ghattas 16; Chen, Villa, Ghattas 18; Milz, Ulbrich 19]

[^1]
First Order Approximation

Approximated worst-case value:

$$
\begin{aligned}
\tilde{h}_{i}^{\mathrm{wc}, 1}(x ; \bar{p}) & :=\max _{s \in \mathbb{R}^{x_{p}}} \hat{h}_{i}(x ; \bar{p})+\partial_{p} \hat{h}_{i}(x ; \bar{p}) s \quad \text { s.t. }\|s\|_{B_{p}} \leq 1 . \\
& =\hat{h}_{i}(x ; \bar{p})+\left\|\partial_{p} \hat{h}_{i}(x ; \bar{p})\right\|_{B_{p}^{-1}}
\end{aligned}
$$

Sensitivity approach:

$$
\begin{aligned}
& \tilde{h}_{i}^{w c, 1}(x ; \bar{p})=h_{i}(\bar{y}, x ; \bar{p})+\left\|\left(\partial_{p} h_{i}+\partial_{y} h_{i} D\right)(\bar{y}, x ; \bar{p})\right\|_{B_{p}^{-1}} \\
& C(\bar{y}, x ; \bar{p})=0, \quad \partial_{y} C(\bar{y}, x ; \bar{p}) D+\partial_{p} C(\bar{y}, x ; \bar{p})=0
\end{aligned}
$$

Adjoint approach:

$$
\begin{aligned}
& \tilde{h}_{i}^{\text {wc }, 1}(x ; \bar{p})=h_{i}(\bar{y}, x ; \bar{p})+\left\|\left(\partial_{p} h_{i}+\mu_{i} \partial_{p} C\right)(\bar{y}, x ; \bar{p})\right\|_{B_{p}^{-1}} \\
& C(\bar{y}, x ; \bar{p})=0, \quad \partial_{y} C(\bar{y}, x ; \bar{p})^{*} \mu_{i}+\partial_{y} h_{i}(\bar{y}, x ; \bar{p})=0
\end{aligned}
$$

See e.g. [Diehl, Bock, Kostina 06; Zhang 07]

First Order Approximation Adjoint-based Formulation of (RA1)

$$
\begin{array}{ll}
\min _{\bar{y} \in Y, x \in X, \mu_{i} \in Z^{*}} & h_{0}(\bar{y}, x ; \bar{p})+\left\|\left(\partial_{p} h_{0}+\mu_{0} \partial_{p} C\right)(\bar{y}, x ; \bar{p})\right\|_{B_{p}^{-1}} \\
\text { s.t. } & h_{i}(\bar{y}, x ; \bar{p})+\left\|\left(\partial_{p} h_{i}+\mu_{i} \partial_{p} C\right)(\bar{y}, x ; \bar{p})\right\|_{B_{p}^{-1}} \leq 0, i \in I, \quad \text { (RA1a) } \\
C(\bar{y}, x ; \bar{p}) & =0 \\
\partial_{y} C(\bar{y}, x ; \bar{p})^{*} \mu_{i}+\partial_{y} h_{i}(\bar{y}, x ; \bar{p}) & =0, i \in I_{0}
\end{array}
$$

$I_{0}:=I \cup\{0\}$.

Remarks:

- $\left(\bar{y},\left(\mu_{i}\right)_{i \in I_{0}}\right)$ is the extended state
- If $\left|I_{0}\right| \leq n_{p}$ is moderate: Efficiently solvable by PDE-constrained optimization techniques in connection with appropriate handling of second order cone constraints.
- If $n_{p} \leq\left|I_{0}\right|$ is moderate: Use sensitivity approach instead.

First Order Approximation Sensitivity-based Formulation of (RA1)

$$
\begin{array}{ll}
\min _{\bar{y} \in Y, x \in X, D \in Y^{n} p} & h_{0}(\bar{y}, x ; \bar{p})+\left\|\left(\partial_{p} h_{0}+\partial_{y} h_{0} D\right)(\bar{y}, x ; \bar{p})\right\|_{B_{p}^{-1}} \\
\text { s.t. } & h_{i}(\bar{y}, x ; \bar{p})+\left\|\left(\partial_{p} h_{i}+\partial_{y} h_{i} D\right)(\bar{y}, x ; \bar{p})\right\|_{B_{p}^{-1}} \leq 0, i \in I, \\
C(\bar{y}, x ; \bar{p}) & =0 \tag{RA1s}\\
& \partial_{y} C(\bar{y}, x ; \bar{p}) D+\partial_{p} C(\bar{y}, x ; \bar{p})=0
\end{array}
$$

Remark:

- (\bar{y}, D) is the extended state

Second Order Approximation Motivation and Basic Approach

Motivation:

- For large uncertainty sets the linear approximation (RA1) is not accurate enough.
- A quadratic approximation is often much more accurate.

Approximated worst-case value (quadratic approximation):

$$
\tilde{h}_{i}^{\mathrm{wc}, 2}(x ; \bar{p}):=\max _{s \in \mathbb{R}^{n_{p}}} \hat{h}_{i}(x ; \bar{p})+\partial_{p} \hat{h}_{i}(x ; \bar{p}) s+\frac{1}{2} s^{T} \partial_{p p} \hat{h}_{i}(x ; \bar{p}) s \text { s.t. }\|s\|_{B_{p}} \leq 1 .
$$

Second Order Approximation Motivation and Basic Approach

Motivation:

- For large uncertainty sets the linear approximation (RA1) is not accurate enough.
- A quadratic approximation is often much more accurate.

