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OPTIMAL CONTROL OF UNCERTAIN SYSTEMS 27

The effectiveness of the search is given by

, y t, ω)) =
t, ω

where Φ is the standard normal cumulative distribution function, is the scan oppor-
tunity rate, is the figure of merit, and reflects the variability in the signal excess.
In the simulation we use the values = 1, = 20, = 20, = 1, and = 10. For
more information about the formulation of this model, see [ 14 15 30 31]. The
problem then becomes to minimize the functional

(7.8) exp
75

, y t, ω))dt

)]

subject to the dynamics (7.7), where is the uniform distribution on Ω. It is easily
seen that this problem can be transformed into the form (1.1).

Due to the irregular shape of the parameter space Ω, this problem would be
particularly challenging if we were to apply quadrature-based methods. However,
the proposed framework is easily implemented with sampling carried out using the
acceptance-rejection method. Using 54 nodes in the time domain and = 5000, we
obtain the searcher trajectory in Figure . We note that the figure shows only 10 of
the 5000 target trajectories.
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Fig. 8 Computed trajectory for a searcher attempting to detect an intruder in the channel for
= 5000. For reference, 10 possible target trajectories are shown. The target moves right to left

down the channel, and the searcher starts at (0 0) at time = 0. The arrows in the figure indicate
the orientation of the trajectories.

In this section we demonstrate that the numerical method proposed in this paper
can be used to control a system with stochastic parameters either with or without
pointwise control constraints. In addition, we assess the validity of the numerically
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Phelps, Royset & Gong, “Optimal Control of Uncertain Systems using Sample
Average Approximations,” SIAM J. Control and Optimization, 2016
Stone, Royset & Washburn, Optimal Search for Moving Targets, Springer, 2016
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Maximize probability of HVU survival

rgmin

hvu

defenders

attackers

Walton, Lambrianides, Kaminer, Royset & Gong, “Optimal Motion Planning in
Rapid-Fire Combat Situations with Attacker Uncertainty,” Naval Research
Logistics, 2018
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Seven defenders vs 100 attackers
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Modeling probability of detection

rgmin

searchertarget

, ( )

r(x(t), y(t))∆t : probability of detection during [t, t + ∆t)

q(t): probability of no detection during [0, t]

q(t + ∆t) = q(t)(1− r(x(t), y(t))∆t)

q̇(t) = −q(t)r(x(t), y(t)), q(0) = 1
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Target uncertainty

rgmin

searchertarget

,
?

{y(t, ξ), t ∈ [0, 1]} uncertain track of target; ξ random vector

q(t, ξ): prob. of no detection during [0, t] given ξ

q̇(t, ξ) = −q(t, ξ)r(x(t), y(t, ξ), ξ), q(0, ξ) = 1

E
[
q(1, ξ)

]
probability of no detection during [0, 1]

Combine q(t, ξ) with searcher state x(t) to get state x(t, ξ)

minimize
u∈U

E
[
ϕ(xu(1, ξ), ξ)

]

with xu(·, ξ) solving ẋ(t, ξ) = f
(
x(t, ξ), u(t), ξ

)
; x(0, ξ) = x0(ξ) a.s.
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Attacker-Defender

rgmin

defendersattackers

ṗ0(t, ξ) = −r(x(t), y(t, ξ), ξ)p0(t, ξ)Q(t)

ṗ1(t, ξ) = −r(x(t), y(t, ξ), ξ)
(
p1(t, ξ)− p0(t, ξ)

)
Q(t)

...

