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A probabilistic program - standard setting

Optimization problem with probabilistic constraint:

minimize f(x)

subject to

P(gi(x, ξ) ≤ 0 (i = 1, . . . ,m)) ≥ p}
x ∈ X ⊆ Rn

ξ: s-dimensional random vector (continuously distributed)

chronology: xy ξ
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Perspectives:

� infinite inequality system

� infinite dimensional decisions

� dynamic decisions
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Probabilistic state constraints in PDE constrained optimization1

Simple PDE arising in shape optimization of mechanical structures or crystal growth:

−∇x · (κ(x)∇xy(x)) = r(x, ξ), x ∈ D
n · (κ(x)∇xy(x)) + αy(x) = u(x) x ∈ ∂D,

Probabilistic state constraint:
P(y(x, ξ) ≤ ȳ ∀x ∈ C ⊆ D) ≥ p

Using control to state operator Y (r, u), probabilistic state constraint turns into a probabilistic constraint on
the decision (control) variable:

P(ȳ − Y (r(x, ξ), u(x)) ≥ 0 ∀x ∈ C) ≥ p

Motivates to investigate optimization problems

min{f(x) | P(g(x, ξ, t) ≥ 0 ∀t ∈ T )︸ ︷︷ ︸
ϕ(x)

≥ p}

with X Banach space and T arbitrary (maybe compact) index set.

1Farshbaf-Shaker, H.. D. Hömberg 2018
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Semicontinuity of ϕ(x) := P(g(x, ξ, t) ≥ 0 ∀t ∈ T ) for g : X × Rs × T → R

Proposition

LetX be a Banach space. Assume that g is weakly sequentially upper semicontinuous (w.s.u.s.) in the first
two arguments. Then, ϕ : X → R is w.s.u.s.
In particular, the probabilistic constraint M := {x ∈ X | ϕ(x) ≥ p} is weakly sequentially closed.

Proposition

Assume that

1. g is weakly sequentially lower semicontinuous (w.s.l.s.).

2. T is compact.

3. Let x ∈ X be such that P( inf
t∈T

g(x, ξ, t) = 0) = 0

Then, ϕ is w.s.l.s. at x.

The technical condition 3. may be replaced by the easier to verify conditions

� ξ has a density.

� g is concave in the second argument.

� There exists z̄ ∈ Rm with g(x, z̄, t) > 0 for all t ∈ T .
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Convexity of the probabilistic constraint M := {x ∈ X | ϕ(x) ≥ p}

As before, let ϕ(x) := P(g(x, ξ, t) ≥ 0 ∀t ∈ T ).

Theorem (Prekopa)

Assume that

� g is quasiconcave in the first two variables simultaneously.

� ξ has a log-concave density (e.g. Gaussian etc.)

Then, the probabilistic constraint defines a convex set M for all p ∈ [0, 1].

All these properties may be verified by imposing standard assumptions for the simple PDE displayed
before.

=⇒ existence of solutions, convex optimization problem (along with convex objective)
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Spheric-radial decomposition of a Gaussian random vector in Rm

Let ξ ∼ N (0, R) with R = LLT . Then,

P (ξ ∈M) =

∫
v∈Sm−1

µη ({r ≥ 0 : rLv ∈M})dµζ(v),

where µη , µζ are the laws of η ∼ χ(m) and of the uniform distribution on Sm−1.

M 

𝑆𝑚−1 

𝑣 

𝐿𝑣 

Sampling of uniform distribution on the sphereOut[77]=

Application to parameter-dependent inequality systems: 2,

ϕ(x) := P(g(x, ξ, t) ≤ 0 ∀t ∈ T ) =

∫
v∈Sm−1

µη ({r ≥ 0 : g(x, rLv, t) ≤ 0 ∀t ∈ T}) dµζ(v)

Obtain∇ϕ as another spherical integral by differentiating under the integral (if allowed!)

Apply nonlinear programming method to solve optimization problem.

