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Problem setting – quadratic optimal control problem

Problem setting

(Ω,F ,P): complete probability space

D ⊂ Rd : physical domain. Throughout ‖ · ‖ = ‖ · ‖L2(D).

Forward problem{
−div(a(x , ω)∇y(x , ω)) = g(x) + u(x), for a.e. x ∈ D, ω ∈ Ω

y(x , ω) = 0, for a.e. x ∈ ∂D, ω ∈ Ω
(*)

with a(·, ω) a random field s.t. 0 < amin ≤ a(x , ω) ≤ amax , ∀(x , ω) ∈ D × Ω.

=⇒ random solution ω 7→ y(·, ω) ∈ H1
0 (D). In particular y ∈ L2

P(Ω;H1
0 (D)).

u ∈ L2(D): control function

Optimal control problem

min
u∈L2(D)

y∈L2
P (Ω;H1

0
(D))

J̃(u, y) :=
1

2
Eω[‖y(·, ω)− ytarget‖2] +

β

2
‖u‖2, subject to (*)
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Problem setting – quadratic optimal control problem

Reduced functional
(Stochastic) Affine solution operator: yω : L2(D)→ H1

0 (D)

∀ω ∈ Ω u 7→ yω(u), solution of

{
−div(a(·, ω)∇yω(u)) = g + u, in D

yω(u) = 0, on ∂D.

Reduced functional: minu∈L2(D) J(u)

J(u) = Eω[f (u, ω)], f (u, ω) =
1

2
‖yω(u)− ytarget‖2 +

β

2
‖u‖2

Adjoint based gradient computation:

∇uf (u, ω) = βu + pω(u), ∇uJ(u) = βu + Eω[pω(u)]

where pω(u) solves the adjoint problem ∀ω ∈ Ω

−div(a(·, ω)∇pω(u)) = yω(u)− ytarget in D, pω(u) = 0 on ∂D.

Lipschitz and strong convexity properties of ∇uf : ∀u1, u1 ∈ L2(D), ω ∈ Ω

‖∇uf (u1, ω)−∇uf (u2, ω)‖ ≤ L‖u1 − u2‖, L = β +
C 4
P

a2
min

〈∇uf (u1, ω)−∇uf (u2, ω), u1 − u2〉L2(D) ≥
`

2
‖u1 − u2‖2, ` = 2β
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Discretization by finite elements + Monte Carlo

Finite dimensional approximation

Finite Element approximation of the PDE: ∀u ∈ L2(D), ω ∈ Ω

u 7→ yh
ω(u) solves

∫
D

a(·, ω)∇yh
ω(u) · ∇vh =

∫
D

(g + u)vh, ∀vh ∈ Y r
h

Y r
h : space of continuous Pr finite element functions vanishing on the

boundary

Monte Carlo approximation of expectation: ωi
iid∼ P, i = 1, . . .N

J(u) = Eω[f (u, ω)] ≈ 1

N

N∑
i=1

f (u, ωi )

Discrete optimal control problem:

min
u∈L2(D)

Jh,N(u) :=
1

N

N∑
i=1

f h(u, ωi ) =
1

N

N∑
i=1

[
1

2
‖yh
ωi

(u)− ytarget‖2 +
β

2
‖u‖2

]

Remark: The unique minimizer uh,N? ∈ Y r
h
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Discretization by finite elements + Monte Carlo

Optimality conditions

primal pbs:

∫
D

a(·, ωi )∇yh
ωi
· ∇vh =

∫
D

(g + uh,N)vh, ∀vh ∈ Y r
h , i = 1, . . . ,N,

adjoint pbs:

∫
D

a(·, ωi )∇vh · ∇phωi
=

∫
D

(yh
ωi
− ytar )vh, ∀vh ∈ Y r

h , i = 1, . . . ,N,

sensitivity:

∫
D

(βuh,N +
1

N

N∑
i=1

phωi
)vh = 0 ∀vh ∈ Y r

h .

