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Multistage robust (linear) programs

ROH+1 :=min
x1

c>1 x1 +

+ sup
ξ1∈Ξ1

[
min
x2(ξ1)

c>2 (ξ1) x2(ξ1) + sup
ξ2∈Ξ2

[
· · ·+sup

ξH∈ΞH

[
min

xH+1(ξH)
c>H+1(ξH) xH+1

(
ξ
H

)]]]
s.t. Ax1 = h1, x1 ≥ 0

T1(ξ1)x1 + W2(ξ1)x2(ξ1) = h2(ξ1), ∀ξ1 ∈ Ξ1

...

TH(ξH)xH(ξ
H−1

) + WH+1(ξH)xH+1(ξ
H

) = hH+1(ξH), ∀ξH ∈ ΞH

xt(ξt−1
) ≥ 0 ∀ξt−1 ∈ Ξt−1; t = 2, . . . ,H + 1 ,

where c1 ∈ Rn1 and h1 ∈ Rm1 are known vectors and A ∈ Rm1×n1

is a known matrix. The uncertain parameter vectors and matrices
affected by the parameters ξt ∈ Ξt are then given by ht ∈ Rmt ,
ct ∈ Rnt , Tt−1 ∈ Rmt×nt−1 , and Wt ∈ Rmt×nt , t = 2, . . . ,H + 1.
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Non-anticipativity

? ? ? ?

decision decision decision decision
x1 x2 x3 x4

t = 0 t = t1 t = t2 t = t3

observation observation observation
ξ1 ∈ Ξ1 ξ2 ∈ Ξ2 ξ3 ∈ Ξ3
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Replacing a huge infinite constraint set by a finite
random extraction of the constraints

Consider the problem

RO : min
x∈X

{
c>x : sup

ξ∈Ξ
f (x , ξ) ≤ 0

}
, (1)

where x ∈ X ⊆ Rn is the optimization variable, X is convex and
closed and x 7→ f (x , ξ) : X× Ξ→ R is convex for all ξ ∈ Ξ.
Suppose that Ξ is compact and P is a probability measure on it
with nonvanishing density. Let ξ(1), . . . , ξ(N) be independent
samples from Ξ, sampled according to PN = P× · · · × P. The
“scenario” approximation of problem (1) is defined as follows

SON : min
x∈X

{
c>x : max

1≤i≤N
f (x , ξ(i)) ≤ 0

}
, (2)

Problem (SON) is a random problem and its solution is random.
However it is solvable with standard solvers.

Fabrizio Dabbene/ Francesca Maggioni/ Georg Ch. Pflug Multistage robust convex optimization problems: A sampling based approach



The violation probability

Many authors have studied the approximation quality of (2) to the
basic problem (1) coming up with convergence speed, cental limit
type theorems and laws of large numbers.
It was the idea of Calafiore and Campi to look at the quality of the
approximation in a different way, namely by studying the ”violation
probability distribution”. The “violation probability” of the sample
Ξ̂N :=

{
ξ(1), . . . , ξ(N)

}
is defined as

V (Ξ̂N) := P
{
ξ(N+1) : min

x∈X

{
c>x : max

1≤i≤N+1
f (x , ξ(i)) ≤ 0

}
> v(SON)

}
,

where also ξ(N+1) is sampled from P. Here v(SON) is the optimal
value of problem SON). Notice that V is a random variable taking
its values in [0, 1].
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Bounding the distribution of the violation probability

Theorem. [CCG Theorem, Calafiore (2010) and Campi/Garatti
(2008)]. The distribution of V under P is stochastically smaller (in
the first order) than a random variable YN,n, which has the
following compound distribution

YN,n =


0, with probability 1−

(
N
n

)−1

ZN,n, with probability

(
N
n

)−1

,

where ZN,n has a Beta(n,N − n + 1) distribution, that is for ε > 0

P{V (Ξ̂N)>ε} ≤ P{YN,n>ε} = n

∫ 1

ε
(1−v)N−n vn−1 dv =: B(N, ε, n) .
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These authors also show that

B(N, ε, n) =
n∑

j=0

(
N
j

)
εj(1− ε)N−j .