2Deák (1980,2000), Royset/Polak (2004,2007), W.v. Ackooij, H. (2014,2017)
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Differentiability of ϕ(x)=P(gi(x, ξ) ≤ 0 (i=1, . . . ,m))

Theorem

Assume that

� X- ref.+sep. B-space, g ∈ C1(X × Rm,Rp) and gi(x, ·) convex.

� ϕ(x̄) > 0.5 at a point of interest x̄.

� ∃l > 0 : ‖∇xgi(x, z)‖ ≤ le‖z‖ ∀x ∈ B1/l(x̄) ∀z : ‖z‖ ≥ l ∀i = 1, . . . ,m.

� rank {∇zgi(x̄, z),∇zgj(x̄, z)} = 2 ∀i 6= j ∈ I(z) ∀z : g(x̄, z) ≤ 0,
where, I(z) := {i | gi(x̄, z) = 0}.

Then, ϕ is strictly differentiable at x̄ and the gradient formula

∇ϕ (x̄) = −
∫

v∈Sm−1

χ (ρ (x̄, v))〈
∇zgi∗(v) (x̄, ρ (x̄, v)Lv) , Lv

〉∇xgi∗(v) (x̄, ρ (x̄, v)Lv) dµζ(v)

holds true. Here, i∗(v) := {i|ρ(x̄, v) = ρi(x̄, v)}.

μ 

𝜌(𝑥, 𝑣) 

𝜌1 (𝑥, 𝑣1) 

𝜌2 (𝑥, 𝑣2) 

𝐿𝑣 

𝑔2 (𝑥, 𝑧) ≤ 0 

𝑔1 (𝑥, 𝑧) ≤ 0 
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Optimal Neumann boundary control for vibrating string3

For given initial conditions y0 ∈ H1(0, 1), y1 ∈ L2(0, 1), solve

min ‖u‖2
L2(0,T )

subject to cost function

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1) initial conditions

y(t, 0) = 0, yx(t, 1) = u(t), t ∈ (0, T ) boundary conditions

ytt(t, x) = c2 yxx(t, x), (t, x) ∈ (0, T )× (0, 1) wave equation

y(T, x) = 0, yt(T, x) = 0, x ∈ (0, 1) terminal conditions

3Farshbaf-Shaker, Gugat, Heitsch, H. 2019
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Analytical solutions

Control-to-state operator u 7→ y given analytically by y(t, x) =
∑∞
n=0 αn(t)ϕn(x), where

ϕn(x) :=

√
2
√
L

sin
((π

2
+ nπ

) x
L

)
αn(t) := α0

n cos
(√

λn c t
)

+ α1
n

1√
λn c

sin
(√

λn c t
)

+c2 ϕn(L) 1√
λn c

∫ t

0
u(s) sin

(√
λn c (t− s)

)
ds

Theorem (Gugat 2015)

Let T ≥ 2, k := max{n ∈ N : 2n ≤ T} and ∆ := T − 2k.... For t ∈ [0, 2), let

d(t) :=

{
k + 1, t ∈ (0,∆],

k, t ∈ (∆, 2).

Then the optimal control u0 that solves (NEC) is 4–periodic, with

u0(t) =


1

2d(t)

[
y′0(1− t)− y1(1− t)

]
, t ∈ (0, 1),

1
2d(t)

[
y′0(t− 1) + y1(t− 1)

]
, t ∈ (1, 2).
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Solution of the deterministic problem

For initial conditions y0(x) = x, y1(x) = 0 one gets a bang-bang solution:

1 2 3 4
t

-0.2

-0.1

0.1

0.2

u(t)
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Terminal conditions of deterministic problem

y(T, x) = 0, yt(T, x) = 0, x ∈ (0, 1)

equivalent to "Terminal energy = zero":

