Shape optimization under uncertainty

Rahel Brügger, Roberto Croce, Marc Dambrine, Charles Dapogny, Helmut Harbrecht, Michael Multerer, and Benedicte Puig

Helmut Harbrecht
Department of Mathematics and Computer Science
University of Basel (Switzerland)

Overview

- Shape optimization in case of geometric uncertainty
- Shape optimization in case of random diffusion
- Shape optimization in case of random right-hand sides

Free boundary problems
Problem. Seek the free boundary Γ such that u satisfies

$$
\begin{array}{cc}
-\Delta u=f & \text { in } D \\
u=g & \text { on } \Sigma \\
u=0,-\frac{\partial u}{\partial \mathbf{n}}=h & \text { on } \Gamma
\end{array}
$$

- Growth of anodes. $f \equiv 0, g \equiv 1, h \equiv$ const
\rightsquigarrow Bernoulli's free boundary problem
- Electromagnetic shaping. Exterior boundary value problem, uniqueness ensured by volume constraint.

Different formulations as shape optimization problem.

$$
\left.\begin{array}{l}
J_{1}(D)=\int_{D}\left\{\|\nabla v\|^{2}-2 f v+h^{2}\right\} \mathrm{d} \mathbf{x} \rightarrow \mathrm{inf} \\
J_{2}(D)=\int_{D}\|\nabla(v-w)\|^{2} \mathrm{~d} \mathbf{x} \rightarrow \mathrm{inf} \\
J_{3}(D)=\int_{\Gamma}\left(\frac{\partial v}{\partial \mathbf{n}}+h\right)^{2} \mathrm{~d} \mathbf{x} \rightarrow \inf \\
J_{4}(D)=\int_{\Gamma} w^{2} \mathrm{~d} \mathbf{x} \rightarrow \inf
\end{array}\right\} \text { where }\left\{\begin{aligned}
&-\Delta v=f-\Delta w=f \\
& v=g \text { in } D \\
& v=g \text { on } \Sigma \\
& v=0-\frac{\partial w}{\partial \mathbf{n}}=h \\
& \text { on } \Gamma
\end{aligned}\right.
$$

Free boundary problems
Problem. Seek the free boundary Γ such that u satisfies

$$
\begin{aligned}
&-\Delta u=f \\
& u=g \\
& u=0,-\frac{\text { in } D}{\partial \mathbf{n}}=h \text { on } \Sigma \\
& u
\end{aligned}
$$

- Growth of anodes. $f \equiv 0, g \equiv 1, h \equiv$ const
\rightsquigarrow Bernoulli's free boundary problem
- Electromagnetic shaping. Exterior boundary value problem, uniqueness ensured by volume constraint.

Different formulations as shape optimization problem.

$$
\left.\begin{array}{l}
J_{1}(D)=\int_{D}\left\{\|\nabla v\|^{2}-2 f v+h^{2}\right\} \mathrm{d} \mathbf{x} \rightarrow \mathrm{inf} \\
J_{2}(D)=\int_{D}\|\nabla(v-w)\|^{2} \mathrm{~d} \mathbf{x} \rightarrow \mathrm{inf} \\
J_{3}(D)=\int_{\Gamma}\left(\frac{\partial v}{\partial \mathbf{n}}+h\right)^{2} \mathrm{~d} \mathbf{x} \rightarrow \inf \\
J_{4}(D)=\int_{\Gamma} w^{2} \mathrm{~d} \mathbf{x} \rightarrow \inf
\end{array}\right\} \text { where }\left\{\begin{aligned}
-\Delta v=f & -\Delta w=f \\
v=g & \text { in } D \\
v=0 & \text { on } \Sigma \\
v=\frac{\partial w}{\partial \mathbf{n}}=h & \text { on } \Gamma
\end{aligned}\right.
$$

Free boundary problem with geometric uncertainty

Problem. Seek the free boundary $\Gamma(\omega)$ such that $u(\omega)$ satisfies

$$
\begin{array}{rlrl}
\Delta u(\omega) & =0 & & \text { in } D(\omega) \\
u(\omega) & =1 & & \text { on } \Sigma(\omega) \\
u(\omega)=0,-\frac{\partial u}{\partial \mathbf{n}}(\omega)=h & \text { on } \Gamma(\omega)
\end{array}
$$

for all $\omega \in \Omega$.

The questions to be addressed in the following are

- How to model the random domain $D(\omega)$? Is the problem well-posed in the sense of $D(\omega)$ being almost surely well-defined?
- Since it is a free boundary problem, we are looking for a free boundary.
- Indeed, we are looking for the statistics of the domain itself. But how to define the expectation of a random domain?
- How to compute the solution to the random free boundary problem numerically?