For any probability level ε ∈ (0, 1) and confidence level β ∈ (0, 1),
let

N(ε, β) := min

N ∈ N :
n∑

j=0

(
N
j

)
εj(1− ε)N−j ≤ β

 .

Then N(ε, β) is a sample size which guarantees that the ε-violation
probability lies below β.
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The CCG Theorem can also be applied to the problem

min
x

sup
ξ∈Ξ

{
g(x , ξ) : x ∈ X(ξ)

}
, (3)

where x 7→ g(x , ξ) is convex and X(ξ) are convex sets for all
ξ ∈ Ξ. Set

f (x , ξ) = g(x , ξ) + ψX(ξ)(x) ,

where ψ is the indicator function

ψB(x) :=

{
0 if x ∈ B
∞ otherwise.

Then f is convex in x and (3) can be written as

min
x

sup
ξ∈Ξ

f (x , ξ) .

Finally, observe that this problem is equivalent to

min
x ,γ

{
γ : sup

ξ∈Ξ
f (x , ξ)− γ ≤ 0

}
.

This problem is of the standard form. In this case, the dimension
of the decision variable is n + 1.
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An Example illustrating the violation probability

The original problem:∥∥∥∥ Maximize x
subject to x2 + y2 ≤ 1

The reformulation as a problem with an infinite number of linear
constraints:∥∥∥∥ Maximize x

subject to x cos(ξ) + y sin(ξ) ≤ 1 for all 0 ≤ ξ ≤ 2π

The randomly sampled problem, ξ(i) ∼ Uniform[0, 2π] :∥∥∥∥ Maximize x

subject to x cos(ξ(i)) + y sin(ξ(i)) ≤ 1 for i = 1, . . . ,N
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Illustration

N = 5 N = 10

The random violation probability is represented by the blue arc
length (relative to the total circumference 2π).

Fabrizio Dabbene/ Francesca Maggioni/ Georg Ch. Pflug Multistage robust convex optimization problems: A sampling based approach



Extending the notion of violation probability
to the multistage case

In the multistage situation, we have to respect the
non-anticipativity conditions. Based on a finite random selection
Ξ̂N1

1 , . . . , Ξ̂NH
H

Ξ̂N1
1 = {ξ(1)

1 , . . . , ξ
(N1)
1 } ,

Ξ̂N2
2 = {ξ(1)

2 , . . . , ξ
(N2)
2 } ,

...

Ξ̂NH
H = {ξ(1)

H , . . . , ξ
(NH)
H } ,

we generate a random tree T̂ N1,...,NH , where {ξ(1)
1 , . . . , ξ

(N1)
1 } are

the successors of the root, and recursively all nodes at stage t get
all values from ΞNt

t as successors. Notice that the number of nodes
at stage t + 1 of the tree is N̄t :=

∏t
s=1 Ns . The total number of

nodes of the tree is Ntot := 1 +
∑H

i=1 N̄i .
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The violation probability in the multistage situation

The violation probability Vt at stage t is defined in the following
way. Given the random tree T̂ N1,...,NH , suppose that we sample an

additional element ξ
(Nt+1)
t in Ξt and form the extended tree

T̂ N1,...,Nt+1,...,NH . Then

Vt(T̂ N1,...,NH ) = P{ξ(Nt+1)
t : v(T̂ N1,...,Nt+1,...,NH ) > v(T̂ N1,...,NH )}.