Approximated worst-case value (quadratic approximation):

$$
\tilde{h}_{i}^{\text {wc }, 2}(x ; \bar{p}):=\max _{s \in \mathbb{R}^{n_{p}}} \hat{h}_{i}(x ; \bar{p})+\partial_{p} \hat{h}_{i}(x ; \bar{p}) s+\frac{1}{2} s^{T} \partial_{p p} \hat{h}_{i}(x ; \bar{p}) s \text { s.t. }\|s\|_{B_{p}} \leq 1 .
$$

This is a Trust-Region Problem:

$$
\begin{aligned}
\tilde{h}_{i}^{w c, 2}(x)= & \max _{s \in \mathbb{R}^{n_{p}}} \hat{h}_{i}(x ; \bar{p})+g_{i}(x ; \bar{p})^{T} s+\frac{1}{2} s^{\top} H_{i}(x ; \bar{p}) s \\
& \text { s.t. } \quad\|s\|_{B_{p}} \leq 1 .
\end{aligned}
$$

Second Order Approximation
 Computation of $\mathbf{H}_{\mathbf{i}}(\mathbf{x} ; \overline{\mathbf{p}})=\partial_{\mathrm{pp}} \hat{\mathbf{h}}_{\mathbf{i}}(\mathbf{x} ; \overline{\mathbf{p}})$

Approximated worst-case value (quadratic approximation):

$$
\tilde{h}_{i}^{w c, 2}(x ; \bar{p}):=\max _{s \in \mathbb{R}^{n_{p}}} \hat{h}_{i}(x ; \bar{p})+\partial_{p} \hat{h}_{i}(x ; \bar{p}) s+\frac{1}{2} s^{T} \partial_{p p} \hat{h}_{i}(x ; \bar{p}) s \text { s.t. }\|s\|_{B_{p}} \leq 1 .
$$

Computation of $\partial_{\mathrm{pp}} \hat{\mathrm{h}}_{\mathrm{i}}(\mathbf{x} ; \overline{\mathrm{p}})$:

With the auxiliary Langrangian

$$
L_{i}\left(y, x, \mu_{i} ; p\right)=h_{i}(y, x ; p)+\mu_{i} C(y, x ; p)
$$

the well-known formula holds

$$
\partial_{p p} \hat{h}_{i}(x ; \bar{p})=\binom{D}{I}^{*}\left(\begin{array}{cc}
\partial_{y y} L_{i} & \partial_{y p} L_{i} \\
\partial_{p y} L_{i} & \partial_{p p} L_{i}
\end{array}\right)\left(\bar{y}, x, \mu_{i} ; \bar{p}\right)\binom{D}{I}
$$

with the state \bar{y}, the sensitivities D and the adjoint state μ_{i} as above, i.e.,

$$
C(\bar{y}, x ; \bar{p})=0, \quad \partial_{y} C(\bar{y}, x ; \bar{p}) D+\partial_{p} C(\bar{y}, x ; \bar{p})=0, \quad \partial_{y} C(\bar{y}, x ; \bar{p})^{*} \mu_{i}+\partial_{y} h_{i}(\bar{y}, x ; \bar{p})=0 .
$$

Calculation of $\tilde{\mathbf{h}}_{\mathrm{i}}^{\mathrm{wc}, 2}(\mathbf{x} ; \overline{\mathbf{p}})$ for Second Order Approximation by Trust-Region Problem

Approximated worst-case value (quadratic approximation):

$$
\begin{equation*}
\tilde{h}_{i}^{w c, 2}(x ; \bar{p}):=\max _{s \in \mathbb{R}^{n_{p}}} \hat{h}_{i}(x ; \bar{p})+g_{i}(x)^{T} s+\frac{1}{2} s^{T} H_{i}(x) s \quad \text { s.t. }\|s\|_{B_{p}} \leq 1 . \tag{TR}
\end{equation*}
$$

where $\quad g_{i}(x):=\partial_{p} \hat{h}_{i}(x ; \bar{p})^{T}, \quad H_{i}(x):=\partial_{p p} \hat{h}_{i}(x ; \bar{p})$.
Calculation of $\tilde{\mathrm{h}}_{\mathrm{i}}{ }^{w c, 2}(\mathbf{x} ; \overline{\mathrm{p}})$: [Moré, Sorensen 83]
s_{i} solves the trust-region problem (TR) if and only if with a multiplier λ_{i} holds

$$
\begin{aligned}
& \text { (1) }\left(-H_{i}(x)+\lambda_{i} B_{p}\right) s_{i}=g_{i}(x), \\
& \text { (2) }\left(-H_{i}(x)+\lambda_{i} B_{p}\right) \text { is positive semidefinite, } \\
& \text { (3) } \lambda_{i} \geq 0, \quad\left\|s_{i}\right\|_{B_{p}} \leq 1, \quad \lambda_{i}\left(\left\|s_{i}\right\|_{B_{p}}-1\right)=0 .
\end{aligned}
$$

Then:

$$
\tilde{h}_{i}^{\mathrm{wc}, 2}(x ; \bar{p})=\hat{h}_{i}(x ; \bar{p})+g_{i}(x)^{\top} s_{i}+\frac{1}{2} s_{i}^{\top} H_{i}(x) s_{i} .
$$

Difficulty: Points x might exist where $\tilde{h}_{i}^{\text {wc, } 2}(x ; \bar{p})$ is nondifferentiable.

Calculation of $\tilde{\mathbf{h}}_{\mathrm{i}}^{\text {wc, }, 2}(\mathbf{x} ; \overline{\mathbf{p}})$ for Second Order Approximation by Trust-Region Problem

Approximated worst-case value (quadratic approximation):

$$
\tilde{h}_{i}^{w c, 2}(x ; \bar{p}):=\max _{s \in \mathbb{R}^{n_{p}}} q_{i}(s ; x):=\hat{h}_{i}(x ; \bar{p})+g_{i}(x)^{T} s+\frac{1}{2} s^{T} H_{i}(x) s \text { s.t. }\|s\|_{B_{p}} \leq 1,
$$

where

$$
g_{i}(x):=\partial_{p} \hat{h}_{i}(x ; \bar{p}), \quad H_{i}(x):=\partial_{p p} \hat{h}_{i}(x ; \bar{p}) .
$$

Difficulty: Points x might exist where $\tilde{h}_{i}^{\text {wc, } 2}(x ; \bar{p})$ is nondifferentiable.