Algebraic system

A1 −M
. . .

...
AN −M

−M AT
1

. . .
. . .

−M AT
N

M · · · M βNM





y1

...
yN

p1

...
pN
u


=



g
...
g

− ytar
...
−ytar
0
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Deterministic (CG) iterative solvers versus Stochastic Gradient

Reduced algebraic system

Several appraoches can be used to solve this coupled system
[Kouri-Heinkenschloss-eal 2013], [VanBarel-Vandewalle 2018], [Borz̀ı-vonWinckel 2011]

Eliminating (y1, . . . , yN) and (p1, . . . ,pN) and introducing the block matrices

A =

A1

. . .

AN

 , M =

M . . .

M

 , 1 =

Id...
Id


leads to a reduced system Gu = ξ with matrix

G = βM +
1

N
1
TMA−TMA−1M1

The matrix G is spd and Cond(G) = O(β−1) indep. of h and N.

Reduced system can be solved efficiently by e.g. conjugate gradient.
Denoting uh,Nj the j-th iterate

‖uh,N? − uh,Nj ‖ ≤ Cρj , ρ =

√
Cond(G)− 1√
Cond(G) + 1
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Deterministic (CG) iterative solvers versus Stochastic Gradient

Deterministic approach

Use standard (deterministic) iterative method (e.g. CG) to solve the fully discrete
system

Error splitting assuming smooth solutions yω(u?), pω(u?) ∈ H r+1(D)

E[‖u? − uh,Nj ‖2] ≤ C1ρ
2j︸ ︷︷ ︸

CG error

+
C2

N︸︷︷︸
MC error

+C3h
2r+2︸ ︷︷ ︸

FE error

Cost to compute uh,Nj : assume that the cost of solving 1 PDE is O(h−γd)
(with γ ∈ (1, 3])

=⇒ Work to compute uh,Nj : Work ∼ jNh−γd

Complexity analysis. Balancing errors contributions: ρj ∼ N−
1
2 ∼ hr+1 ∼ tol

Work(tol) . tol−2︸ ︷︷ ︸
MC

tol−
γd
r+1︸ ︷︷ ︸

FE

log tol−1︸ ︷︷ ︸
solver
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Deterministic (CG) iterative solvers versus Stochastic Gradient

Deterministic approach

Use standard (deterministic) iterative method (e.g. CG) to solve the fully discrete
system

Error splitting assuming smooth solutions yω(u?), pω(u?) ∈ H r+1(D)

E[‖u? − uh,Nj ‖2] ≤ C1ρ
2j︸ ︷︷ ︸

CG error

+
C2

N︸︷︷︸
MC error

+C3h
2r+2︸ ︷︷ ︸

FE error

Cost to compute uh,Nj : assume that the cost of solving 1 PDE is O(h−γd)
(with γ ∈ (1, 3])

=⇒ Work to compute uh,Nj : Work ∼ jNh−γd

Complexity analysis. Balancing errors contributions: ρj ∼ N−
1
2 ∼ hr+1 ∼ tol

Work(tol) . tol−2︸ ︷︷ ︸
MC

tol−
γd
r+1︸ ︷︷ ︸

FE

log tol−1︸ ︷︷ ︸
solver

F. Nobile (EPFL) MLSG for PDE-constrained optimization RICAM 2019, Linz 11



Deterministic (CG) iterative solvers versus Stochastic Gradient

Deterministic approach

Use standard (deterministic) iterative method (e.g. CG) to solve the fully discrete
system

Error splitting assuming smooth solutions yω(u?), pω(u?) ∈ H r+1(D)

E[‖u? − uh,Nj ‖2] ≤ C1ρ
2j︸ ︷︷ ︸

CG error

+
C2

N︸︷︷︸
MC error

+C3h
2r+2︸ ︷︷ ︸

FE error

Cost to compute uh,Nj : assume that the cost of solving 1 PDE is O(h−γd)
(with γ ∈ (1, 3])