Statistical quantities

- Expectation or mean.

$$
\mathbb{E}[v](\mathbf{x}):=\int_{\Omega} v(\mathbf{x}, \omega) \mathrm{d} \mathbb{P}(\omega)
$$

- Correlation.

$$
\operatorname{Cor}[v](\mathbf{x}, \mathbf{y}):=\int_{\Omega} v(\mathbf{x}, \omega) v(\mathbf{y}, \omega) \mathrm{d} \mathbb{P}(\boldsymbol{\omega})=\mathbb{E}[v(\mathbf{x}) v(\mathbf{y})]
$$

- Covariance.

$$
\begin{aligned}
\operatorname{Cov}[v](\mathbf{x}, \mathbf{y}) & :=\int_{\Omega}(v(\mathbf{x}, \boldsymbol{\omega})-\mathbb{E}[v](\mathbf{x}))(v(\mathbf{y}, \omega)-\mathbb{E}[v](\mathbf{y})) \mathrm{d} \mathbb{P}(\boldsymbol{\omega}) \\
& =\operatorname{Cor}[v](\mathbf{x}, \mathbf{y})-\mathbb{E}[v](\mathbf{x}) \mathbb{E}[v](\mathbf{y})
\end{aligned}
$$

- Variance.

$$
\begin{aligned}
\mathbb{V}[v](\mathbf{x}) & :=\int_{\Omega}(v(\mathbf{x}, \omega)-\mathbb{E}[v](\mathbf{x}))^{2} \mathrm{~d} \mathbb{P}(\omega) \\
& =\left.\operatorname{Cor}[v](\mathbf{x}, \mathbf{y})\right|_{\mathbf{x}=\mathbf{y}}-\mathbb{E}[v]^{2}(\mathbf{x})=\left.\operatorname{Cov}[v](\mathbf{x}, \mathbf{y})\right|_{\mathbf{x}=\mathbf{y}}
\end{aligned}
$$

- k-th moment.

$$
\mathcal{M}[v]\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right):=\int_{\Omega} v\left(\mathbf{x}_{1}, \omega\right) v\left(\mathbf{x}_{2}, \omega\right) \cdots v\left(\mathbf{x}_{k}, \omega\right) \mathrm{dP}(\omega)
$$

Existence and uniqueness of solutions

Remarks.

- The solution Γ to the free boundary problem exists if $h>0$ is sufficiently large.
- If the interior boundary Σ is convex, then the solution is unique.
- If the interior boundary Σ is not convex, multiple solutions might exist.
- In case of a starshaped boundary Σ, the solution is unique and also starshaped.

Parametrization. Assume that $\Sigma(\omega)$ is \mathbb{P}-almost surely starlike. Then, we can parametrize

$$
\begin{gathered}
\Sigma(\omega)=\left\{\mathbf{x}=\sigma(\phi, \omega) \in \mathbb{R}^{2}: \sigma(\phi, \omega)=q(\phi, \omega) \mathbf{e}_{r}(\phi), \phi \in[0,2 \pi]\right\}, \\
\Gamma(\omega)=\left\{\mathbf{x}=\gamma(\phi, \omega) \in \mathbb{R}^{2}: \gamma(\phi, \omega)=r(\phi, \omega) \mathbf{e}_{r}(\phi), \phi \in[0,2 \pi]\right\} .
\end{gathered}
$$

Theorem (H/Peters [2015]). Assume that $q(\phi, \omega)$ satisfies

$$
0<\underline{r} \leq q(\phi, \omega) \leq \underline{R} \quad \text { for all } \phi \in[0,2 \pi] \text { and } \mathbb{P} \text {-almost every } \omega \in \Omega .
$$

Then, there exists a unique free boundary $\Gamma(\omega)$, for almost every $\omega \in \Omega$. Especially, with some constant $\bar{R}>\underline{R}$, the radial function $r(\phi, \omega)$ of the associated free boundary satisfies

$$
q(\phi, \omega)<r(\phi, \omega) \leq \bar{R} \quad \text { for all } \phi \in[0,2 \pi] \text { and } \mathbb{P} \text {-almost every } \omega \in \Omega .
$$

Expectation and variance

Definition (Parametrization based expectation). The parametrization based expectation $\mathbb{E}_{\mathcal{P}}[D]$ of the boundaries $\Sigma(\omega)$ and $\Gamma(\omega)$ is given by

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{P}}[\Sigma]=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\mathbb{E}[q(\phi, \cdot)] \mathbf{e}_{r}(\phi), \phi \in[0,2 \pi]\right\} \\
& \mathbb{E}_{\mathcal{P}}[\Gamma]=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\mathbb{E}[r(\phi, \cdot)] \mathbf{e}_{r}(\phi), \phi \in[0,2 \pi]\right\}
\end{aligned}
$$

Remark. The expected domain $\mathbb{E}_{\mathcal{P}}[D]$ is thus given by

$$
\mathbb{E}_{\mathscr{P}}[D]=\left\{\mathbf{x}=(\rho, \phi) \in \mathbb{R}^{2}: \mathbb{E}[q(\phi, \cdot)] \leq \rho \leq \mathbb{E}[r(\phi, \cdot)]\right\}
$$

This is also called the radius-vector expectation.