- Can occur if $\operatorname{det}\left(-H_{i}(x)+\bar{\lambda}_{i} B_{p}\right)=0$ (hard case)
- However: $x \mapsto \tilde{h}_{i}^{\text {wc,2 }}(x ; \bar{p})$ is locally Lipschitz-continuous
[Fiacco, Ishizuka 90, Bonnans, Shapiro 00]

Possible solutions:

- Apply nonsmooth optimization methods
- Use a smooth reformulation of (RA2) by optimality or duality theory
- Use S-procedure to characterize $\tilde{h}_{i}^{\text {wc,2 }}(x ; \bar{p})$ by an SDP-constraint [Boyd, Vandenberghe 04, Pólik, Terlaky 07; cf. also Fortin, Wolkowicz 04]

Approach 1: Reformulation as MPEC (Reduced Form)

Using the reduced objective function and reduced constraints

$$
\hat{h}_{i}(x ; p)=h_{i}(y(x ; p), x ; p)
$$

we obtain with

$$
g_{i}(x):=\partial_{p} \hat{h}_{i}(x ; \bar{p})^{T}, \quad H_{i}(x):=\partial_{p p} \hat{h}_{i}(x ; \bar{p}),
$$

$$
\begin{array}{cr}
\min _{s_{0}, s_{i}, \lambda_{0}, \lambda_{i}, x} & \hat{h}_{0}(x ; \bar{p})+g_{0}(x)^{T} s_{0}+\frac{1}{2} s_{0}^{T} H_{0}(x) s_{0} \\
\text { s.t. } & \hat{h}_{i}(x ; \bar{p})+g_{i}(x)^{T} s_{i}+\frac{1}{2} s_{i}^{T} H_{i}(x) s_{i} \leq 0, i \in I, \\
\binom{\left(-H_{i}(x)+\lambda_{i} B_{p}\right) s_{i}-g_{i}(x)}{\lambda_{i} \cdot\left(\left\|s_{i}\right\|_{B_{p}}^{2}-1\right)}=0, i \in I_{0}, \quad \quad\left(\mathrm{RA}_{\mathrm{MPEC}}\right) \\
\lambda_{i} \geq 0,\left\|s_{i}\right\|_{B_{p}}^{2}-1 \leq 0, i \in I_{0}, \\
\left(-H_{i}(x)+\lambda_{i} B_{p}\right) & \succeq 0, i \in I_{0},
\end{array}
$$

Reformulation as MPEC

- (RA2 ${ }_{\text {mPEC }}$) can be solved by NLP methods [Scholtes 01; Anitescu 05; Fletcher, Leyffer, Ralph, Scholtes 05; Steffensen, M. Ulbrich 10;...]
- Our approach: SQP method with NCP-reformulation of complementarity condition [Leyffer 06].
- Usually $H_{i} \npreceq 0$, then one has strict complementarity $\left\|s_{i}\right\|_{B}=1, \lambda_{i}>0$. Hence, B-stationarity and strong stationarity likely holds at local solutions.

Reformulation as MPEC

- (RA2 ${ }_{\text {mPEC }}$) can be solved by NLP methods [Scholtes 01; Anitescu 05; Fletcher, Leyffer, Ralph, Scholtes 05; Steffensen, M. Ulbrich 10;...]
- Our approach: SQP method with NCP-reformulation of complementarity condition [Leyffer 06].
- Usually $H_{i} \npreceq 0$, then one has strict complementarity $\left\|s_{i}\right\|_{B}=1, \lambda_{i}>0$. Hence, B-stationarity and strong stationarity likely holds at local solutions.
- It is possible to take a hybrid approach: apply quadratic approximation only for selected uncertain parameters and use linearization for the remaining
- Quadratic model could also be based on Quasi-Newton approximations of H_{i}, approximate trust region solvers, interpolation models or on reduced order models [Lass, SU SISC 17; Alla, Hinze, Kolvenbach, Lass, SU ACOM 19]

Approach 2: SDP-Formulation by Using the SProcedure

One can show [Boyd, Vandenberghe 04]:

$$
t_{i} \geq \tilde{h}_{i}^{w c, 2}(x ; \bar{p}):=\max _{s \in \mathbb{R}^{n_{p}}} q_{i}(s ; x):=\hat{h}_{i}(x ; \bar{p})+g_{i}(x)^{T} s+\frac{1}{2} s^{T} H_{i}(x) s \text { s.t. }\|s\|_{B_{p}} \leq 1 .
$$

if and only if there exists $\lambda_{i} \geq 0$ such that

$$
\lambda_{i}\left(\begin{array}{cc}
B_{p} & 0 \\
0 & -1
\end{array}\right)-\left(\begin{array}{cc}
H_{i}(x) & g_{i}(x) \\
g_{i}(x)^{T} & 2\left(h_{i}(x ; \bar{p})-t_{i}\right)
\end{array}\right) \succeq 0 .
$$

Resulting Reformulation of (R A2 ${ }_{\text {MPEG }}$):

$$
\begin{align*}
& \min _{\lambda_{i}, t_{i}, x} t_{0} \\
& \text { s.t. } \lambda_{i}\left(\begin{array}{cc}
B_{p} & 0 \\
0 & -1
\end{array}\right)-\left(\begin{array}{cc}
H_{i}(x) & g_{i}(x) \\
g_{i}(x)^{T} & 2\left(\hat{h}_{i}(x ; \bar{p})-t_{i}\right)
\end{array}\right) \tag{RA2sDP}\\
& \succeq 0, i \in I_{0}, \\
& t_{i}=0, i \in I, \\
& \lambda_{i} \geq 0, i \in I_{0} .
\end{align*}
$$

