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Optimal control of networks for
nonlinear hyperbolic conservation laws

Setting
I directed graph G = (V , E)
I edges correspond to real intervals
I state y = (y i )ei∈E

Every y i has to satisfy...
I conservation law on Ii
I initial conditions
I node conditions
I boundary conditions
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Setting
I directed graph G = (V , E)
I edges correspond to real intervals
I state y = (y i )ei∈E

Every y i has to satisfy...
I conservation law on Ii
I initial conditions
I node conditions
I boundary conditions

Objective Functional

J(y (T , ·)) =
∑
ei∈E

∫ bi

ai

ψi (yi (T , x), yd ,i (x)) dx

Covers usual tracking-type functionals

Optimization w.r.t.
I initial value
I control of the source term
I boundary data
I node conditions
I switching times
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Optimal boundary control problem for
conservation laws

Optimal Control Problem

min J(y (T , ·), u)

s.t. u = (u0, uB , u1) ∈ Uad , y(T , ·) ≤ ȳ , y = y (u) solves

yt + (f (y ))x = g(·, y , u1) on (0, T )× R+ =: ΩT ,

y (0, ·) = u0 on R+ =: Ω,

”y (·, 0) = uB” in the BLN-sense on (0, T ).

Assumptions:
I Source term: g ∈ C

(
[0, T ]; C1

loc (Ω× R× Rm)
)

I Flux: f ∈ C2
loc(R), f ′′ ≥ mf > 0

I More details later.
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Applications

Optimal control and sensitivity analysis for conservation laws is relevant, e.g., for
I Optimal control of / games on traffic networks (Bressan, Gugat, Herty, Klar,

Leugering, S.U. at al.)
I Optimal control of gas and water networks (Colombo, Gugat, Herty, Leugering

at al.)
I Turbomachinery aeroelastic analysis (Giles et al.)
I Optimization/optimal control of discontinuous flows (Bardos, Bressan, Gugat,

Gunzburger, Heinkenschloss, Herty, Homescu, Ghattas, Giles, Leugering,
Klar, Navon, Pironneau, Sager, S.U., Zuazua ...)

State constraints (pressure or velocity bounds etc.) and switching (valves, traffic
lights etc.) play a role.
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Entropy solutions for the initial boundary value
problem

Conservation Law

yt + (f (y ))x = g(·, y , u1) on ΩT

Initial Value

y (0, ·) = u0 on R+

Boundary Condition

”y (·, 0) = uB” on [0, T ]

⇒ Existence, uniqueness, stability of solutions y ∈ L∞(ΩT ) ∩ C([0, T ]; L1
loc(R+))
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Entropy solutions for the initial boundary value
problem

Entropy Condition

For every convex entropy η and entropy-flux q satisfying q′ = η′f ′ the following
inequality holds in the sense of distributions:

η(y )t + q(y)x ≤ η′(y )g(t , x , y , u1) in D′(ΩT ).

Initial Value

y (0, ·) = u0 on R+

Boundary Condition

”y (·, 0) = uB” on [0, T ]

⇒ Existence, uniqueness, stability of solutions y ∈ L∞(ΩT ) ∩ C([0, T ]; L1
loc(R+))

October 18, 2019 | S. Ulbrich | 9 Nonlinear
Optimization



Entropy solutions for the initial boundary value
problem

Entropy Condition

For every convex entropy η and entropy-flux q satisfying q′ = η′f ′ the following
inequality holds in the sense of distributions:

η(y )t + q(y)x ≤ η′(y )g(t , x , y , u1) in D′(ΩT ).

Initial Value

For every R > 0 it holds lim
t→0+
‖y (t , ·)− u0‖1,(0,R) = 0.

Boundary Condition

”y (·, 0) = uB” on [0, T ]

⇒ Existence, uniqueness, stability of solutions y ∈ L∞(ΩT ) ∩ C([0, T ]; L1
loc(R+))

October 18, 2019 | S. Ulbrich | 9 Nonlinear
Optimization



Entropy solutions for the initial boundary value
problem

Entropy Condition

For every convex entropy η and entropy-flux q satisfying q′ = η′f ′ the following
inequality holds in the sense of distributions:

η(y )t + q(y)x ≤ η′(y )g(t , x , y , u1) in D′(ΩT ).

Initial Value

For every R > 0 it holds lim
t→0+
‖y (t , ·)− u0‖1,(0,R) = 0.