Theorem (H/Peters [2015]). The variance of the domain $D(\omega)$ in the radial direction is given via the variances of its boundaries parameterizations in accordance with

$$
\begin{aligned}
& \mathbb{V}_{\mathcal{P}}[\Sigma(\omega)]=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\mathbb{V}[q(\phi, \cdot)] \mathbf{e}_{r}(\phi), \phi \in[0,2 \pi]\right\}, \\
& \mathbb{V}_{\mathcal{P}}[\Gamma(\omega)]=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\mathbb{V}[r(\phi, \cdot)] \mathbf{e}_{r}(\phi), \phi \in[0,2 \pi]\right\}
\end{aligned}
$$

The parametrization based expectation depends on the particular parametrization!

Stochastic quadrature method

- Random parametrization of the interior boundary.

$$
q(\phi, \mathbf{y})=\mathbb{E}[q](\phi)+\sum_{k=1}^{N} q_{k}(\phi) y_{k} \quad \text { for } \mathbf{y}=\left[y_{1}, \ldots, y_{N}\right]^{\top} \in \square:=[-1 / 2,1 / 2]^{N}
$$

It then holds

$$
\begin{aligned}
& \mathbb{E}[q](\phi)=\int_{\Omega} q(\phi, \omega) \mathrm{d} \mathbb{P}(\omega)=\int_{\square} q(\phi, \mathbf{y}) \rho(\mathbf{y}) \mathrm{d} \mathbf{y} \\
& \mathbb{V}[q](\phi)=\int_{\Omega}(q(\phi, \omega))^{2} \mathrm{~d} \mathbb{P}(\omega)-(\mathbb{E}[q](\phi))^{2}=\int_{\square}(q(\phi, \mathbf{y}))^{2} \rho(\mathbf{y}) \mathrm{d} \mathbf{y}-(\mathbb{E}[q](\phi))^{2} .
\end{aligned}
$$

- Solution map. Let

$$
F: L^{\infty}\left(\Omega ; C_{\operatorname{per}}(0,2 \pi)\right) \rightarrow L^{\infty}\left(\Omega ; C_{\operatorname{per}}(0,2 \pi)\right), q(\phi, \omega) \mapsto r(\phi, \omega)
$$

denote the solution map. Then, the expectation and the variance of $r(\phi, \omega)$ are given by

$$
\mathbb{E}[r](\phi)=\mathbb{E}[F(q)](\phi) \quad \text { and } \quad \mathbb{V}[r](\phi)=\mathbb{V}[F(q)](\phi)
$$

- (Quasi-) Monte Carlo quadrature. The high-dimensional integrals are approximated by means of a sampling method.

Numerical example

$$
q(\phi, \omega)=\bar{q}(\phi, \omega)+\sum_{k=1}^{10} \frac{\sqrt{2}}{k}\left\{\sin (k \phi) Y_{2 k-1}(\omega)+\cos (k \phi) Y_{2 k}(\omega)\right\}
$$

Vorob'ev expectation

- Leading idea. Identify the random set $D(\omega)$ with its characteristic function

$$
\mathbb{1}_{D(\omega)}(\mathbf{x})= \begin{cases}1, & \text { if } \mathbf{x} \in D(\omega) \\ 0, & \text { otherwise }\end{cases}
$$

This embeds the problem into the linear space $L^{\infty}\left(\mathbb{R}^{2}\right)$.

- Coverage function. The average of characteristic functions is not a characteristic function anymore but belongs to the cone $\left\{q \in L^{\infty}\left(\mathbb{R}^{2}\right): 0 \leq q \leq 1\right\}$. The limit object is the so-called coverage function

$$
p(\mathbf{x})=\mathbb{P}(\mathbf{x} \in D(\omega))
$$

Definition (Vorob'ev expectation). The Vorob'ev expectation $\mathbb{E}_{\mathcal{V}}[D]$ of $D(\omega)$ is defined as the set $\left\{\mathbf{x} \in \mathbb{R}^{2}: p(\mathbf{x}) \geq \mu\right\}$ for $\mu \in[0,1]$ which is determined from the condition

$$
\mathcal{L}\left(\left\{\mathbf{x} \in \mathbb{R}^{2}: p(\mathbf{x}) \geq \lambda\right\}\right) \leq \int_{\mathbb{R}^{2}} p(\mathbf{x}) \mathrm{d} \mathbf{x} \leq \mathcal{L}\left(\left\{\mathbf{x} \in \mathbb{R}^{2}: p(\mathbf{x}) \geq \mu\right\}\right)
$$

for all $\lambda>\mu$.

Numerical example

Free boundary problem with random diffusion

Problem. Seek the free boundary $\Gamma(\omega)$ such that $u(\omega)$ satisfies

$$
\begin{array}{cc}
\operatorname{div}(\alpha(\omega) \nabla u(\omega))=0 & \text { in } D(\omega) \\
u(\omega)=1 & \text { on } \Sigma \\
u(\omega)=0,-\alpha(\omega) \frac{\partial u}{\partial \mathbf{n}}(\omega)=h & \text { on } \Gamma(\omega)
\end{array}
$$

for all $\omega \in \Omega$, where

$$
0<\underline{\alpha} \leq \alpha(\omega) \leq \bar{\alpha}<\infty .
$$

Theorem (Brügger/Croce/H [2018]). For $\omega \in \Omega$, the solution $(u(\omega), \Gamma(\omega))$ is given by the shape optimization problem

$$
J(D, \omega)=\int_{D}\left\{\alpha(\omega)\|\nabla u(\omega)\|^{2}+\frac{h^{2}}{\alpha(\omega)}\right\} \mathrm{d} \mathbf{x} \rightarrow \inf
$$

subject to

$$
\begin{aligned}
\operatorname{div}(\alpha(\omega) \nabla u(\omega)) & =0 \text { in } D \\
u(\omega) & =1 \text { on } \Sigma \\
u(\omega) & =0 \text { on } \Gamma
\end{aligned}
$$