Approach 3: Formulation by Duality Theory

Trust region problems satisfy strong duality [Stern, Wolkowicz 95]:

$$
\begin{aligned}
\tilde{h}_{i}^{w c, 2}(x ; \bar{p}): & =\max _{s \in \mathbb{R}^{n_{p}}} q_{i}(s ; x):=\hat{h}_{i}(x ; \bar{p})+g_{i}(x)^{T} s+\frac{1}{2} s^{T} H_{i}(x) s \text { s.t. }\|s\|_{B_{p}} \leq 1, \\
& =\min _{\lambda_{i} \geq 0} \sup _{s \in \mathbb{R}^{n_{p}}} q_{i}(s ; x)+\frac{\lambda_{i}}{2}\left(1-s^{T} B_{p} s\right) \\
& =\min _{\lambda_{i} \geq 0} \hat{h}_{i}(x ; \bar{p})+g_{i}(x)^{T} s+\frac{1}{2} s^{T}\left(H_{i}(x)-\lambda_{i} B_{p}\right) s+\frac{\lambda_{i}}{2} \\
& \text { s.t. } \quad\left(-H_{i}(x)+\lambda_{i} B_{p}\right) \succeq 0, \quad\left(-H_{i}(x)+\lambda_{i} B_{p}\right) s=g_{i}(x), \\
= & \min _{\lambda_{i} \geq 0} \hat{h}_{i}(x)+\frac{1}{2} g_{i}(x)^{T} s+\frac{\lambda_{i}}{2} \\
& \text { s.t. } \quad\left(-H_{i}(x)+\lambda_{i} B_{p}\right) \succeq 0, \quad\left(-H_{i}(x)+\lambda_{i} B_{p}\right) s=g_{i}(x) .
\end{aligned}
$$

Similar approach by [Milz, Ulbrich 19], Michael's talk on Monday.

Approach 3: Formulation by Duality Theory (2)

Resulting Reformulation of (RA2 MPEC):

$$
\begin{aligned}
& \min _{s_{0}, s_{i}, \lambda_{0}, \lambda_{i}, x} \hat{h}_{0}(x ; \bar{p})+\frac{1}{2} g_{0}(x)^{\top} s_{0}+\frac{1}{2} \lambda_{0} \\
& \text { s.t. } \\
& \hat{h}_{i}(x ; \bar{p})+\frac{1}{2} g_{i}(x)^{T} s_{i}+\frac{1}{2} \lambda_{i} \leq 0, i \in I, \\
& \left(-H_{i}(x)+\lambda_{i} B_{p}\right) s_{i}-g_{i}(x)=0, i \in I_{0}, \\
& \lambda_{i} \geq 0, i \in I_{0}, \\
& \left(-H_{i}(x)+\lambda_{i} B_{p}\right) \succeq 0, i \in I_{0},
\end{aligned}
$$

Approach 4: Nonsmooth Reduced Approach

Approximated Robust Counterpart of (P)

$$
\begin{array}{ll}
\min _{x \in X} & \tilde{h}_{0}^{\text {wc,2}}(x) \tag{RA2}\\
\text { s.t. } & \tilde{h}_{i}^{\text {wc, }, 2}(x) \leq 0, \quad i \in I .
\end{array}
$$

$$
\tilde{h}_{i}^{w c, 2}(x ; \bar{p}):=\max _{s \in \mathbb{R}^{n_{p}}} q_{i}(s ; x):=\hat{h}_{i}(x ; \bar{p})+g_{i}(x)^{\top} s+\frac{1}{2} s^{\top} H_{i}(x) s \text { s.t. }\|s\|_{B_{p}} \leq 1 \text {. (TR) }
$$

- $x \mapsto \tilde{h}_{i}^{w c, 2}(x ; \bar{p})$ is locally Lipschitz-continuous [Fiacco, Ishizuka 90]
- Clarke's subdifferential is given by

$$
\partial_{x}^{c l} \tilde{h}_{i}^{w c, 2}(x ; \bar{p})=\operatorname{conv}\left\{\nabla_{x} q_{i}(\bar{s} ; x): \bar{s} \text { solves }(T R)\right\}
$$

Hence, a subgradient can be computed efficiently by adjoint method.

- Methods for nonsmooth opt. with nonsmooth constraints applicable to (RA2).
- Allows to use iterative trust-region solvers, e.g. LSTRS [Rojas, Santos, Sorensen 00; Kolvenbach, Lass, SU OPTE 18].

Possible Extensions

The following will be explained and used for the application examples:

- Use reduced order models with error estimation to compute $\tilde{h}_{i}^{\text {wc,2}}(x ; \bar{p})$ to sufficient accuracy [Lass, SU SISC 17; Alla, Hinze, Kolvenbach, Lass, SU ACOM 19]
- Update iteratively the parameters p where the quadratic model $q_{i}(s ; x)$ for the computation of $\tilde{h}_{i}^{w c, 2}(x ; p)$ is built (instead of using $p=\bar{p}$) [Lass, SU SISC 17; Alla, Hinze, Kolvenbach, Lass, SU ACOM 19]
- For high-dimensional uncertain parameters p : Use reduced approach with matrix-free trust-region solver [Kolvenbach, Lass, SU OPTE 18], e.g.
- Rojas, Santos, Sorensen: A new matrix-free algorithm for the large-scale trust-region subproblem (2000) - LSTRS

Moving the Expansion Point \bar{p} in the Quadratic Model

Motivation: Update the expansion point \bar{p} in the quadratic model $\tilde{h}_{i}^{\mathrm{wc}, 2}(x ; \bar{p})$ to predict the worst case value $h_{i}^{\text {wc }}(x)$ more accurately.

