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Overview

I Shape optimization in case of geometric uncertainty

I Shape optimization in case of random diffusion

I Shape optimization in case of random right-hand sides
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Free boundary problems
Problem. Seek the free boundary G such that u satisfies

�Du = f in D

u = g on S

u = 0, � ∂u
∂n

= h on G

S

D
G

I Growth of anodes. f ⌘ 0, g ⌘ 1, h ⌘ const
 Bernoulli’s free boundary problem

I Electromagnetic shaping. Exterior boundary value

problem, uniqueness ensured by volume constraint.

Different formulations as shape optimization problem.
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where

8
>><

>>:

�Dv = f �Dw = f in D
v = g w = g on S

v = 0 �∂w
∂n

= h on G
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Free boundary problem with geometric uncertainty

Problem. Seek the free boundary G(w) such that u(w) satisfies

Du(w) = 0 in D(w)

u(w) = 1 on S(w)

u(w) = 0, � ∂u
∂n

(w) = h on G(w)

S

D
G

for all w 2 W.

The questions to be addressed in the following are

I How to model the random domain D(w)? Is the problem well-posed in the sense of

D(w) being almost surely well-defined?

I Since it is a free boundary problem, we are looking for a free boundary.

I Indeed, we are looking for the statistics of the domain itself. But how to define the

expectation of a random domain?

I How to compute the solution to the random free boundary problem numerically?
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Statistical quantities
I Expectation or mean.

E[v](x) :=
Z

W

v(x,w)dP(w)

I Correlation.

Cor[v](x,y) :=
Z

W

v(x,w)v(y,w)dP(w) = E[v(x)v(y)]

I Covariance.

Cov[v](x,y) :=
Z

W

�
v(x,w)�E[v](x)

��
v(y,w)�E[v](y)

�
dP(w)

= Cor[v](x,y)�E[v](x)E[v](y)

I Variance.

V[v](x) :=
Z

W

�
v(x,w)�E[v](x)

�
2

dP(w)

= Cor[v](x,y)
��
x=y

�E[v]2(x) = Cov[v](x,y)
��
x=y

I k-th moment.

M [v](x
1

,x
2

, . . . ,xk) :=
Z

W

v(x
1

,w)v(x
2

,w) · · ·v(xk,w)dP(w)
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Existence and uniqueness of solutions
Remarks.

I The solution G to the free boundary problem exists if h > 0 is sufficiently large.

I If the interior boundary S is convex, then the solution is unique.

I If the interior boundary S is not convex, multiple solutions might exist.

I In case of a starshaped boundary S, the solution is unique and also starshaped.

Parametrization. Assume that S(w) is P-almost surely starlike. Then, we can parametrize

S(w) =
�

x = s(f,w) 2 R2

: s(f,w) = q(f,w)er(f), f 2 [0,2p]
 
,

G(w) =
�

x = g(f,w) 2 R2

: g(f,w) = r(f,w)er(f), f 2 [0,2p]
 
.

Theorem (H/Peters [2015]). Assume that q(f,w) satisfies

0 < r  q(f,w)  R for all f 2 [0,2p] and P-almost every w 2 W.

Then, there exists a unique free boundary G(w), for almost every w 2 W. Espe-

cially, with some constant R > R, the radial function r(f,w) of the associated free

boundary satisfies

q(f,w) < r(f,w)  R for all f 2 [0,2p] and P-almost every w 2 W.
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Expectation and variance

Definition (Parametrization based expectation). The parametrization based ex-

pectation EP [D] of the boundaries S(w) and G(w) is given by

EP [S] =
�

x 2 R2

: x = E[q(f, ·)]er(f), f 2 [0,2p]
 
,

EP [G] =
�

x 2 R2

: x = E[r(f, ·)]er(f), f 2 [0,2p]
 
.

Remark. The expected domain EP [D] is thus given by

EP [D] =
�

x = (r,f) 2 R2

: E[q(f, ·)]  r  E[r(f, ·)]
 
.

This is also called the radius-vector expectation.