=⇒ Work to compute uh,Nj : Work ∼ jNh−γd

Complexity analysis. Balancing errors contributions: ρj ∼ N−
1
2 ∼ hr+1 ∼ tol

Work(tol) . tol−2︸ ︷︷ ︸
MC

tol−
γd
r+1︸ ︷︷ ︸

FE

log tol−1︸ ︷︷ ︸
solver

F. Nobile (EPFL) MLSG for PDE-constrained optimization RICAM 2019, Linz 11



Deterministic (CG) iterative solvers versus Stochastic Gradient

Stochastic gradient (Robbins-Monro)

Instead of introducing upfront the Monte Carlo approximation and then solve the
discrete problem by a deterministic iterative solver, we could apply a stochastic
gradient method to the continuous problem (non-discrete in probability)

uhj+1 = uhj − τj∇uf
h(uhj , ωj)

= (1− τjβ)uhj − τjphωj
(uuj ) ωj

iid∼ P
Learning rate τj = τ0

j+α

Proposition [Martin-Nobile-Krumscheid 2018]

Assuming yω(u?), pω(u?) ∈ H r+1(D), for any α ∈ R+ and τ0 >
1

2β there exist
D1,D2 > 0 independent of j and h s.t.

SG convergence: E[‖uh? − uhj ‖2] ≤ D1j
−1

Error splitting: E[‖u? − uhj ‖2] ≤ 2D1j
−1 + D2h

2r+2

Complexity: Work(tol) . tol−2tol−
γd
r+1 (no log terms !)
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Deterministic (CG) iterative solvers versus Stochastic Gradient

Numerical results

Optimal control problem:

min
u∈L2(D)

1

2
Eω
[
‖yω(u)− ytarget‖2

]
+
β

2
‖u‖2

subject to

{
−div(a(·, ω)∇yω(u)) = g + u in D

yω(u) = 0 on ∂D

Problem parameters

D = (0, 1)2, g = 1, ytarget(x1, x2) = sin(πx) sin(πy), β = 10−4

a(x1, x2, ξ) = 1 + exp{θ(ξ1 cos(1.1πx1) + ξ2 cos(1.2πx1) + ξ3 sin(1.3πx2) + ξ4 sin(1.4πx2))}
IsoValue
0.873489
0.891562
0.90361
0.915659
0.927708
0.939756
0.951805
0.963854
0.975903
0.987951
1
1.01205
1.0241
1.03615
1.04819
1.06024
1.07229
1.08434
1.09639
1.12651

delta
IsoValue
0.854672
0.875433
0.889274
0.903114
0.916955
0.930796
0.944637
0.958478
0.972318
0.986159
1
1.01384
1.02768
1.04152
1.05536
1.0692
1.08304
1.09689
1.11073
1.14533

delta
IsoValue
0.739162
0.776425
0.801266
0.826108
0.85095
0.875791
0.900633
0.925475
0.950317
0.975158
1
1.02484
1.04968
1.07453
1.09937
1.12421
1.14905
1.17389
1.19873
1.26084

delta

three realization of the random coefficient
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Deterministic (CG) iterative solvers versus Stochastic Gradient

Numerical results – SG convergence

100 101 102 103
10−2

10−1

100

iteration counter j

E[
‖u

h j
−
u
h ?
‖]

E[‖uh
j − uh

?‖]: SG with fixed mesh

fit: error = 100.16547j−0.48555

E[‖uh
j − uh

?‖] + std(‖uh
j − uh

?‖)

Mean L2 error as a function of iteration counter, estimated by
sample average over 100 independent realizations.