Expansion point update strategy [Alla, Hinze, Kolvenbach, Lass, SU ACOM 19]

- Let \bar{p}_{i}^{k-1} be the current expansion point (we start with $\bar{p}_{i}^{0}=\bar{p}$)
- Apply one or several steps of a globally convergent optimization method (e.g., projected gradient method) with starting point \bar{p}_{i}^{k-1} to obtain

$$
\bar{p}_{i}^{k} \approx \underset{\|p-\bar{p}\|_{B_{p}} \leq 1}{\operatorname{argmax}} \hat{h}_{i}\left(x^{k} ; p\right)
$$

- Compute x^{k+1} by using

$$
\tilde{h}_{i}^{\mathrm{wc}, 2}\left(x ; \bar{p}_{i}^{K}\right):=\max _{\left\|s+\bar{p}_{i}^{K}-\bar{p}\right\|_{p_{p}} \leq 1} \hat{h}_{i}\left(x ; \bar{p}_{i}^{K}\right)+\partial_{p} \hat{h}_{i}\left(x ; \bar{p}_{i}^{K}\right)^{T} s+\frac{1}{2} s^{T} \partial_{p p} \hat{h}_{i}\left(x ; \bar{p}_{i}^{K}\right) s .
$$

Result: If $\left(x^{k}\right)$ is bounded and $\sum_{k}\left\|\bar{p}_{i}^{k+1}-\bar{p}_{i}^{k}\right\|<\infty$ then $\bar{p}_{i}^{k} \rightarrow \bar{p}_{i}$ with \bar{p}_{i} stationary and (x^{κ}) has convergence properties as for fixed expansion point.

Example: Robust Geometry Optimization of Permanent Magnets in a Synchronous Motor [Lass, SU SISC 17]

- 3-phase 6-pole Permanent Magnet Synchronous Machine (PMSM)
- 1 buried permanent magnet per pole
- Operated at 50 Hz

Design parameters:

- x_{1}, x_{2} width and height of permanent magnet
- x_{3} distance from rotor surface

Uncertainties:

- field angle p_{i} of all 6 magnets i
- design x of the magnets

Triangulate (blue) subregion of the geometry that can be transformed (red lines).

Example: Robust Geometry Optimization of Permanent Magnets in a Synchronous Motor [Lass, SU SISC 17]

- 3-phase 6-pole Permanent Magnet Synchronous Machine (PMSM)
- 1 buried permanent magnet per pole
- Operated at 50 Hz

Design parameters:

- x_{1}, x_{2} width and height of
 permanent magnet
- x_{3} distance from rotor surface

Uncertainties:

- field angle p_{i} of all 6 magnets i

- design x of the magnets

Triangulate (blue) subregion of the geometry that can be transformed (red lines).

Example: Robust Geometry Optimization of Permanent Magnets in a Synchronous Motor [Lass, SU SISC 17]

- 3-phase 6-pole Permanent Magnet Synchronous Machine (PMSM)
- 1 buried permanent magnet per pole
- Operated at 50 Hz

The magnetic vector potential is obtained by the magnetostatic approximation of Maxwell's equations with transient rotor movement

$$
\nabla \times(\nu \nabla \times A)=J_{\mathrm{src}}(\vartheta)-\nabla \times H_{\mathrm{pm}} \quad \text { on } \quad \Omega(\vartheta), \quad \vartheta \in[0,2 \pi]
$$

with adequate boundary conditions.

Magnetostatic Approximation of Maxwell's Equations

In the 2D planar case the magnetostatic approximation of Maxwell's equations for the magnetic vector potential can be rewritten as the elliptic equation

$$
-\nabla \cdot(\nu \nabla y(\vartheta))=J_{\mathrm{src}}(\vartheta)+J_{\mathrm{pm}} \quad \text { on } \quad \Omega(\vartheta)
$$

Using the finite element method we get the discrete systems

$$
\mathbf{K}_{\nu}(\vartheta) \mathbf{y}(\vartheta)=\mathbf{j}_{\mathrm{src}}(\vartheta)+\mathbf{j}_{\mathrm{pm}}
$$

- The rotation is realized using a domain decomposition method with two domains (stator, rotor) and locked step method [Shi et al.]

$$
\left(\begin{array}{ccc}
\mathbf{K}_{s s} & 0 & \mathbf{K}_{s l} \\
0 & \mathbf{K}_{r r} & \mathbf{K}_{r l}\left(\vartheta^{k}\right) \\
\mathbf{K}_{s l}^{\top} & \mathbf{K}_{r l}^{\top}\left(\vartheta^{k}\right) & \mathbf{K}_{l /(}\left(\vartheta^{k}\right)
\end{array}\right)\left(\begin{array}{c}
\mathbf{y}_{s, k} \\
\mathbf{y}_{r, k} \\
\mathbf{y}_{l, k}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{f}_{s} \\
\mathbf{f}_{r} \\
\mathbf{f}_{/}\left(\vartheta^{k}\right)
\end{array}\right), \vartheta^{k}=k \Delta \vartheta, 0 \leq k \leq 899 .
$$

- The mechanical power (torque) is computed by the power balance method.
- We use affine decomposition to compute $\mathbf{K}_{\nu}(\vartheta), \mathbf{f}_{/}(\vartheta)$ and its derivatives efficiently [Patera et al., Rozza et al.].