Theorem (H/Peters [2015]). The variance of the domain D(w) in the radial direction

is given via the variances of its boundaries parameterizations in accordance with

VP [S(w)] =
�

x 2 R2

: x = V[q(f, ·)]er(f), f 2 [0,2p]
 
,

VP [G(w)] =
�

x 2 R2

: x = V[r(f, ·)]er(f), f 2 [0,2p]
 
.

 The parametrization based expectation depends on the particular parametrization!
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Stochastic quadrature method
I Random parametrization of the interior boundary.

q(f,y) = E[q](f)+
N

Â

k=1

qk(f)yk for y = [y
1

, . . . ,yN]| 2⇤ := [�1/2,1/2]N.

It then holds

E[q](f) =
Z

W

q(f,w)dP(w) =
Z

⇤
q(f,y)r(y)dy,

V[q](f) =
Z

W

�
q(f,w)

�
2

dP(w)�
�
E[q](f)

�
2 =

Z

⇤

�
q(f,y)

�
2

r(y)dy�
�
E[q](f)

�
2.

I Solution map. Let

F : L•

�
W;C

per

(0,2p)
�
! L•

�
W;C

per

(0,2p)
�
, q(f,w) 7! r(f,w)

denote the solution map. Then, the expectation and the variance of r(f,w) are given by

E[r](f) = E[F(q)](f) and V[r](f) = V[F(q)](f).

I (Quasi-) Monte Carlo quadrature. The high-dimensional integrals are approximated

by means of a sampling method.
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Numerical example

q(f,w) = q(f,w)+
10

Â

k=1

p
2

k

�
sin(kf)Y

2k�1

(w)+ cos(kf)Y
2k(w)
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Vorob’ev expectation
I Leading idea. Identify the random set D(w) with its characteristic function

1D(w)(x) =

(
1, if x 2 D(w),

0, otherwise.

This embeds the problem into the linear space L•(R2).

I Coverage function. The average of characteristic func-

tions is not a characteristic function anymore but belongs to

the cone {q 2 L•(R2) : 0  q  1}. The limit object is the

so-called coverage function

p(x) = P
�
x 2 D(w)

�
.

Definition (Vorob’ev expectation). The Vorob’ev expectation EV [D] of D(w) is

defined as the set {x 2 R2

: p(x) � µ} for µ 2 [0,1] which is determined from the

condition

L({x 2 R2

: p(x) � l}) 
Z

R2

p(x)dx  L({x 2 R2

: p(x) � µ})

for all l > µ.
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Numerical example
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Free boundary problem with random diffusion

Problem. Seek the free boundary G(w) such that u(w) satisfies

div

�
a(w)—u(w)

�
= 0 in D(w)

u(w) = 1 on S

u(w) = 0, �a(w)
∂u
∂n

(w) = h on G(w)

S

D
G

for all w 2 W, where

0 < a  a(w)  a < •.

Theorem (Brügger/Croce/H [2018]). For w 2 W, the solution

�
u(w),G(w)

�

is given by the shape optimization problem

J(D,w) =
Z

D

⇢
a(w)k—u(w)k2 +

h2

a(w)

�
dx ! inf

subject to

div

�
a(w)—u(w)

�
= 0 in D

u(w) = 1 on S

u(w) = 0 on G
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Free boundary problem with random diffusion

I We shall minimize

E
⇥
J(D,w)

⇤
=

Z

D

Z

W

⇢
a(w)k—u(w)k2 +

h2

a(w)

�
dP(w)dx ! min .

I A minimizer exists since we have an energy type shape functional.

I The shape gradient reads

dE
⇥
J(D,w)

⇤
[V] =

Z

G

hV,ni
Z

W

⇢
a(w)k—u(w)k2 +

h2

a(w)

�
dP(w)ds.