ṗN−1(t, ξ) = −r(x(t), y(t, ξ), ξ)
(
pN−1(t, ξ)− pN−2(t, ξ)

)
Q(t)

q̇0(t, ξ) = −s(x(t), y(t, ξ), ξ)q0(t, ξ)P(t)

q̇1(t, ξ) = −s(x(t), y(t, ξ), ξ)
(
q1(t, ξ)− q0(t, ξ)

)
P(t)

...

q̇N−1(t, ξ) = −s(x(t), y(t, ξ), ξ)
(
qN−1(t, ξ)− qN−2(t, ξ)

)
P(t)

P(t) =
∑N−1

n=0
pn(t) Q(t) =

∑N−1

n=0
qn(t)
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Setting for presentation

(X , d) metric space
f ν , f : X → [−∞,∞], usually lower semicontinuous (lsc)

Actual problem: minimize
x∈X

f (x)

Approximating problem: minimize
x∈X

f ν(x)

Constraints often handled abstractly:
Setting objective function to ∞ if x infeasible (wlog)

What constitutes a consistent approximation?

Level 0: convergence of minimizers, minima

Level 1: convergence of first-order stationary points
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Would pointwise convergence suffice?

1

X

2

= =

Pointwise convergence not sufficient for convergence of minimizers
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What about uniform convergence?

f

( )
( )

argmin { | ( ) }
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What about uniform convergence?

f

( )
( )

( )
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Uniform “approximation,” but large error in argmin

f

( )

argmin { | ( ) 0 }

( )
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Passing to epigraphs of the effective functions

epiepi

=
if ( ) 0

otherwise
=

if ( ) 0

otherwise
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Epi-convergence

epi

X

epi

eeeeeeeeeeeeeepppppppppppppppppppppppiiiiiiiiiii

eeeeeeeeeeeepppppppppppppppppppppppppiiiiiiiiiiiiii

f ν epi-converges to f ⇐⇒ epi f ν set-converges to epi f

Main consequence:

f ν epi-converges to f and xν ∈ argmin f ν → x̄ =⇒ x̄ ∈ argmin f
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Approximation of constraints

1

X

1

=

If C ν set-converges to C and f0 continuous, then

f ν(x) =

{
f0(x) if x ∈ C ν

∞ otherwise
epi-conv to f (x) =

{
f0(x) if x ∈ C

∞ otherwise

Example: C 1,C 2, . . . dense in C = X =⇒ C ν set-converges to C
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Recall failure under uniform convergence

What can be done in this case?

f

( )
( )

( )
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Constraint softening

minimize
x∈X

f0(x) subject to gi (x) ≤ 0, i = 1, . . . , q

sup
x∈X
|f ν0 (x)− f0(x)| ≤ αν and sup

x∈X
max

i=1,...,q
|gνi (x)− gi (x)| ≤ αν

minimize
x∈X ,y∈Rq

f ν0 (x)+θν
q∑

i=1

yi subject to gνi (x) ≤ yi , 0 ≤ yi , i = 1, . . . , q

f0 continuous
gi lsc, i = 1, . . . , q
θν →∞, αν → 0, θναν → 0

Then, approximation epi-converges to actual
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Epi-convergence under sampling and forward Euler
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The effectiveness of the search is given by

, y t, ω)) =
t, ω

where Φ is the standard normal cumulative distribution function, is the scan oppor-
tunity rate, is the figure of merit, and reflects the variability in the signal excess.
In the simulation we use the values = 1, = 20, = 20, = 1, and = 10. For
more information about the formulation of this model, see [ 14 15 30 31]. The
problem then becomes to minimize the functional

(7.8) exp
75

, y t, ω))dt

)]

subject to the dynamics (7.7), where is the uniform distribution on Ω. It is easily
seen that this problem can be transformed into the form (1.1).

Due to the irregular shape of the parameter space Ω, this problem would be
particularly challenging if we were to apply quadrature-based methods. However,
the proposed framework is easily implemented with sampling carried out using the
acceptance-rejection method. Using 54 nodes in the time domain and = 5000, we
obtain the searcher trajectory in Figure . We note that the figure shows only 10 of
the 5000 target trajectories.
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Fig. 8 Computed trajectory for a searcher attempting to detect an intruder in the channel for
= 5000. For reference, 10 possible target trajectories are shown. The target moves right to left

down the channel, and the searcher starts at (0 0) at time = 0. The arrows in the figure indicate
the orientation of the trajectories.