Optimization Problem

Uncertain Optimization Problem

$$
\begin{aligned}
& \min _{\Omega} \hat{h}_{0}(\Omega):=V_{\mathrm{pm}}(\Omega) \\
& \text { subject to } \quad-\nabla \cdot(\nu \nabla y)-J_{\mathrm{src}}(\vartheta)-J_{\mathrm{pm}}=0 \quad \text { on } \Omega(\vartheta), \vartheta \in[0,2 \pi] \\
& M^{d}-M(y) \leq 0, \\
& D(\Omega) \leq 0 .
\end{aligned}
$$

with

Ω	\ldots	Geometry
$V_{\mathrm{pm}}(\Omega)$	\ldots	Volume of the permanent magnet
$M(y)$	\ldots	Mechanical power (Torque)
M^{d}	\ldots	Desired Torque
$D(\Omega)$	\ldots	Constraints on the design

Geometry Description

We describe the size and location of the permanent magnet using parameters.

Design parameters:

- x_{1}, x_{2} width and height of permanent magnet
- x_{3} distance from rotor surface

Uncertainties:

- field angle p_{i} of all 6 magnets i

- design x of the magnets

Define subregion of the geometry that can be transformed (red lines).

By partitioning the geometry into L triangular subdomains, the transformation can
 be computed explicitly (blue lines).

Geometry Preconditioning

Domain transformation in each triangle:

$$
\mathbf{z} \mapsto T^{i}(\mathbf{z}, x)=C^{i}(x)+G^{i}(x) \mathbf{z}, \quad i=1, \ldots, L
$$

Transformation to reference domain: $\Omega(\vartheta, x) \rightarrow \Omega_{0}(\vartheta)$

$$
-\nabla \cdot(\nu(x) \nabla y)=J_{\mathrm{src}}(\vartheta, x)+J_{\mathrm{pm}}(x, p) \quad \text { on } \Omega_{0}(\vartheta) \text { (reference domain) }
$$

Discrete setting: We get $\quad \mathbf{K}_{\nu}(\vartheta, x) y=\mathbf{f}(\vartheta, x, p)$

$$
\mathbf{K}_{\nu}(\vartheta, x)=\sum_{i=1}^{L} \theta_{\mathbf{K}}^{i}(x) \mathbf{K}_{\nu}^{0, i}(\vartheta) \quad \text { and } \quad \mathbf{f}(\vartheta, x, p)=\sum_{i=1}^{L} \theta_{\mathbf{f}}^{i}(x, p) \mathbf{f}^{0, i}(\vartheta)
$$

In our case only $\mathbf{K}_{r r}(\vartheta)$ and $\mathbf{f}_{r}(\vartheta)$ are affected. [Patera et al., Rozza et al.]
Hence, derivatives with respect to x, p are given by the derivatives of the scalar functions $\theta_{\mathbf{K}}^{i}$ and $\theta_{\mathbf{f}}^{i}$.

Optimization Problem (discretized version)

Uncertain Design Optimization Problem for the Motor

$$
\begin{array}{ll}
\min _{x, y} & \hat{h}_{0}(x, \mathbf{y}):=V_{\mathrm{pm}}(x)=x_{1} x_{2} \\
\text { s.t. } & \mathbf{K}_{\nu}\left(\vartheta_{k}, x\right) \mathbf{y}_{\mathbf{k}}=\mathbf{f}\left(\vartheta_{k}, x, p\right), \quad \vartheta_{k}=k \Delta \vartheta, k=0, \ldots, K, \\
& D(x) \leq 0, \quad M^{d}-M(\mathbf{y}) \leq 0 .
\end{array}
$$

with
$V_{\mathrm{pm}}(x) \quad$... Volume of the permanent magnet
$M(\mathbf{y}) \quad$... Mechanical power (Torque)
$M^{d} \quad$... Desired Torque
$D(x) \quad$... Constraints on the design

Optimization Problem (discretized version)

Uncertain Design Optimization Problem for the Motor

$$
\begin{array}{ll}
\min _{x, y} & \hat{h}_{0}(x, \mathbf{y}):=V_{\mathrm{pm}}(x)=x_{1} x_{2} \\
\text { s.t. } & \mathbf{K}_{\nu}\left(\vartheta_{k}, x\right) \mathbf{y}_{\mathbf{k}}=\mathbf{f}\left(\vartheta_{k}, x, p\right), \quad \vartheta_{k}=k \Delta \vartheta, k=0, \ldots, K, \\
& D(x) \leq 0, \quad M^{d}-M(\mathbf{y}) \leq 0 .
\end{array}
$$

Since the solution to the PDEs are unique, this is of our general form

Uncertain PDE-Constrained Optimization Problem

$$
\begin{array}{ll}
\min _{Y \in Y, x \in X} & h_{0}(y, x ; p) \\
\text { s.t. } & h_{i}(y, x ; p) \leq 0, \quad i \in I, \\
& C(y, x ; p)=0, \tag{P}
\end{array}
$$

where now p and x are uncertain.

Reduced Order Model (ROM) by using POD

Strategy to reduce computational complexity: [Lass, SU SISC 17]

- We replace

$$
\mathbf{K}_{\nu}\left(\vartheta_{k}, x\right) \mathbf{y}_{\mathbf{k}}=\mathbf{f}\left(\vartheta_{k}, x, p\right), \quad \vartheta_{k}=k \Delta \vartheta, k=0, \ldots, K=899
$$

by a reduced order model with error control.