Here v(T ) is the value of the multistage optimization problem on
the tree T .
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Illustration
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The original sampled tree T̂ 3,2.
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The randomly extended tree T̂ 4,2. A new observation in stage 1 is
added. The new nodes are in bold.
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The randomly extended tree T̂ 3,3. A new observation in stage 2 is
added. The new nodes are in bold.
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The structure of the multistage robust
decision problem

The decision problem can be written as

R̂O
N1···NH

H+1 : min
(x1,·)∈I1

max
i

min
(x2,·)∈I2

max
i

min
(x3,·)∈I3

. . .max
i

fi (x1,i , . . . , xH,i , xH+1,i )

where Ij are the constraint sets induced by non-anticipativity and
the functions fi are defined as

fi (x1,i , . . . , xH+1,i ) = c>1 x1,i + ψX1(x1,i ) +
H+1∑
t=2

(c>t,ixt,i + ψXt(xt−1,i ,ξpt (i))(xt,i )) ,

where ψ· are the convex indicator functions and

Xt(xt−1, ξt−1) := {xt ≥ 0 : Tt−1(ξt−1)xt−1+Wt(ξt−1)xt = ht(ξt−1)} .

Fabrizio Dabbene/ Francesca Maggioni/ Georg Ch. Pflug Multistage robust convex optimization problems: A sampling based approach



Upper and lower bounds

From the representation

R̂O
N1···NH

H+1 : min
(x1,·)∈I1

max
i

min
(x2,·)∈I2

max
i

min
(x3,·)∈I3

. . .max
i

fi (x1,i , . . . , xH,i , xH+1,i )

(4)
one sees that

(i) A lower bound is obtained by relaxing the non-anticipativity
constraints

(ii) An upper bound is obtained by shifting some or all max
operators to the right in formula (4)
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The violation probability in stage 1

For the violation probability at stage 1, keep the samples
Ξ̂2, . . . , Ξ̂H fixed and consider only at the dependency on ξ1,
summarized in the objective function f̄ (x1, ξ1). The decision
problem at stage 1 is of the form

min
x1

max
ξ1

f̄ (x1, ξ1) .

Therefore we get the estimate from the CCG Theorem

P
{
V1(Ξ̂N1

1 , . . . , Ξ̂NH
H )>ε

}
≤ B(N1, ε, n1 + 1) ,

where n1 = dim(x1).
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The violation probability at stage t

Similarly, at stage t, there are N̄t−1 =
∏t−1

s=1 Ns nodes of the tree.
The violation probability Vt,j at stage t and a fixed node j is
stochastically dominated by YNt ,nt+1, given before, i.e.

P
{
Vt,j(Ξ̂N1

1 , . . . , Ξ̂NH
H )>ε} ≤ P{YNt ,nt+1>ε

}
.

Notice that this bound does not depend on j . Now

Vt(Ξ̂N1
1 , . . . , Ξ̂NH

H ) = P
{

Violation at any node at stage t|Ξ̂N1
1 , . . . , Ξ̂NH

H

}
≤

N̄t−1∑
j=1

P
{

Violation at node j at stage t |Ξ̂N1
1 , . . . , Ξ̂NH

H

}

=

N̄t−1∑
j=1

Vt,j(Ξ̂N1
1 , . . . , Ξ̂NH

H ) .
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Now, we use a modification of a result by Frank, Nelson and
Schweizer (1987) solving a problem by Kolmogorov/Makarov.
Lemma. Let X1, . . . ,XK be a sequence of possibly dependent
random variables, where each of them has left-continuous
distribution function F and survival function F̄ = 1− F . Then

P{
K∑
j=1

Xi ≥ ε} ≤ KF̄ (ε/K ),

leading to the main Theorem
Theorem. [Violation probability at stage t of sampled scenario
tree]
Given an accuracy level ε ∈ (0, 1), let N̄t−1 =

∏t−1
s=1 Ns and

εt := ε/N̄t−1. Then, the probability of violation at stage t,
Vt(Ξ̂N1 , . . . , Ξ̂NH ) is bounded by

P
{
Vt(Ξ̂N1 , . . . , Ξ̂NH )>ε

}
≤ N̄t−1B(Nt , εt , nt + 1),

where nt = dim(xt).
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Almost sure convergence

Theorem. If all sample sizes N1, . . . ,NH tend to infinity, then the
optimal value of the sampled multistage program converges almost
surely to the optimal value of the robust multistage program.
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A numerical example: An inventory problem

I A retailer replenishes his inventory at the beginning of each
time period t ∈ {1, . . . ,H} by orders xot - but without
knowing the demand ξt - at a cost of dt per unit of the
product.

