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The Forward Griffith’s Model

Minimize the total energy in each time-step

E(q; u, C) =
1
2

(Ce(u), e(u))Ω\C

− (q, u)∂NΩ +Hd−1(C),

Eε(q; u,ϕ) =
1
2

(
g(ϕ)Ce(u), e(u)

)
− (q, u)∂NΩ +

1
2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2,

subject to 0 ≤ ϕ(ti ) ≤ ϕ(ti−1) ≤ 1 ∀i = 1, ... , N
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Simulations from ongoing SPP1748 project
Basava, Mang, Walloth, Wick, W.

Questions (ongoing work):
I Incompressible materials
I Pressure robust discretization

I Convergence (rates?)
I Optimization
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Troubleshooting

I Minimizers of Eε not unique.
I Necessary conditions for minimizing Eε give a sequence of obstacle problems.
I Trouble in optimization, e.g., optimality conditions, (non-adapted) algorithms

may converge to non-stationary limits...
I −→ More regularization!

Given q i and ϕi−1 solve

min
u

Eγε (ui ,ϕi ) := Eε(q i ; ui ,ϕi ) + γR(ϕi−1;ϕi ) + η‖ϕi − ϕi−1‖2 (Cγ,η)

with 0 ≤ γ →∞ and

R(ϕi−1;ϕi ) =
1
4
‖(ϕi − ϕi−1)+‖4

L4 .
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The Problem (Cγ,η)

Formally, any minimizer of (Cγ,η) satisfies for any (v ,ψ) ∈ V = H1
D(Ω;R2)× H1(Ω).(

g(ϕi )Ce(ui ), e(v )
)
− (q i , v )∂NΩ = 0

ε(∇ϕi ,∇ψ)− 1
ε

(1− ϕi ,ψ) + (1− κ)(ϕiCe(ui ) : e(ui ),ψ)

+γ([(ϕi − ϕi−1)+]3,ψ) + η(ϕi − ϕi−1,ψ) = 0.

(ELγ,η)

for any (v ,ψ) ∈ V = H1
D(Ω;R2)× H1(Ω).

But: Not immediately clear, if well-defined!

Theorem (Neitzel, Wick, W. 2017)
Given some assumptions on the data, there are minimizers, solving (ELγ,η).
Any solution (u,ϕ) to (ELγ,η) satisfies (for some p > 2):

ϕ ∈ H1(Ω) 0 ≤ ϕ ≤ 1

u ∈ W 1,p(Ω) ∩ H1
D(Ω) ‖u‖1,p ≤ c‖q‖
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The Problem

I Nice: u ∈ W 1,p is sufficient to have well-defined products (in 2d).
I Not so nice: In optimization - q varies (converges weakly!) then u does so in

W 1,p, but products of weak-convergent sequences are not nice 7→ trouble in
the second equation! (Can be circumvented by compensated compactness)

I Not so nice: In numerics - approximation theory gives rates if a gap in
differentiability is present (we only have integrability). 7→ only qualitative
convergence o(1) as h→ 0 can be expected (not uniform in the data q, ϕ0).

I If g(ϕ) ∈ L∞ there is nothing we can do!

I For the ϕ-equation with ϕ ∈ L∞ the right hand side

−Gcε∆ϕ +
Gc

ε
ϕ =

Gc

ε
(1, ·)− (1− κ)(ϕCe(u), e(u)·)− γ([(ϕ− ϕ−)+]3, ·).

is in Lp/2, i.e., for a nice domain ϕ ∈ W 2,p/2. (better than L∞ but not W 1,∞!)
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Improved Differentiability

Theorem (Haller-Dintelmann, Meinlschmidt, W. 2019)
Given some assumptions on the domain, assuming a Gårding inequality, and each
coefficient (matrix) Ai ,j being a multiplier on Hε(Ω)d for some 0 ≤ ε < 1

2 . Then
there exist γ ≥ 0 and 0 < δ ≤ ε such that for any |θ| < δ the elliptic system

−∇ · A∇u + γu = f in Hθ−1
D (Ω)

has a unique solution u ∈ Hθ+1
D (Ω) satisfying

‖u‖Hθ+1
D (Ω) ≤ C‖f‖Hθ−1

D (Ω)

for some constant C ≥ 0 independent of f
– C depends on multiplier norm of A but not A.
– If coercive then γ = 0 can be chosen.
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Application to Phase-Fields