In this section we demonstrate that the numerical method proposed in this paper
can be used to control a system with stochastic parameters either with or without
pointwise control constraints. In addition, we assess the validity of the numerically
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minimize
u∈U

E
[
ϕ(xu(1, ξ), ξ)

]

with xu(·, ξ) solving ẋ(t, ξ) = f
(
x(t, ξ), u(t), ξ

)
; x(0, ξ) = x0(ξ) a.s.

Sampling and Forward Euler result in epi-convergence

Phelps, Royset & Gong, “Optimal Control of Uncertain Systems using Sample
Average Approximations,” SIAM J. Control and Optimization, 2016
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Truncated Hausdorff distance between sets

For C ,D ⊂ X (metric space)

C

D

exs

B ( )

dl̂ρ(C ,D) = max
{

exs
(
C ∩ BX (ρ);D

)
, exs

(
D ∩ BX (ρ);C

)}

19 / 36



Consequence for minima and near-minimizers

For f , g : X → [−∞,∞],

| inf f − inf g | ≤ dl̂ρ(epi f , epi g)

exs
(
ε- argmin g ∩ BX (ρ); δ- argmin f

)
≤ dl̂ρ(epi f , epi g)

if δ > ε + 2dl̂ρ(epi f , epi g)

(product metric is used on X × R and ρ large enough)

Replace > by ≥ when f and g lsc and X has compact balls

20 / 36



Bounds are sharp

exs
(
ε- argmin g ∩ BX (ρ); δ- argmin f

)
≤ dl̂ρ(epi f , epi g)

if δ ≥ ε+ 2dl̂ρ(epi f , epi g)

epi

1

1

1 2

epi 
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What about minimizers?
When f (x)− inf f ≥ g(dist(x , argmin f )) ∀x ∈ X for incr g

exs
(

argmin f ν ∩ BX (ρ), argmin f
)
≤dl̂ρ(epi f , epi f ν)

+ g−1
(
2dl̂ρ(epi f , epi f ν)

)

t

( ) inf

( )

22 / 36



Sharpness of bound on minimizers
dl̂ρ(epi f , epi f ν) = η = 1/2; f has growth g(t) = t2

+ 2
=

exs
(

argmin f ν ∩ BX (ρ), argmin f
)
≤ η + g−1

(
2η
)

23 / 36



Computing distances for compositions

For κ-Lipschitz f : Y → R and F ,G : X → Y ,

dl̂ρ
(

epi(f ◦ F ), epi(f ◦ G )
)
≤ max{1, κ}dl̂ ρ̄(gphF , gphG )

provided that ρ̄ large enough

24 / 36



Distances for sums

fi , gi : X → [−∞,∞], i = 1, 2,

f1, g1 are Lipschitz continuous with common modulus κ

dl̂ρ
(

epi(f1 + f2), epi(g1 + g2)
)
≤ supAρ |f1 − g1|

+
(
1 + κ

)
dl̂ ρ̄(epi f2, epi g2)

provided that epi(f1 + f2) and epi(g1 + g2) are nonempty,

Aρ = {f1 + f2 ≤ ρ} ∪ {g1 + g2 ≤ ρ} ∩ BX (ρ),

ρ̄ ≥ ρ+ max{0,− infBX (ρ) f1,− infBX (ρ) g1}

25 / 36



Convergence of stationary points

First-order conditions for minimizex∈X f (x):

Oresme Rule: df (x ;w) ≥ 0 ∀w ∈ X

Fermat Rule: 0 ∈ ∂f (x)

More generally:

For set-valued mapping S : X →→ Y and point y? ∈ Y
Generalized equation y? ∈ S(x) has solution set S−1(y?)