I The demand must be satisfied from the inventory with filling
level s invt . Unsatisfied demand may be backlogged at cost pt
and inventory may be held in the warehouse with a unitary
holding cost ht .

I Lower and upper bounds on the orders xot at each period as
well as on the cumulative orders are given. We assume that
there is no demand at time t = 1 and that the demand at time
t lies within an interval centered around a nominal value ξ̄t
and uncertainty level ρ ∈ [0, 1] resulting in a box uncertainty
set as follows: Ξ = ×t∈T

{
ξt ∈ R :

∣∣ξt − ξ̄t∣∣ ≤ ρξ̄t}.
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The full model is

ROH+1(COC):= (5a)

min
xot ,x

c
t ,s

co
t ,s

inv
t

[
xc1 + max

ξ∈Ξ

∑
t∈T

xct+1(ξ
t
)

]
(5b)

s.t. xc1 ≥ d1x
o
1 + max

{
h1s

inv
1 ,−p1s

inv
1

}
(5c)

xct+1(ξ
t
) ≥ dt+1x

o
t+1(ξ

t
) +

+ max
{
ht+1s

inv
t+1(ξ

t
),−pt+1s

inv
t+1(ξ

t
)
}
, t = 1, . . . ,H−1 (5d)

xcH+1(ξ
H

) ≥ max
{
hH+1s

inv
H+1(ξ

H
),−pH+1s

inv
H+1(ξ

H
)
}

(5e)

s inv2 (ξ
1
) = s inv1 + xo1 − ξ1 (5f)

s invt+1(ξ
t
) = s invt (ξ

t−1
) + xot (ξ

t−1
)− ξt , t = 2, . . . ,H (5g)

sco2 (ξ
1
) = sco1 + xo1 (5h)

scot+1(ξ
t
) = scot (ξ

t−1
) + xot (ξ

t−1
) , t = 2, . . . ,H (5i)

xo1 ≤ xo1 ≤ x̄o1 , sco1 ≤ sco1 ≤ s̄co1 (5j)

xot ≤ xot (ξ
t−1

) ≤ x̄ot , scot ≤ scot (ξ
t−1

) ≤ s̄cot , t = 2, . . . ,H + 1.(5k)

The objective function (5b) corresponds to minimize the
worst-case cumulative cost. Constraints (5c)-(5d)-(5e) define the
stage-wise costs xct+1(ξ

t
), t = 1, . . . ,H while constraints (5f)-(5g)

and (5h)-(5i) respectively define the dynamics of the inventory
level and cumulative orders. Finally, constraints (5j)-(5k) denote
the lower and upper bounds on the instantaneous and cumulative
orders. Notice that the decision process is nonanticipative.
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The required sample sizes

ε (%) β N∗1 N∗2
30 0.05 43 1849
20 0.05 64 4096
10 0.05 127 16129

Sample sizes of the problem R̂O
N1N2

3 in the tree-stage case
(H = 2) with n1 = n2 = 4.
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The optimality gaps
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The empirical violation probabilites
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Mean solver times
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line) as a function of log(1/ε).
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Conclusions

I Multistage robust optimization problems can be approximated
by sampled versions. Almost sure convergence holds.

I We found bounds for the multistage violation probabilities in
the sense of Calafiore and Campi/Garatti.

I The empirical violation probabilities are typically much smaller
than the universal (worst case) upper bounds. There is much
room for tightening these bounds.
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