Corollary
Let q ∈ Hθ0−1. Then there exists 0 < θ̄ ≤ θ0 such that the solution
(u,ϕ) ∈

(
W 1,p(Ω) ∩ H1

D(Ω)
)
×
(
H1(Ω) ∩ L∞(Ω)

)
of (ELγ,η) admits the additional

regularity u ∈ Hθ+1(Ω) and ϕ ∈ Hθ+1(Ω) for any θ satisfying 0 < θ < θ̄. Moreover,
we obtain the estimate

‖u‖H1+θ
D (Ω) ≤ C‖q‖

H
θ0−1
D (Ω)

with a constant C = C(‖q‖2
H−1,p , γ, η, ε).
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Model Problem

Given (u0,ϕ0) ∈ V with 0 ≤ ϕ0 ≤ 1.
Find (q, u) = (q, (u,ϕ)) ∈ (Q × V )M solving

min
q,u

J(q, u) :=
1
2

M∑
i=1

‖ui − ui
d‖2 +

α

2

M∑
i=1

‖q i‖2
∂NΩ

s.t. (q, u) satisfy (ELγ,η).

(NLPγ)

where ud ∈ (L2(Ω))M is a given desired displacement, α > 0.

Theorem (Neitzel, Wick, W. (2017))
There exists at least one global minimizer (q, u) ∈ (Q × V )M to (NLPγ).

Under the assumptions of the previous slides, any such minimizer satisfies the
additional regularity u ∈ H1+s, ϕ ∈ W 2,p/2.
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Fredholm Property of Linearized Equation

Lemma (Neitzel, Wick, W. (2017))
For any given (uk ,ϕk ) ∈ (V ∩ (W 1,p(Ω;R2)× L∞(Ω))M the linear operators
Ai : V → V ∗ corresponding to the the linearized fracture equation, i.e.,

〈Ai (u,ϕ), (v ,ψ)〉V∗,V = ai (u,ϕ; v ,ψ)

=
(

g(ϕi
k )Ce(u), e(v )

)
+ 2(1− κ)(ϕi

kCe(ui
k )ϕ, e(v ))

+ ε(∇ϕ,∇ψ) + (
1
ε

+ η)(ϕ,ψ) + (1− κ)(ϕCe(ui
k ) : e(ui

k ),ψ)

+ 3γ([(ϕi
k − ϕi−1

k )+]2ϕ,ψ) + 2(1− κ)(ϕi
kCe(ui

k ) : e(u),ψ)

are Fredholm of index zero.
The same is true for the A : V M → (V ∗)M assembling all time-steps, thus injectivity
is a constraint qualification.
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A QP-Approximation

Let (qk , uk ) = (qk , uk ,ϕk ) ∈ QM × (V ∩W 1,p(Ω;R2)× L∞(Ω)))M .

Find (q, u) ∈ QM × V M solving

min
(q,u)

Jlin(q, u) :=
1
2

M∑
i=1

‖u − (ud − uk )‖2 +
α

2

M∑
i=1

‖q + qk‖2
∂NΩ(+ ...)

s.t. Au = Bq.

(QPγ)

Where B : QM → (V ∗)M is

〈Bq, v〉(V∗)M ,V M :=
M∑
i=1

(q i , v i )∂NΩ

For suitably chosen p > 2 any solution u of the linear equation satisfies the desired
regularity, e.g., the regularity does not degenerate.
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Existence of Solutions to (QPγ) and optimality
conditions

Theorem (Neitzel, Wick, W. (2017))
Given (uk ,ϕk ) ∈ (V ∩W 1,p(Ω;R2)× L∞(Ω))M and qk ∈ QM ,
the problem (QPγ) has a unique solution (q, u) ∈ QM × V M .
Further, regardless of the invertibility of A, there exists a Lagrange multiplier,
z ∈ V M satisfying

Au = Bq in (V ∗)M ,

A∗z = u − (ud − uk ) in (V ∗)M ,

α(q + qk ) + z = 0 on ∂NΩ.

(KKTγ)

Due to convexity, any such triplet gives rise to a solution of (QPγ).
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Error estimates for the SQP-Step

Theorem (Mohammadi, W. (2018))
Under the previous assumptions, assuming in addition that A is an isomorphism,
there exists h0 > 0 such that for any h ≤ h0 then for any q ∈ Q the solution u ∈ V
to Au = Bq and its Galerkin-approximation uh ∈ Vh exist and satisfy the following
quasi best-approximation property

‖u− uh‖V . inf
vh∈Vh

‖u− vh‖V .