I Compute the Karhunen-Lo

`

eve expansion of the diffusion coefficient

a(x,w) = E[a](x)+
M

Â

k=1

ak(x)Yk(w),

where the coefficient functions {ak(x)}k are elements of C1(D) and the random vari-

ables {Yk(w)}k are independently and uniformly distributed in [�1/2,1/2]

 yields a parametric problem on ⇤= [�1/2,1/2]M

I Use a quasi Monte-Carlo method to approximate the integral over W by an integral over

over ⇤.
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Numerical results
random diffusion with E[a] = 1 and Cov[a](x,x0) = 0.2exp(�kx�x

0k2)
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Numerical results
random diffusion with E[a] = 1 and Cov[a](x,x0) = 0.15exp(�kx�x

0k2)
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Shape optimization for random right-hand sides
I Consider an elliptic state equation with random right-hand side, for example, the equa-

tions of linear elasticity with random forcing:

�div

⇥
Ae
�
u(w)

�⇤
= f(w) in D,

Ae
�
u(w)

�
n = 0 on G

free

N ,

Ae
�
u(w)

�
n = g(w) on G

fix

N ,

u = 0 on GD.

where e(u) = (—u+—u

T)/2 stands for the linearized strain tensor and A is given by

AB = 2µB+ltr(B)I for all B 2 Rd⇥d

with the Lam

´

e coefficients l and µ satisfying µ > 0 and l+2µ/d > 0.

I Consider a quadratic shape functional, for example, the compliance of shapes:

C (D,w) =
Z

D
Ae
�
u(x,w)

�
: e
�
u(x,w)

�
dx

=
Z

D
hf(w),u(w)idx+

Z

G

fix

N

hg(x,w),u(x,w)ids

x

,

I We aim at minimizing the expectation E[C (D,w)] of the quadratic shape functional.

Helmut Harbrecht
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PDEs with random right-hand side
Random boundary value problem:

�div

⇥
a—u(w)

⇤
= f (w) in D, u(w) = 0 on ∂D

�! the random solution depends linearly on the random input parameter

Theorem (Schwab/Todor [2003]): It holds

�div

⇥
a—E[u]

⇤
= E[ f ] in D, E[u] = E[g] on ∂D

and

(div⌦div)
⇥
(a⌦a)(—⌦—)Cor[u]

⇤
= Cor[ f ] in D⇥D,

Cor[u] = 0 on ∂(D⇥D).

Numerical solution of the correlation equation:
I sparse grid approximation by the combination technique

H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based k-th moment analysis of elliptic

problems with random diffusion. J. Comput. Phys., 252:128–141, 2013.

I low-rank approximation by the pivoted Cholesky decomposition

H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted Cholesky decomposition.

Appl. Numer. Math., 62:428–440, 2012.

I adaptive low-rank approximation by means of H -matrices

J. D

¨

olz, H. Harbrecht, and C. Schwab. Covariance regularity and H -matrix approximation for rough random fields.

Numer. Math., 135(4):1045–1071, 2017.
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Deterministic reformulation of the shape functional
Theorem (Dambrine/Dapogny/H [2015]). The expectation of the quadratic shape

functional can be rewritten by

E[C (D,w)] =
Z

D

�
(Ae

x

: e
y

)Cor[u]
�
(x,y)

��
x=y

dx,

where

(Ae
x

: e
y

) :

⇥
H1

GD
(D)

⇤d ⌦
⇥
H1

GD
(D)

⇤d ! L2(D)⌦L2(D)

is the linear operator induced from the bilinear mapping

uv

T 7! Ae(u) : e(v).

Proof. The assertion follows from

E[C (D,w)] =
Z

W

Z

D
Ae
�
u(x,w)

�
: e
�
u(x,w)

�
dx

=
Z

D


(Ae

x

: e
y

)
Z

W

u(x,w)u(y,w)T

dP(w)

�����
x=y

dx

=
Z

D

�
(Ae

x

: e
y

)Cor[u]
�
(x,y)

��
x=y

dx. ⇤
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How to compute the correlation?
Theorem (Dambrine/Dapogny/H [2015]). The two-point correlation function

Cor[u] 2 [H1

GD
(D)]d ⌦ [H1

GD
(D)]d

is the unique solution to the following tensor-product boundary value problem:

(div

x

⌦div

y

)
⇥
(Ae

x

⌦Ae
y

)Cor[u]
⇤
= Cor[f] in D⇥D,

(div

x

⌦I

y

)(Ae
x

⌦Ae
y

)Cor[u](I
x

⌦n

y

) = 0 on D⇥G

fix[ free

N ,

(I
x

⌦div

y

)(Ae
x

⌦Ae
y

)Cor[u](n
x

⌦ I

y

) = 0 on G

fix[ free

N ⇥D,

(div

x

⌦I

y

)(Ae
x

⌦ I

y

)Cor[u] = 0 on D⇥GD,

(I
x

⌦div

y

)(I
x

⌦Ae
y

)Cor[u] = 0 on GD⇥D,

(Ae
x

⌦Ae
y

)Cor[u](n
x

⌦n

y

) = 0 on

�
G

fix[ free

N ⇥G

fix[ free

N
�

\ (Gfix

N ⇥G

fix

N ),

(Ae
x

⌦Ae
y

)Cor[u](n
x

⌦n

y

) = Cor[g] on G

fix

N ⇥G

fix

N ,

(Ae
x

⌦ I

y

)Cor[u](n
x

⌦ I

y

) = 0 on G

fix[ free

N ⇥GD,

(I
x

⌦Ae
y

)Cor[u](I
x

⌦n

y

) = 0 on GD⇥G

fix[ free

N ,

Cor[u] = 0 on GD⇥GD.

Proof. The assertion follows by tensorizing the state equation and the exploiting the linear-

ity when taking the expectation. ⇤
Helmut Harbrecht
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Computing the shape gradient

Theorem (Dambrine/Dapogny/H [2015]). The functional E[J(D,w)] is shape dif-

ferentiable at any shape D 2 Uad and its derivative reads

dE
⇥
C (D,w)

⇤
[V] =

Z

G

free

N

hV,ni
�
(Ae

x

: e
y

)Cor[u]
�
(x,y)

��
x=y

ds

x

.

Proof. The assertion follows from

dE
⇥
C (D,w)

⇤
[V] = E

⇥
dC (D,w)[V]

⇤

=
Z

W

Z

G

free

N

hV,ni
�
Ae
�
u(x,w)

�
: e
�
u(x,w)

�
ds

x

=
Z

G

free

N

hV,ni

(Ae

x

: e
y

)
Z

W

u(x,w)u(y,w)T

dP(w)

�����
x=y

ds

x

=
Z

G

free

N

hV,ni
�
(Ae

x

: e
y

)Cor[u]
�
(x,y)

��
x=y

ds

x

. ⇤
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Low-rank approximation
I Approximation of the input correlation. Assume low-rank approximations

Cor[f] ⇡
Â

i
fif

T

i , Cor[g] ⇡
Â

j
g jg

T

j .

Such expansions can efficiently be computed by e.g. a pivoted Cholesky decomposition.

I Approximation of the shape functional. The shape functional is simply given by

E[C (D,w)] =
Z

D
Â

i, j
Ae(ui, j) : e(ui, j)dx,

where

�div

⇥
Ae(ui, j)

⇤
= fi in D,

Ae(ui, j)n = 0 on G

free

N ,

Ae(ui, j)n = g j on G

fix

N ,

ui, j = 0 on GD.

I Approximation of the shape gradient. The shape gradient is given by

dE
⇥
C (D,w)

⇤
[V] =

Z

G

free

N

hV,ni
Â

i, j
Ae(ui, j) : e(ui, j)ds

x

.

I Alternative approach. A direct discretization of Cor[u] in a sparse grid space is possible

as well.
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First example

Problem. A bridge is clamped on its lower part two sets of

loads ga = (1,�1) and gb = (�1,1) are applied on its top, i.e.,

g(x,w) = x

1

(w)ga(x)+x

2

(w)gb(x).

The choice E[xi] = 0, V[xi] = 1, Cor[x
1

,x
2

] = a implies

Cor[g] = gag

T

a +gbg

T

b +a

⇣
gag

T

b +gbg

T

a

⌘
.