Fixed mesh size h = 2−4 – P1 finite elements.
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Deterministic (CG) iterative solvers versus Stochastic Gradient

Numerical results – complexity of CG versus SG

100 101 102 103 104 105 106 107 108 109 1010
10−4

10−3

10−2

10−1

100

Work model (γ=1)

E[
‖u
−
u
?
‖]

SG E[‖u− u?‖]
SG E[‖u− u?‖] + std(‖u− u?‖)
CG E[‖u− u?‖]
CG E[‖u− u?‖] + std(‖u− u?‖)
reference complexity: error ≈ W-1/3

Complexity plot for CG and SG (average over 20 repetitions)
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Multilevel stochastic gradient algorithms

Outline

1 Problem setting – quadratic optimal control problem

2 Discretization by finite elements + Monte Carlo

3 Deterministic (CG) iterative solvers versus Stochastic Gradient

4 Multilevel stochastic gradient algorithms

5 Conclusions
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Multilevel stochastic gradient algorithms

Multilevel stochastic gradient

Let Y r
h0
⊂ Y r

h1
⊂ . . . ⊂ Y r

hL
be a sequence of finer and finer FE spaces.

Idea: In the Stochastic Gradient algorithm, replace the single evaluation
∇uf

h(uj , ωj) by a multilevel approx. of the expectation [Heinrich 1998], [Giles 2008]

EMLMC
L, ~N

[∇uf (uj , ·)] =
L∑
`=0

1

N`

N∑̀
i=1

[
∇uf

h`(uj , ω
(i,`)
j )−∇uf

h`−1 (uj , ω
(i,`)
j )

]
(with the convention ∇uf

h−1 = 0) with ω
(i,`)
j

iid∼ P (drawn independently between
levels and at each iteration)

L controls the bias of the estimator (FE error on level hL)

E
[
EMLMC
L, ~N

[∇uf (uj , ·)]− E[∇uf (uj , ·)]
]

= E[∇uf
hL(uj , ·)−∇uf (uj , ·)]

~N = (N0, . . . ,NL) controls the variance of the estimator (MC error)

Var
[
EMLMC
L, ~N

[∇uf (uj , ·)]
]

=
L∑
`=0

Var
[
∇uf

h`(uj , ·)−∇uf
h`−1 (uj , ·)

]
N`
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Multilevel stochastic gradient algorithms

Multilevel stochastic gradient algorithm – first version

uj+1 = uj − τjEMLMC
Lj , ~Nj

[∇uf (uj , ·)]

= (1− τjβ)uj − τj
Lj∑
`=0

1

N`,j

N`,j∑
i=1

[
ph`(uj , ω

(i,`)
j )− ph`−1 (uj , ω

(i,`)
j )

]
Learning rate τj = τ0

j+α . Notice that ∀j , uj+1 ∈ Y r
hLj

We allow L and ~N to depend on the iteration counter j . How to choose them
optimally ?

To recover the optimal control u? in the limit, we need Lj →∞ as j →∞.

On the other hand, ~N does not need to go to ∞.

Similar approach proposed in [Dereich-MuellerGronbach 2015] for abstract
optimization problem. Different working assumptions but similar results.
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Multilevel stochastic gradient algorithms

Convergence analysis

Bias term εj =
∥∥∥E[∇uf

hLj (u?, ·)−∇uf (u?, ·)]
∥∥∥

Variance term σ2
j = E

[∥∥∥EMLMC
Lj , ~Nj

[∇uf (u?, ·)]− E[∇uf
hLj (u?, ·)]

∥∥∥2
]

Proposition [Martin-Nobile-Tsilifis 2019]

There exist λ, µ > 0 independent of h and j such that

E[‖uj+1 − u?‖2] ≤ cjE[‖uj − u?‖2] + λτ 2
j σ

2
j + µτjε

2
j

with cj ∼ 1− τ0β
j+α (⇒ ∏j

k=0 ck ∼ j−τ0β)

Optimal error balance: τ 2
j σ

2
j ∼ τjε2

j

=⇒ ε2
j ∼ 1

j σ
2
j

Square bias should decrease faster than variance !
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Multilevel stochastic gradient algorithms

Compexity analysis: optimal bias/variance decrease

Take τ0 >
1
β and η > 2

ε2
j ∼ (j + α)1−η =⇒ Lj ∼

η − 1

2r + 2
log(j + α)