Free boundary problem with random diffusion

- We shall minimize

$$
\mathbb{E}[J(D, \omega)]=\int_{D} \int_{\Omega}\left\{\alpha(\omega)\|\nabla u(\omega)\|^{2}+\frac{h^{2}}{\alpha(\omega)}\right\} \mathrm{d} \mathbb{P}(\omega) \mathrm{d} \mathbf{x} \rightarrow \min
$$

- A minimizer exists since we have an energy type shape functional.
- The shape gradient reads

$$
\delta \mathbb{E}[J(D, \omega)][\mathbf{V}]=\int_{\Gamma}\langle\mathbf{V}, \mathbf{n}\rangle \int_{\Omega}\left\{\alpha(\omega)\|\nabla u(\omega)\|^{2}+\frac{h^{2}}{\alpha(\omega)}\right\} \mathrm{d} \mathbb{P}(\omega) \mathrm{d} \sigma .
$$

- Compute the Karhunen-Loève expansion of the diffusion coefficient

$$
\alpha(\mathbf{x}, \omega)=\mathbb{E}[\alpha](\mathbf{x})+\sum_{k=1}^{M} \alpha_{k}(\mathbf{x}) Y_{k}(\omega),
$$

where the coefficient functions $\left\{\alpha_{k}(\mathbf{x})\right\}_{k}$ are elements of $C^{1}(D)$ and the random variables $\left\{Y_{k}(\omega)\right\}_{k}$ are independently and uniformly distributed in [$\left.-1 / 2,1 / 2\right]$
\rightsquigarrow yields a parametric problem on $\square=[-1 / 2,1 / 2]^{M}$

- Use a quasi Monte-Carlo method to approximate the integral over Ω by an integral over over \square.

Numerical results

Helmut Harbrecht

Numerical results

deterministic diffusion ($\alpha=1$)

Shape optimization for random right-hand sides

- Consider an elliptic state equation with random right-hand side, for example, the equations of linear elasticity with random forcing:

$$
\begin{array}{rlrl}
-\operatorname{div}[\mathbf{A} e(\mathbf{u}(\omega))] & =\mathbf{f}(\omega) & & \text { in } D \\
\mathbf{A} e(\mathbf{u}(\omega)) \mathbf{n} & =\mathbf{0} & & \text { on } \Gamma_{N}^{\text {free }} \\
\mathbf{A} e(\mathbf{u}(\omega)) \mathbf{n} & =\mathbf{g}(\omega) \\
& & \text { on } \Gamma_{N}^{\mathrm{fix}} \\
\mathbf{u} & =\mathbf{0} & & \text { on } \Gamma_{D}
\end{array}
$$

where $e(\mathbf{u})=\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{\top}\right) / 2$ stands for the linearized strain tensor and \mathbf{A} is given by

$$
\mathbf{A B}=2 \mu \mathbf{B}+\lambda \operatorname{tr}(\mathbf{B}) \mathbf{I} \text { for all } \mathbf{B} \in \mathbb{R}^{d \times d}
$$

with the Lamé coefficients λ and μ satisfying $\mu>0$ and $\lambda+2 \mu / d>0$.

- Consider a quadratic shape functional, for example, the compliance of shapes:

$$
\begin{aligned}
\mathcal{C}(D, \omega) & =\int_{D} \mathbf{A} e(\mathbf{u}(\mathbf{x}, \boldsymbol{\omega})): e(\mathbf{u}(\mathbf{x}, \omega)) \mathrm{d} \mathbf{x} \\
& =\int_{D}\langle\mathbf{f}(\omega), \mathbf{u}(\omega)\rangle \mathrm{d} \mathbf{x}+\int_{\Gamma_{N}^{\text {fix }}}\langle\mathbf{g}(\mathbf{x}, \omega), \mathbf{u}(\mathbf{x}, \boldsymbol{\omega})\rangle \mathrm{d} \sigma_{\mathbf{x}}
\end{aligned}
$$

- We aim at minimizing the expectation $\mathbb{E}[C(D, \omega)]$ of the quadratic shape functional.