Theorem (Mohammadi, W. (2018))
Under the previous assumptions, there exists θ > 0 such that the solution (q̄, ū)
to (QPγ), and its variational discretization (q̄h, ūh) satisfy

α‖q̄ − q̄h‖2
∂NΩ + ‖ū − ūh‖2 ≤ c(1 +

1
α

)h2θ
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Formal Limit Problem

We expect, that solutions of (ELγ,η)(
g(ϕi )Ce(ui ), e(v )

)
− (q i , v )ΓN = 0,

ε(∇ϕi ,∇ψ)− 1
ε

(1− ϕi ,ψ) + η(ϕi − ϕi−1,ψ)

+(1− κ)(ϕiCe(ui ) : e(ui ),ψ) + γ([(ϕi − ϕi−1)+]3,ψ) = 0

converge to solutions of the VI(
g(ϕi )Ce(ui ), e(v )

)
− (q i , v )ΓN = 0,

ε(∇ϕi ,∇ψ)− 1
ε

(1− ϕi ,ψ) + η(ϕi − ϕi−1,ψ)

+(1− κ)(ϕiCe(ui ) : e(ui ),ψ) + (λi ,ψ) = 0,

ϕi ≤ ϕi−1, λi ≥ 0, (λi ,ϕi − ϕi−1) = 0.

(ELη)
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Known stability properties for (NLPγ)

For q = p/2 and some p > 2 we know, that solutions to (ELγ,η) satisfy

‖ui
γ‖1,p ≤ c‖q i‖,

‖ϕi
γ‖2,q ≤ c

(
1 + ‖q i‖2 + γ‖((ϕi

γ − ϕi−1
γ )+)3‖q + η‖ϕi

γ − ϕi−1
γ ‖q

)
,

‖ui
γ‖1+s ≤ c i

ϕ‖q i‖.

Trouble for the limit:
I c i

ϕ depends on ‖ϕi
γ‖2,q .

I ‖ϕi
γ‖2,q depends on λi

γ = γ((ϕi
γ − ϕi−1

γ )+)3 in Lq

(approximate multiplier for obstacle-constraint).
I Elementary estimates only for λi

γ ∈ (H1)∗ ∩ L1.
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Convergence and improved stability estimates

Theorem (Neitzel, Wick, W. (2019))
Under suitable conditions on the initial data ϕ0 and control q it is true that for
γ →∞ (up to a subsequence)
I uγ → u∞ in H1

D,
I ϕγ → ϕ∞ in H1.

If ϕ0 ∈ W 2,q than
I ‖λγ‖q ≤ C, (depending on number of time-steps)
I ϕγ → ϕ∞ in C0,α,
I uγ → u∞ in H1+s

D .

Moreover any such limit-point satisfies the corresponding VI (ELη)
This remains true, mutatis mutandis, if qn ⇀ q is considered.
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Approximability of local minimizers

Theorem (Neitzel, Wick, W. (2019))
Let q̄ ∈ QM be an isolated local minimizer of (NLPγ) subject to (ELη) and assume
that the corresponding state ū = (u,ϕ), λ̄ is the unique solution of (ELη). Then, for
γ sufficiently large, there exists a sequence qγ , uγ of local minimizers of (NLPγ)
such that

qγ → q in QM ,

uγ → u in V M ∩ (H1+s(Ω)× C0,α(Ω))M ,

λγ ⇀ λ̄ in Lp/2(Ω)M

γ J[×10−5] Iter. Residual ‖λγ‖1 ‖λγ‖2
2 ‖max(ϕi

γ ,ϕi−1)− ϕi
γ‖2

H1(Ω)
108 1.0533 4 8.7 · 10−13 1.1 244 6 · 10−3

109 1.0531 1 9.4 · 10−13 1.1 254 2 · 10−3

1010 1.0531 1 4.6 · 10−13 1.1 258 7 · 10−4

1011 1.0532 1 3.4 · 10−13 1.1 260 3 · 10−4

1012 1.0532 0 4.0 · 10−13 1.1 262 6 · 10−5

1013 1.0532 0 9.6 · 10−13 1.1 262 2 · 10−5
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Thank you for the attention!
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