If gph Sν set-conv to gphS , yν → y?, and xν ∈ (Sν)−1(yν)→ x?,
then x? ∈ S−1(y?)
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Convergence for Oresme Rule
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minimize
u∈U

E
[
ϕ(xu(1, ξ), ξ)

]

with xu(·, ξ) solving ẋ(t, ξ) = f
(
x(t, ξ), u(t), ξ

)
; x(0, ξ) = x0(ξ) a.s.

Sampling: Convergence of Oresme stationary points

Phelps, Royset & Gong, “Optimal Control of Uncertain Systems using Sample
Average Approximations,” SIAM J. Control and Optimization, 2016
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Solutions of generalized equations

For ε ≥ 0, the set of ε-solutions is defined as

S−1
(
BY (y?, ε)

)
=

⋃

y∈BY (y?,ε)

S−1(y)

rgmin

( , )

gph

-solutions
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Example

Optimality conditions for minimizing f over C

0 ∈ ∂f (x) + NC (x)

With S = ∂f + NC and y? = 0, the set of ε-solutions becomes

S−1
(
BRn(ε)

)
=
{
x ∈ Rn | 0 ∈ ∂f (x) + NC (x) + BRn(ε)

}

29 / 36



Solution estimates for generalized equations

For metric spaces X and Y , suppose that S ,T : X →→ Y have
nonempty graphs, 0 ≤ ε ≤ ρ <∞, and y? ∈ BY (ρ− ε)

Then,

exs
(
S−1

(
BY (y?, ε)

)
∩BX (ρ); T−1

(
BY (y?, δ)

))
≤ dl̂ρ(gphS , gphT )

provided that δ > ε + dl̂ρ(gphS , gphT )

If X and Y have compact balls and gphT is closed, then the result
also holds for δ = ε+ dl̂ρ(gphS , gphT )
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Example: KKT solutions

minimize f0(x) subject to fi (x) ≤ 0 for i = 1, . . . ,m (smooth)

(x , y) ∈ Rn+m KKT solution if and only if 0 ∈ S(x , y)

where S : Rn+m →→ R3m+n has

S(x , y) =




[f1(x),∞)
...

[fm(x),∞)
(−∞, y1]

...
(−∞, ym]
{y1f1(x)}

...
{ymfm(x)}

{∇f0(x) +
∑m

i=1 yi∇fi (x)}
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Estimates of KKT solutions

Let g0, . . . , gm define T : Rn+m →→ R3m+n similarly to S

Then,
dl̂ρ(gphS , gphT ) ≤ max

{
δ, ρδ, (1 + mρ)η

}
,

where

δ = max
i=0,...,m

sup
‖x‖∞≤ρ

|fi (x)− gi (x)|

η = max
i=0,...,m

sup
‖x‖∞≤ρ

‖∇fi (x)−∇gi (x)‖∞

KKT system is stable while minimizers may not be

32 / 36



Optimality for composite functions

ϕ : Rm → R proper lsc function

F : Rn → Rm smooth

minimizex∈Rn ϕ
(
F (x)

)

with optimality condition 0 ∈ ∇F (x)>∂ϕ(F (x))

Equivalently,

0 ∈ S(x , y , z) =



{F (x)− z}
∂ϕ(z)− {y}
{∇F (x)>y}




33 / 36



Approximations

ψ : Rm → R proper lsc function

G : Rn → Rm smooth

minimizex∈Rn ψ
(
G (x)

)

with optimality condition 0 ∈ ∇G (x)>∂ψ(G (x))

Equivalently,

0 ∈ T (x , y , z) =



{G (x)− z}
∂ψ(z)− {y}
{∇G (x)>y}
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Approximation error

dl̂ρ(gphS , gphT ) ≤ sup
‖x‖≤ρ

max
{
ρ
∥∥∇G (x)> −∇F (x)>

∥∥,
∥∥G (x)− F (x)

∥∥+ dl̂2ρ
(

gph ∂ϕ, gph ∂ψ
)}

35 / 36
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