PDEs with random right-hand side

Random boundary value problem:

$$
-\operatorname{div}[\alpha \nabla u(\omega)]=f(\omega) \text { in } D, \quad u(\omega)=0 \text { on } \partial D
$$

\longrightarrow the random solution depends linearly on the random input parameter
Theorem (Schwab/Todor [2003]): It holds

$$
-\operatorname{div}[\alpha \nabla \mathbb{E}[u]]=\mathbb{E}[f] \text { in } D, \quad \mathbb{E}[u]=\mathbb{E}[g] \text { on } \partial D
$$

and

$$
\begin{aligned}
(\operatorname{div} \otimes \operatorname{div})[(\alpha \otimes \alpha)(\nabla \otimes \nabla) \operatorname{Cor}[u]] & =\operatorname{Cor}[f] & & \text { in } D \times D, \\
\operatorname{Cor}[u] & =0 & & \text { on } \partial(D \times D) .
\end{aligned}
$$

Numerical solution of the correlation equation:

- sparse grid approximation by the combination technique
\square H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based k-th moment analysis of elliptic problems with random diffusion. J. Comput. Phys., 252:128-141, 2013.
- low-rank approximation by the pivoted Cholesky decomposition
\square H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math., 62:428-440, 2012.
- adaptive low-rank approximation by means of \mathcal{H}-matrices

[^0]
Deterministic reformulation of the shape functional

Theorem (Dambrine/Dapogny/H [2015]). The expectation of the quadratic shape functional can be rewritten by

$$
\mathbb{E}[\mathcal{C}(D, \omega)]=\left.\int_{D}\left(\left(\mathbf{A} e_{\mathbf{x}}: e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\right)(\mathbf{x}, \mathbf{y})\right|_{\mathbf{x}=\mathbf{y}} \mathrm{d} \mathbf{x}
$$

where

$$
\left(\mathbf{A} e_{\mathbf{x}}: e_{\mathbf{y}}\right):\left[H_{\Gamma_{D}}^{1}(D)\right]^{d} \otimes\left[H_{\Gamma_{D}}^{1}(D)\right]^{d} \rightarrow L^{2}(D) \otimes L^{2}(D)
$$

is the linear operator induced from the bilinear mapping

$$
\mathbf{u v}^{\top} \mapsto \mathbf{A} e(\mathbf{u}): e(\mathbf{v}) .
$$

Proof. The assertion follows from

$$
\begin{aligned}
\mathbb{E}[\mathcal{C}(D, \omega)] & =\int_{\Omega} \int_{D} \mathbf{A} e(\mathbf{u}(\mathbf{x}, \omega)): e(\mathbf{u}(\mathbf{x}, \omega)) \mathrm{d} \mathbf{x} \\
& =\left.\int_{D}\left[\left(\mathbf{A} e_{\mathbf{x}}: e_{\mathbf{y}}\right) \int_{\Omega} \mathbf{u}(\mathbf{x}, \omega) \mathbf{u}(\mathbf{y}, \omega)^{\top} \mathrm{d} \mathbb{P}(\omega)\right]\right|_{\mathbf{x}=\mathbf{y}} \mathrm{d} \mathbf{x} \\
& =\left.\int_{D}\left(\left(\mathbf{A} e_{\mathbf{x}}: e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\right)(\mathbf{x}, \mathbf{y})\right|_{\mathbf{x}=\mathbf{y}} \mathrm{d} \mathbf{x} .
\end{aligned}
$$

How to compute the correlation?

Theorem (Dambrine/Dapogny/H [2015]). The two-point correlation function

$$
\operatorname{Cor}[\mathbf{u}] \in\left[H_{\Gamma_{D}}^{1}(D)\right]^{d} \otimes\left[H_{\Gamma_{D}}^{1}(D)\right]^{d}
$$

is the unique solution to the following tensor-product boundary value problem:

$$
\begin{aligned}
& \left(\operatorname{div}_{\mathbf{x}} \otimes \operatorname{div}_{\mathbf{y}}\right)\left[\left(\mathbf{A} e_{\mathbf{x}} \otimes \mathbf{A} e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\right]=\operatorname{Cor}[\mathbf{f}] \quad \text { in } D \times D, \\
& \left(\operatorname{div}_{\mathbf{x}} \otimes \mathbf{I}_{\mathbf{y}}\right)\left(\mathbf{A} e_{\mathbf{x}} \otimes \mathbf{A} e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\left(\mathbf{I}_{\mathbf{x}} \otimes \mathbf{n}_{\mathbf{y}}\right)=\mathbf{0} \quad \text { on } D \times \Gamma_{N}^{\text {fix } \cup f r e e}, \\
& \left(\mathbf{I}_{\mathbf{x}} \otimes \operatorname{div}_{\mathbf{y}}\right)\left(\mathbf{A} e_{\mathbf{x}} \otimes \mathbf{A} e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\left(\mathbf{n}_{\mathbf{x}} \otimes \mathbf{I}_{\mathbf{y}}\right)=\mathbf{0} \quad \text { on } \Gamma_{N}^{\text {fix }} \cup \text { free } \times D, \\
& \left(\operatorname{div}_{\mathbf{x}} \otimes \mathbf{I}_{\mathbf{y}}\right)\left(\mathbf{A} e_{\mathbf{X}} \otimes \mathbf{I}_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]=\mathbf{0} \quad \text { on } D \times \Gamma_{D}, \\
& \left(\mathbf{I}_{\mathbf{x}} \otimes \operatorname{div}_{\mathbf{y}}\right)\left(\mathbf{I}_{\mathbf{x}} \otimes \mathbf{A} e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]=\mathbf{0} \quad \text { on } \Gamma_{D} \times D, \\
& \left(\mathbf{A} e_{\mathbf{x}} \otimes \mathbf{A} e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\left(\mathbf{n}_{\mathbf{x}} \otimes \mathbf{n}_{\mathbf{y}}\right)=\mathbf{0} \quad \text { on }\left(\Gamma_{N}^{\mathrm{fix} \cup f r e e} \times \Gamma_{N}^{\mathrm{fix} \cup f r e e}\right) \\
& \backslash\left(\Gamma_{N}^{\mathrm{fix}} \times \Gamma_{N}^{\mathrm{fix}}\right), \\
& \left(\mathbf{A} e_{\mathbf{x}} \otimes \mathbf{A} e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\left(\mathbf{n}_{\mathbf{x}} \otimes \mathbf{n}_{\mathbf{y}}\right)=\operatorname{Cor}[\mathbf{g}] \quad \text { on } \Gamma_{N}^{\mathrm{fix}} \times \Gamma_{N}^{\mathrm{fix}}, \\
& \left(\mathbf{A} e_{\mathbf{x}} \otimes \mathbf{I}_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\left(\mathbf{n}_{\mathbf{x}} \otimes \mathbf{I}_{\mathbf{y}}\right)=\mathbf{0} \quad \text { on } \Gamma_{N}^{\text {fix }} \cup f \text { free } \times \Gamma_{D} \text {, } \\
& \left(\mathbf{I}_{\mathbf{x}} \otimes \mathbf{A} e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\left(\mathbf{I}_{\mathbf{x}} \otimes \mathbf{n}_{\mathbf{y}}\right)=\mathbf{0} \quad \text { on } \Gamma_{D} \times \Gamma_{N}^{\text {fix }} \cup \text { free }, \\
& \operatorname{Cor}[\mathbf{u}]=\mathbf{0} \quad \text { on } \Gamma_{D} \times \Gamma_{D} .
\end{aligned}
$$

Proof. The assertion follows by tensorizing the state equation and the exploiting the linearity when taking the expectation.

Computing the shape gradient

Theorem (Dambrine/Dapogny/H [2015]). The functional $\mathbb{E}[J(D, \omega)]$ is shape differentiable at any shape $D \in \mathcal{U}_{a d}$ and its derivative reads

$$
\delta \mathbb{E}[\mathcal{C}(D, \omega)][\mathbf{V}]=\left.\int_{\Gamma_{N}^{\mathrm{free}}}\langle\mathbf{V}, \mathbf{n}\rangle\left(\left(\mathbf{A} e_{\mathbf{x}}: e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\right)(\mathbf{x}, \mathbf{y})\right|_{\mathbf{x}=\mathbf{y}} \mathrm{d} \sigma_{\mathbf{x}} .
$$

Proof. The assertion follows from

$$
\begin{aligned}
\delta \mathbb{E}[\mathcal{C}(D, \omega)][\mathbf{V}] & =\mathbb{E}[\delta \mathcal{C}(D, \omega)[\mathbf{V}]] \\
& =\int_{\Omega} \int_{\Gamma_{N}^{\mathrm{frree}}}\langle\mathbf{V}, \mathbf{n}\rangle\left(\mathbf{A} e(\mathbf{u}(\mathbf{x}, \omega)): e(\mathbf{u}(\mathbf{x}, \omega)) \mathrm{d} \sigma_{\mathbf{x}}\right. \\
& =\left.\int_{\Gamma_{N}^{\mathrm{free}}}\langle\mathbf{V}, \mathbf{n}\rangle\left[\left(\mathbf{A} e_{\mathbf{x}}: e_{\mathbf{y}}\right) \int_{\Omega} \mathbf{u}(\mathbf{x}, \omega) \mathbf{u}(\mathbf{y}, \omega)^{\top} \mathrm{d} \mathbb{P}(\omega)\right]\right|_{\mathbf{x}=\mathbf{y}} \mathrm{d} \sigma_{\mathbf{x}} \\
& =\left.\int_{\Gamma_{N}^{\mathrm{free}}}\langle\mathbf{V}, \mathbf{n}\rangle\left(\left(\mathbf{A} e_{\mathbf{x}}: e_{\mathbf{y}}\right) \operatorname{Cor}[\mathbf{u}]\right)(\mathbf{x}, \mathbf{y})\right|_{\mathbf{x}=\mathbf{y}} \mathrm{d} \sigma_{\mathbf{x}} .
\end{aligned}
$$

Low-rank approximation

- Approximation of the input correlation. Assume low-rank approximations

$$
\operatorname{Cor}[\mathbf{f}] \approx \sum_{i} \mathbf{f}_{i} \mathbf{f}_{i}^{\top}, \quad \operatorname{Cor}[\mathbf{g}] \approx \sum_{j} \mathbf{g}_{j} \mathbf{g}_{j}^{\top}
$$

Such expansions can efficiently be computed by e.g. a pivoted Cholesky decomposition.