σ2
j ∼ (j + α)2−η =⇒ N`,j ∼ 2−`

2r+2+γd
2 (j + α)η−2

Proposition [Martin-Nobile-Tsilifis 2019]

The work to achieve a mean squared error E[‖uj − u?‖2] = O(tol2) is bounded by

Work(tol) .


tol−2, 2r + 2 > γd , η ≥ 2 + γd

2r+2−γd , τ0 >
η−1
β

tol−2(1+ 1
τ0β

)| log tol |3+ 1
τ0β , 2r + 2 = γd , η = τ0β + 1

tol−2( γd
2r+2 + 1

τ0β
)| log tol |

γd
2r+2 + 1

τ0β , 2r + 2 < γd , η = τ0β + 1
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Multilevel stochastic gradient algorithms

Multilevel stochastic gradient algorithm – second version

The multilevel Stochastic Gradient algorithm (MLSG) is in between a Stochastic
Gradient and a Full gradient: at each iteration, we compute an approximation
EMLMC
L, ~N

[∇uf (uj , ·)] of increasing accuracy (εj , σj → 0 as j →∞).

Alternative Idea (inspired from “unbiased MLMC estimator” of [Rhee-Glynn 2015]): at
each iteration, sample randomly one level `j and one realization ωj and compute

the difference ∇uf
h`j (uj , ωj)−∇uf

h`j−1 (uj , ωj)

Randomized Multilevel Stochastic Gradient (RMLSG) (only for the case
2r + 2 > γd)

uj+1 = uj − τj
1

p`j

[
∇uf

h`j (uj , ωj)−∇uf
h`j−1 (uj , ωj)

]
, `j

iid∼ {p`}Lj

`=0, ωj
iid∼ P

with τj = τ0

j+α and {p` ∝ 2−`
2r+2+γd

2 } probability mass function on {0, . . . , Lj}

Bias: εj = ‖E[∇uf
hLj (uj , ·)−∇uf (uj , ·)]‖ (same as for MLSG)

If one takes Lj =∞, ∀j , then the estimator is unbiadsed. Unfortunately, we
were not able to prove convergence with this setting.
Alternatively, decrease the bias as ε2

j ∼ (j + α)1−η
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Multilevel stochastic gradient algorithms

Compexity analysis of RMLSG: optimal bias decrease

Proposition [Martin-Nobile-Tsilifis 2019]

Assume 2r + 2 > γd and take η = 2, τ0 >
1
β . Then, the expected work to achieve

a mean squared error E[‖uj − u?‖2] = O(tol2) is

E[Work(tol)] . tol−2

and √
Var [Work(tol)]

E [Work(tol)]
. tol

3(2r+2)−γd
2(2r+2)

tol→0−−−−→ 0
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Multilevel stochastic gradient algorithms

Numerical results – MLSG complexity
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Conclusions

Conclusions and future work

We have analyzed and compared several algorithms to solve a PDE
constrained quadratic optimal control problem. Our outcome is that, in the
context of a Monte Carlo approximation, the Stochastic gradient algorithm
has a slighly better complexity than a deterministic solver such as CG. The
multilevel versions, on the other hand, has a substantially better complexity.

Our analysis of SG and MLSG uses only the (uniform) Lipschitz and strong
convexity properties of the random cost functional. As such, our results may
generalize to ortehr problems as e.g.

- general linear second order elliptic equations with random coefficients
- boundary control
- non-linear (convex and Lipschitz) cost functionals

Extension of the results to more involved risk measures (other than
expectation) is in progress.

In the case on only few random variables, a deterministic quadrature (e.g.
full tensor or sparse quadrature) may be more accurate than Monte Carlo. In
this case, Stochastic Gradient algorithms can still be effective if properly
modified (see SAG / SAGA versions).
Analysis available in [Martin-Nobile 2018].
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Thank you for your attention!
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