- By an adaptive greedy strategy we pick a subset $\left(\vartheta_{k}\right)_{k \in M} \subset\left(\vartheta_{k}\right)_{0 \leq k \leq K}$ of rotation angles and compute corresponding FE-solutions $\mathbf{y}_{\mathbf{k}}$ (snapshots)
- Compute by POD a reduced basis $\Psi=\left\{\psi^{1}, \ldots, \psi^{\ell}\right\}$ that approximates $\left.\operatorname{span}\left(\mathbf{y}_{\mathbf{k}}\right)_{k \in M}\right)$ with a given accuracy.
- Form the reduced system

$$
\Psi^{\top} \mathbf{K}_{\nu}(\vartheta, p) \Psi \hat{\mathbf{y}}^{\ell}=\Psi^{\top} \mathbf{f}(\vartheta, p)
$$

- Evaluate error estimators for $\hat{\mathbf{y}}^{\ell}\left(\vartheta_{k}\right)$ and its sensitivities for $0 \leq k \leq K$.
- If error is too large add further angles ϑ_{k}, compute snapshots and update reduced basis Ψ.

Proper Orthogonal Decomposition Decay of Eigenvalues

Choice of ℓ (energy represented by reduced basis):

$$
\varepsilon(\ell)=\frac{\sum_{i=1}^{\ell} \lambda^{i}}{\sum_{i=1}^{d} \lambda^{i}}
$$

We consider independent models for the stator and rotor. The interface is not being reduced.

Reduced order model: The model is of size $\ell_{s}+\ell_{r}+N_{l}$

$$
\left(\begin{array}{ccc}
\Psi_{s}^{\top} \mathbf{K}_{s s} \Psi_{s} & 0 & \Psi_{s}^{\top} \mathbf{K}_{s l} \\
0 & \Psi_{r}^{\top} \mathbf{K}_{r r}(p) \Psi_{r} & \Psi_{r}^{\top} \mathbf{K}_{r l}\left(\vartheta^{k}\right) \\
\mathbf{K}_{s l}^{\top} \Psi_{s} & \mathbf{K}_{r l}^{\top}(\vartheta) \Psi_{r} & \mathbf{K}_{l /}\left(\vartheta^{k}\right)
\end{array}\right)\left(\begin{array}{c}
\hat{\mathbf{y}}_{s}^{\ell} \\
\hat{\mathbf{y}}_{r}^{\ell} \\
\hat{\mathbf{y}}_{l}^{\ell}
\end{array}\right)=\left(\begin{array}{c}
\Psi_{s}^{\top} \mathbf{f}_{s} \\
\Psi_{r}^{\top} \mathbf{f}_{r}(x) \\
\mathbf{f}_{/}\left(\vartheta^{k}\right)
\end{array}\right)
$$

Proper Orthogonal Decomposition POD Basis Vectors

First three POD basis vectors for the stator (top) and rotor (bottom)

Sensitivities and Error Estimator for ROM

Fast and accurate computation of derivatives required during the robust optimization. The n-th order sensitivity equation is given by $(p \in \mathbb{R})$

$$
\mathbf{K}(\vartheta, x) \mathbf{y}^{n}=\mathbf{f}^{(n)}(\vartheta, x)-\sum_{k=1}^{n}\binom{n}{k} \mathbf{K}^{(k)}(\vartheta, x) \mathbf{y}^{(n-k)}
$$

The derivatives $\mathbf{K}^{(k)}$ and $\mathbf{f}^{(n)}$ are given by the derivatives of $\theta_{\mathbf{K}}^{(i)}$ and $\theta_{\mathbf{f}}^{(i)}$.

Sensitivities and Error Estimator for ROM

Fast and accurate computation of derivatives required during the robust optimization. The n-th order sensitivity equation is given by $(p \in \mathbb{R})$

$$
\mathbf{K}(\vartheta, x) \mathbf{y}^{n}=\mathbf{f}^{(n)}(\vartheta, x)-\sum_{k=1}^{n}\binom{n}{k} \mathbf{K}^{(k)}(\vartheta, x) \mathbf{y}^{(n-k)}
$$

The derivatives $\mathbf{K}^{(k)}$ and $\mathbf{f}^{(n)}$ are given by the derivatives of $\theta_{\mathbf{K}}^{(i)}$ and $\theta_{\mathbf{f}}^{(i)}$.
A posteriori error estimator: Check the accuracy of the ROM by using cf. [Patera, Rozza 2006; Rozza, Huynh, Patera 2008]

$$
\left\|\mathbf{y}^{n}(\vartheta, x)-\hat{\mathbf{y}}^{\ell, n}(\vartheta, x)\right\|_{Y} \leq \Delta \mathbf{y}^{n}:=\frac{\left\|r^{n}\left(\hat{\mathbf{y}}^{\ell, n}, \vartheta, x\right)\right\|_{Y^{*}}}{\alpha(\vartheta, x)}+\sum_{k=1}^{n}\binom{n}{k} \frac{\gamma^{k}(\vartheta, p)}{\alpha(\vartheta, p)} \Delta \mathbf{y}^{n-k}
$$

$\alpha(\vartheta, x)$ coercivity constant, $\gamma^{k}(\vartheta, x)$ continuity constant.
Remark: Similar for derivatives w.r.t. p, usually nonlinear influence over the right hand side, i.e., $\mathbf{f}(\vartheta, x, p)=n(p) \mathbf{f}(\vartheta, x)$.