E(u) :=

∫ 1

0
yx(T, x)2 +

1

c2
yt(T, x)2 dx = 0

Relaxation: Probability (E(u) ≤ ε) ≥ p.
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Probabilistic problem

min ‖u‖2
L2(0,T )

subject to cost function

y(0, x) = yω0 (x), yt(0, x) = 0, x ∈ (0, 1) initial conditions

y(t, 0) = 0, yx(t, 1) = u(t), t ∈ (0, T ) boundary conditions

ytt(t, x) = c2 yxx(t, x), (t, x) ∈ (0, T )× (0, 1) wave equation

P(Eω(u)) = P
(∫ 1

0 y
ω
x (T, x)2 + 1

c2
yωt (T, x)2 dx ≤ ε

)
≥ p Terminal conditions

Probabilistic Constraints in Optimization with PDEs · Nov. 13, 2019 · Page 11 (19)



Modeling random initial data

Deterministic initial data (representation as Fourier series):

y0 =
∞∑
n=0

α0
nϕn; y1 =

∞∑
n=0

α1
nϕn

Random initial data by multiplicative noise (representation as Fourier series):

yω0 =
∞∑
n=0

aωnα
0
nϕn; yω1 =

∞∑
n=0

bωnα
1
nϕn

Series converge a.s., e.g., if all random coefficients are identically distributed with finite variance.

Random control-to-state operator (u, ω) 7→ y can be analytically described similar as in the deterministic
case. This allows us to shortly write our control problem as

min ‖u‖2
L2(0,T )

subject to ϕ(u) := P(g(u, (aωn)∞n=0, (b
ω
n)∞n=0) ≤ ε) ≥ p (P ).

with an analytically given function g.

Probabilistic Constraints in Optimization with PDEs · Nov. 13, 2019 · Page 12 (19)



The approximating problem with finite number of Fourier coefficients

Theorem

The approximating problem with finite number of Fourier coefficients

min ‖u‖2
L2(0,T )

subject to ϕN (u) ≥ p (PN )

is convex and - if the feasible set is nonempty - has a unique solution u∗N . Moreover, u∗N → u∗ in the L2

norm, where u∗ is a solution of the true problem (P).
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Figure 2: The Figure displays the behavior of the optimal boundary control u(·) in the stochastic
case. Here the Fourier coefficients (n = 0, 1, . . . , N) of the initial state y0(x) = x are disturbed
by i.i.d. factors according to ξn ∼ N (1, σ) with σ = 0.001, 0.050, 0.100, 0.200.
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Algorithmic approach

In order to solve our problem

min ‖u‖2
L2(0,T )

subject to ϕN (u) := P(gN (u, aωn , b
ω
n) ≤ 0) ≥ p,

we

� assume a joint multivariate distribution of (aωn , b
ω
n) with identical marginalsN (1, 0.2)

� develop analytical formulae for ϕN ,∇ϕN using spheric-radial decomposition of Gaussian random
vectors

� assume piecewise constant controls on a mesh of size M

� apply a projected gradient algorithm for the numerical solution

In our examples, we put N = 100 (number of Fourier coefficients = dimension of multivariate Gaussian
distribution) and M = 256 (grid of time interval)
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Solution of the probabilistic problem (Example 1)

Optimal control for y0(x) = x, y1(x) = 0, ε = 0.1 and p = 0.10, 0.15, . . . , 0.85, 0.9,
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Energy of scenarios as function of time

Eω(u, t) :=

∫ 1

0
yωx (t, x)2 +

1

c2
yωt (t, x)2 dx

Optimal probabilistic control for ε = 0.1 and
p = 0.9

Optimal deterministic control (expected initial
condition) for ε = 0.1
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Solution of the probabilistic problem (Example 2)

Optimal control for y0(x) = π−1sin(πx), y1(x) = 0, ε = 0.1 and p = 0.10, 0.15, . . . , 0.85, 0.9,
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Maximum probability as function of tolerance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

P
ro

b
a
b
ili

ty

Epsilon Tolerance

Probabilistic Constraints in Optimization with PDEs · Nov. 13, 2019 · Page 18 (19)



Cost as function of probability
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