- Approximation of the shape functional. The shape functional is simply given by

$$
\mathbb{E}[\mathcal{C}(D, \omega)]=\int_{D} \sum_{i, j} \mathbf{A} e\left(\mathbf{u}_{i, j}\right): e\left(\mathbf{u}_{i, j}\right) \mathrm{d} \mathbf{x}
$$

where

$$
\begin{aligned}
-\operatorname{div}\left[\mathbf{A} e\left(\mathbf{u}_{i, j}\right)\right] & =\mathbf{f}_{i} & & \text { in } D, \\
\mathbf{A} e\left(\mathbf{u}_{i, j}\right) \mathbf{n} & =\mathbf{0} & & \text { on } \Gamma_{N}^{\mathrm{free}} \\
\mathbf{A} e\left(\mathbf{u}_{i, j}\right) \mathbf{n} & =\mathbf{g}_{j} & & \text { on } \Gamma_{N}^{\mathrm{fix}} \\
\mathbf{u}_{i, j} & =\mathbf{0} & & \text { on } \Gamma_{D} .
\end{aligned}
$$

- Approximation of the shape gradient. The shape gradient is given by

$$
\delta \mathbb{E}[\mathcal{C}(D, \omega)][\mathbf{V}]=\int_{\Gamma_{N}^{\mathrm{free}}}\langle\mathbf{V}, \mathbf{n}\rangle \sum_{i, j} \mathbf{A} e\left(\mathbf{u}_{i, j}\right): e\left(\mathbf{u}_{i, j}\right) \mathrm{d} \sigma_{\mathbf{x}} .
$$

- Alternative approach. A direct discretization of $\operatorname{Cor}[\mathbf{u}]$ in a sparse grid space is possible as well.

First example
Sketch:
Problem. A bridge is clamped on its lower part two sets of loads $\mathbf{g}_{a}=(1,-1)$ and $\mathbf{g}_{b}=(-1,1)$ are applied on its top, i.e.,

$$
\mathbf{g}(\mathbf{x}, \omega)=\xi_{1}(\omega) \mathbf{g}_{a}(\mathbf{x})+\xi_{2}(\omega) \mathbf{g}_{b}(\mathbf{x})
$$

The choice $\mathbb{E}\left[\xi_{i}\right]=0, \mathbb{V}\left[\xi_{i}\right]=1$, $\operatorname{Cor}\left[\xi_{1}, \xi_{2}\right]=\alpha$ implies

$$
\operatorname{Cor}[\mathbf{g}]=\mathbf{g}_{a} \mathbf{g}_{a}^{\top}+\mathbf{g}_{b} \mathbf{g}_{b}^{\top}+\alpha\left(\mathbf{g}_{a} \mathbf{g}_{b}^{\top}+\mathbf{g}_{b} \mathbf{g}_{a}^{\top}\right)
$$

Convergence histories for the mean value and the volume:

Initial guess:

Helmut Harbrecht

First example

Second example

Problem. A bridge is clamped on its lower part two sets of loads $\mathbf{g}^{i}=$ $\left(g_{1}^{i}, g_{2}^{i}\right), i=1,2,3$, are applied on its top such that

$$
\begin{aligned}
& \operatorname{Cor}\left[g_{1}^{i}\right](\mathbf{x}, \mathbf{y})=10^{5} h_{i}^{+}\left(\frac{x_{1}+y_{1}}{2}\right) e^{-10\left|x_{1}-y_{1}\right|} \\
& \operatorname{Cor}\left[g_{2}^{i}\right](\mathbf{x}, \mathbf{y})=10^{6} k_{i}^{+}\left(\frac{x_{1}+y_{1}}{2}\right) e^{-10\left|x_{1}-y_{1}\right|}
\end{aligned}
$$

where

$$
\begin{array}{ll}
h_{1}(t)=1-4\left(t-\frac{1}{2}\right)^{2}, & k_{1}(t)= \begin{cases}(4 t-1)^{2}, & \text { if } t \leq \frac{1}{2}, \\
(4 t-3)^{2}, & \text { else },\end{cases} \\
h_{2}(t)=2 t(1-t)+\frac{1}{2}, & k_{2}(t)= \begin{cases}(4 t-1)(6 t-2), & \text { if } t \leq \frac{1}{2}, \\
(4 t-3)(6 t-4), & \text { else },\end{cases} \\
h_{3}(t)=1, & k_{3}(t)= \begin{cases}(4 t-1)(6 t-1), & \text { if } t \leq \frac{1}{2}, \\
(4 t-3)(6 t-5), & \text { else. }\end{cases}
\end{array}
$$

Sketch:

Initial guess:

Second example

About measurement noise in EIT

Problem. Minimize

$$
F(D)=(1-\alpha) \mathbb{E}[J(D, \omega)]+\alpha \sqrt{\mathbb{V}[J(D, \omega)]} \rightarrow \inf ,
$$

where the random shape functional reads as

$$
J(D, \omega)=\int_{D}\|\nabla(v(\omega)-w)\|^{2} \mathrm{~d} \mathbf{x} \rightarrow \inf
$$

and the states read as

$$
\begin{array}{rlrlrl}
\Delta v(\omega) & =0 & \Delta w & =0 & & \text { in } D, \\
v(\omega) & =0 & w & =0 & & \text { on } \Gamma, \\
\frac{\partial v}{\partial \mathbf{n}}(\omega) & =g(\omega) & w & =f & & \text { on } \Sigma .
\end{array}
$$

We assume that the Neumann data g are given as a Gaussian random field

$$
g(\mathbf{x}, \omega)=g_{0}(\mathbf{x})+\sum_{i=1}^{M} g_{i}(\mathbf{x}) Y_{i}(\omega),
$$

where the random variables are independent, satisfying $Y_{i} \sim \mathcal{N}(0,1)$.