Numerical Results

Setting:

- FEM Discretization: 42061 nodes, 900 nodes on the Interface
- ROM Settings: Tolerance for error indicator is 10^{-2}
- OPT Settings: Stopping at relative error of 10^{-4}
- Linear approximation for uncertainty in optimization variable ($\pm 0.3 \mathrm{~mm}$)
- Quadratic approximation for uncertainty in magnetic field angle ($\pm 5^{\circ}$)

Numerical Results

Results:

		$V_{\text {pm }}$	p	M	$M^{\text {Worst }}$	$\%$
	Initial	133.00	$(19.00,7.00,7.00)$	4.0622	3.9406	100
F	Nominal	62.62	$(21.08,2.97,6.63)$	4.0622	3.8780	47
E	Robust	88.90	$(20.81,4.27,6.96)$	4.2117	4.0601	67
M	Robust-Adapt	90.93	$(20.82,4.37,6.97)$	4.2246	4.0622	68
R	Nominal	62.62	$(21.08,2.97,6.62)$	4.0622	3.8786	47
O	Robust	88.83	$(20.81,4.27,6.96)$	4.2112	4.0601	67
M	Robust-Adapt	91.37	$(20.82,4.39,6.97)$	4.2273	4.0637	68

Performance:

	FEM		ROM		
	iter.	CPU time	iter.	CPU time	Factor
Nominal	14	41928	13	2508	16.72
Robust	9	300820	7	15385	19.55
Robust-Adapt	9	304875	7	14885	20.48

Numerical Results

(a)

(b)

(c)
a) initial geometry
b) nominal optimum
c) robust optimum
[Lass, SU SISC 17], [lon, Bontinck, Loukrezis, Römer, Lass, SU, Schöps, De Gersem Electr. Eng. 18]

Example: Shape Optimization under Uncertainty for Elastodynamic Wave Equations [Kolvenbach, Lass, SU OPTE 18]

Shape optimization of load-carrying structures under uncertainty

- State equation $C(y, x ; p)=0$ given by elastodynamic wave equation
- Uncertainty $p=f_{S}$

State equation: Find y as weak solution of

$$
\begin{aligned}
\rho \ddot{y}-\nabla \cdot \sigma(y) & =f_{V} & & \text { on } \Omega(x) \times(0, T), \\
y & =y_{D} & & \text { on } \Gamma_{D} \times(0, T), \\
\sigma(y) n & =f_{S} & & \text { on } \Gamma_{N} \times(0, T), \\
y(0)=0, \quad \dot{y}(0) & =0 & & \text { on } \Omega(x) .
\end{aligned}
$$

$C_{\text {el }}$ elasticity tensor $f_{V} \quad$ volume force
f_{S} surface force
x design variable
y displacement
with Cauchy stress tensor $\sigma(y)=C_{e l} \cdot\left(\nabla y+\nabla y^{\top}\right)$.
Objective function:

- $h_{0}(y, x):=\frac{\|y\|_{L^{2}\left(0, T ; L^{2}(\Omega(x))\right)}^{2}}{\operatorname{vol}(\Omega(x))} \quad$ (normalized L^{2}-displacement)

Numerical Example: Initial Geometry

Numerical Example

Shape optimization of a 2D-truss under uncertain loading

- Inequality constraints only contain restrictions on the design (volume constraint, bounds on bar thickness)
- Uncertain dynamic loading on the lowermost node, Newmark time-marching
- Globalized BFGS-SQP method (GRANSO) for reduced formulation (RA2)

Considered uncertain shape optimization problem

$$
\min _{y \in Y, x \in X} h_{0}\left(y, x ; f_{S}\right) \quad \text { s.t. } \quad h_{i}(x) \leq 0, i \in I, \quad C\left(y, x ; f_{S}\right)=0
$$

Numerical Example

Shape optimization of a 2D-truss under uncertain loading

- Inequality constraints only contain restrictions on the design (volume constraint, bounds on bar thickness)
- Uncertain dynamic loading on the lowermost node, Newmark time-marching
- Globalized BFGS-SQP method (GRANSO) for reduced formulation (RA2)

Considered uncertain shape optimization problem

$$
\min _{y \in Y, x \in X} h_{0}\left(y, x ; f_{S}\right) \quad \text { s.t. } \quad h_{i}(x) \leq 0, i \in I, \quad C\left(y, x ; f_{S}\right)=0
$$

Robust optimization approach:

- Robust optimization with linear (RA1) or quadratic (RA2) approximation
- Uncertainty set for parameter $p=f_{S}(20 \%)$:

$$
\mathcal{U}_{f_{S}}:=\left\{f_{S}:[0, T] \rightarrow \mathbb{R}^{2}:\left\|f_{S}-\bar{f}_{S}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq 0.2\left\|\bar{f}_{S}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}\right\}, \bar{f}_{S}:=\binom{-1}{-1} .
$$

Results for 500 Time Steps

(a) Non-robust optimal solution

(b) Robust optimum, Linear approximation

(c) Robust optimum, Quadratic approximation

Results for 500 Time Steps

$\#$	Formulation / Method	$\tilde{h}_{0}^{\text {wc }}(x)$	$h_{0}^{\text {Wc }}(x)$	it.	PDEs
1	Reference	-	26.6344	-	-
2	Non-robust	-	99.2707	163	344
3	Linearized	1.2058	56.3082	123	506
4	Quadr. red. matrix free	7.4775	7.4775	69	14810
5	Quadr. red.	7.3219	7.3219	102	132834

$\tilde{h}_{0}^{\text {wc }}(x) \quad$ Approximated worst case objective used
$h_{0}^{w c}(x) \quad$ Exact worst case objective
it. Iterations
PDEs Number PDE solutions incl. linearized and adjoint solves
Video

Conclusion and Outlook

Summary:

Second order approximation for robust counterpart of uncertain PDE-constrained optimization problems

- Worst-case values $\tilde{h}^{w c, 2}(x ; \bar{p})$ given by trust-region problems
- Reformulation of approximated robust counterpart using optimality conditions or duality theory
- Alternatively nonsmooth reduced formulation
- Update of expansion point
- Model order reduction with error control
- Application examples

Current work:

- Extension to topology optimization (with A. Matei)
- Time dependent unsteady motor model based on quasilinear magnetostatic approximation with reduced order models (with B. Polenz)

[^0]: Optimization and Inversion under Uncertainty, RICAM, Linz, 2019 November 13, 2019 | S. Ulbrich | 8

[^1]: Optimization and Inversion under Uncertainty, RICAM, Linz, 2019 November 13, 2019 | S. Ulbrich | 9