Sketch:

�N

�D

1

1

ga
gb

Convergence histories for the mean value and the volume:
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First example
a = �1 a = �0.7 a = 0

a = 0.5 a = 0.8 a = 1
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Second example

Problem. A bridge is clamped on its lower part two sets of loads g

i =

(gi
1

,gi
2

), i = 1,2,3, are applied on its top such that

Cor[gi
1

](x,y) = 10

5h+
i

✓
x

1

+ y
1

2

◆
e�10|x

1

�y
1

|,

Cor[gi
2

](x,y) = 10

6k+
i

✓
x

1

+ y
1

2

◆
e�10|x

1

�y
1

|,

where

h
1

(t) = 1�4

✓
t � 1

2

◆
2

, k
1

(t) =

(
(4t �1)2, if t  1

2

,

(4t �3)2, else,

h
2

(t) = 2t(1� t)+
1

2

, k
2

(t) =

(
(4t �1)(6t �2), if t  1

2

,

(4t �3)(6t �4), else,

h
3

(t) = 1, k
3

(t) =

(�
4t �1)(6t �1), if t  1

2

,�
4t �3)(6t �5), else.
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Sketch:
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Second example

surface load g

1(w) surface load g

2(w) surface load g

3(w)

Helmut Harbrecht
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About measurement noise in EIT

Problem. Minimize

F(D) = (1�a)E
⇥
J(D,w)

⇤
+a

q
V
⇥
J(D,w)

⇤
! inf,

where the random shape functional reads as

J(D,w) =
Z

D

��
—

�
v(w)�w

���2

dx ! inf

and the states read as

Dv(w) = 0 Dw = 0 in D,

v(w) = 0 w = 0 on G,
∂v
∂n

(w) = g(w) w = f on S.

We assume that the Neumann data g are given as a Gaussian random field

g(x,w) = g
0

(x)+
M

Â

i=1

gi(x)Yi(w),

where the random variables are independent, satisfying Yi ⇠ N (0,1).
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Taking measurement noise in EIT into account

It holds for the shape functional

E
⇥
J(D,w)

⇤
=

M

Â

i=1

Z

S

vigi ds+
Z

S

✓
g

0

� ∂w
∂n

◆
(v

0

� f )ds,

V
⇥
J(D,w)

⇤
= 2

M

Â

i, j=1

✓Z

S

vig j ds

◆
2

+4

M

Â

i=1

✓Z

S

gi(v
0

� f )ds

◆
2

and for the shape gradient

dE
⇥
J(D,w)

⇤
[V] =

Z

G

hV,ni
"

M

Â

i=0

✓
∂vi
∂n

◆
2

�
✓

∂w
∂n

◆
2

#
ds,

dV
⇥
J(D,w)

⇤
[V] = 4

M

Â

i, j=1

✓Z

S

vig j ds

◆✓Z

G

hV,ni∂vi
∂n

∂v j

∂n

ds

◆

+8

M

Â

i=1

✓Z

S

gi(v
0

� f )ds

◆✓Z

G

hV,ni∂vi
∂n

∂v
0

∂n

ds

◆
.

where

Dvi = 0 in D, vi = 0 on G,
∂vi
∂n

= gi on S.
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Numerical results (5% noise, 10 samples)

Reconstructions for different realizations of the measurement:

Reconstructions for a = 0, a = 0.5, a = 0.75, a = 0.875

Helmut Harbrecht

29



Conclusion

IWe considered several sources of uncertainty in shape optimization.

IWe discussed the notion of expected domains and introduced the para-

metrization based expectation as well as the Vorob’ev expectation. The

computations require a huge number of solutions of the shape optimiza-

tion problem under consideration.

I A free boundary problem with random diffusion has been treated by mini-

mizing a mean energy functional. This results in a high-dimensional state

equation.

I Shape optimization of the expectation and/or the variance of a polynomial

shape functional and a state with random right-hand side is a deterministic

problem. The mean of quadratic shape functionals can be even computed

without assuming a specific model for the randomness.

I Numerical results have been presented to illustrate the results.
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