Taking measurement noise in EIT into account

It holds for the shape functional

$$
\begin{aligned}
& \mathbb{E}[J(D, \omega)]=\sum_{i=1}^{M} \int_{\Sigma} v_{i} g_{i} \mathrm{~d} \sigma+\int_{\Sigma}\left(g_{0}-\frac{\partial w}{\partial \mathbf{n}}\right)\left(v_{0}-f\right) \mathrm{d} \sigma \\
& \mathbb{V}[J(D, \omega)]=2 \sum_{i, j=1}^{M}\left(\int_{\Sigma} v_{i} g_{j} \mathrm{~d} \sigma\right)^{2}+4 \sum_{i=1}^{M}\left(\int_{\Sigma} g_{i}\left(v_{0}-f\right) \mathrm{d} \sigma\right)^{2}
\end{aligned}
$$

and for the shape gradient

$$
\begin{aligned}
\delta \mathbb{E}[J(D, \omega)][\mathbf{V}]= & \int_{\Gamma}\langle\mathbf{V}, \mathbf{n}\rangle\left[\sum_{i=0}^{M}\left(\frac{\partial v_{i}}{\partial \mathbf{n}}\right)^{2}-\left(\frac{\partial w}{\partial \mathbf{n}}\right)^{2}\right] \mathrm{d} \sigma, \\
\delta \mathbb{V}[J(D, \omega)][\mathbf{V}]= & 4 \sum_{i, j=1}^{M}\left(\int_{\Sigma} v_{i} g_{j} \mathrm{~d} \sigma\right)\left(\int_{\Gamma}\langle\mathbf{V}, \mathbf{n}\rangle \frac{\partial v_{i}}{\partial \mathbf{n}} \frac{\partial v_{j}}{\partial \mathbf{n}} \mathrm{~d} \sigma\right) \\
& +8 \sum_{i=1}^{M}\left(\int_{\Sigma} g_{i}\left(v_{0}-f\right) \mathrm{d} \sigma\right)\left(\int_{\Gamma}\langle\mathbf{V}, \mathbf{n}\rangle \frac{\partial v_{i}}{\partial \mathbf{n}} \frac{\partial v_{0}}{\partial \mathbf{n}} \mathrm{~d} \sigma\right) .
\end{aligned}
$$

where

$$
\Delta v_{i}=0 \text { in } \mathrm{D}, \quad v_{i}=0 \text { on } \Gamma, \quad \frac{\partial v_{i}}{\partial \mathbf{n}}=g_{i} \text { on } \Sigma .
$$

Numerical results (5\% noise, 10 samples)

Reconstructions for different realizations of the measurement:

Reconstructions for $\alpha=0, \alpha=0.5, \alpha=0.75, \alpha=0.875$

Conclusion

- We considered several sources of uncertainty in shape optimization.
- We discussed the notion of expected domains and introduced the parametrization based expectation as well as the Vorob'ev expectation. The computations require a huge number of solutions of the shape optimization problem under consideration.
- A free boundary problem with random diffusion has been treated by minimizing a mean energy functional. This results in a high-dimensional state equation.
- Shape optimization of the expectation and/or the variance of a polynomial shape functional and a state with random right-hand side is a deterministic problem. The mean of quadratic shape functionals can be even computed without assuming a specific model for the randomness.
- Numerical results have been presented to illustrate the results.

References

R. Brügger, R. Croce, and H. Harbrecht.

Solving a Bernoulli type free boundary problem with random diffusion.
ESAIM Control Optim. Calc. Var., to appear.
M. Dambrine, C. Dapogny, and H. Harbrecht.

Shape optimization for quadratic functionals and states with random right-hand sides.
SIAM J. Control Optim., 53(5):3081-3103, 2015.
M. Dambrine, H. Harbrecht, M. Peters, and B. Puig.

On Bernoulli's free boundary problem with a random boundary.
Int. J. Uncertain. Quantif., 7(4):335-353, 2017.

M. Dambrine, H. Harbrecht, and B. Puig.

Incorporating knowledge on the measurement noise in electrical impedance tomography.
ESAIM Control Optim. Calc. Var., to appear.
H. Harbrecht and M. Peters.

Solution of free boundary problems in the presence of geometric uncertainties.
Topological Optimization and Optimal Transport in the Applied Sciences, pp. 20-39, de Gruyter, 2017.

[^0]:
 J. Dölz, H. Harbrecht, and C. Schwab. Covariance regularity and \mathcal{H}-matrix approximation for rough random fields.

 Numer. Math., 135(4):1045-1071, 2017.