Boundary Condition (Bardos, LeRoux, Nédélec 1979, c.f. Le Floch 1988 and Otto 1996)

For almost all t ∈ (0, T ) it holds

min
k∈I(y (t ,0+),uB )(t)

sgn(uB(t)− y (t , 0+))(f (y (t , 0+))− f (k )) = 0.

⇒ Existence, uniqueness, stability of solutions y ∈ L∞(ΩT ) ∩ C([0, T ]; L1
loc(R+))

October 18, 2019 | S. Ulbrich | 9 Nonlinear
Optimization



Entropy solutions for the initial boundary value
problem

Entropy Condition

For every convex entropy η and entropy-flux q satisfying q′ = η′f ′ the following
inequality holds in the sense of distributions:

η(y )t + q(y)x ≤ η′(y )g(t , x , y , u1) in D′(ΩT ).

Initial Value

For every R > 0 it holds lim
t→0+
‖y (t , ·)− u0‖1,(0,R) = 0.

Boundary Condition (Bardos, LeRoux, Nédélec 1979, c.f. Le Floch 1988 and Otto 1996)

For almost all t ∈ (0, T ) it holds

min
k∈I(y (t ,0+),uB )(t)

sgn(uB(t)− y (t , 0+))(f (y (t , 0+))− f (k )) = 0.

⇒ Existence, uniqueness, stability of solutions y ∈ L∞(ΩT ) ∩ C([0, T ]; L1
loc(R+))

October 18, 2019 | S. Ulbrich | 9 Nonlinear
Optimization



An optimal control problem for IBVP with
switching times

yt + f (y )x = g(·, y , u1), on ΩT := (0, T )× (0,∞),

y (0, ·) = u0(·; w), on Ω := (0,∞),

y (·, 0+) = uB(·; w), in the sense of Bardos, LeRoux, Nédélec (BLN)

x

t

0
0

y (t , 0+) = uB(t)



See: [Bardos, LeRoux and Nédélec, 1979]
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An optimal control problem for IBVP with
switching times

yt + f (y )x = g(·, y , u1), on ΩT := (0, T )× (0,∞),

y (0, ·) = u0(·; w), on Ω := (0,∞),

y (·, 0+) = uB(·; w), in the sense of Bardos, LeRoux, Nédélec (BLN)

I Associate with control w = (u0, uB , x0, t0, u1) ∈ Wad piecewise C1 initial and
boundary data

u0(x ; w) =


u0

1(x) if x ∈ [0, x0
1 ],

u0
j (x) if x ∈ (x0

j−1, x0
j ], 2 ≤ j ≤ nx ,

u0
nx +1(x) if x ∈ (x0

nx
,∞)

uB(t ; w) =


uB

1 (t) if t ∈ [0, t0
1 ],

uB
j (t) if t ∈ (t0

j−1, t0
j ], 2 ≤ j ≤ nt ,

uB
nt +1(t) if t ∈ (t0

nt
, T ]

0 < x0
1 < ... < x0

nx
, 0 < t0

1 < ... < t0
nt
< T .
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Illustration

x

a b

x0
l x0

l+1

t

T

t0
m

t0
k

t0
i

t̄∆

0
0

D−

Is,0(w) := {j ∈ {1, ... , nx} : [u0(x0
j )] > 0}

Ir,0(w) := {j ∈ {1, ... , nx} : [u0(x0
j )] < 0}

Is,B(w) := {j ∈ {1, ... , nt} : [uB,0(t0
j )] < 0}

Ir,B(w) := {j ∈ {1, ... , nt} : [uB,0(t0
j )] > 0}

[ψ(x)] := ψ(x−)− ψ(x+)
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Assumptions

Assumption A1:
I f ∈ C2

loc(R), ∃mf ′′ > 0 : f ′′ ≥ mf ′′

I g ∈ C
(
[0, T ]; C1

loc (Ω× R× Rm)
)

and for every Mu > 0 there exist C1, C2 > 0
such that

g(t , x , y , u1)sgn(y ) ≤ C1 + C2|y |

for all (t , x , , y , u1) ∈ [0, T ]× R× R× [−Mu , Mu ]m.

I Wad is nonempty and bounded in

W := {(u0, uB , x0, t0, u1) ∈ C1(Ω)nx +1×C1([0, T ])nt +1×X×T ×C([0, T ]; C1(Ω)m)}

with X := {x0 ∈ Ωnx : 0 < x0
1 < ... < x0

nx
<∞},

T := {t0 ∈ [0, T ]nt : 0 < t0
1 < ... < t0

nt
< T}

October 18, 2019 | S. Ulbrich | 12 Nonlinear
Optimization



Well-posedness of the IBVP

Theorem: Let Assumption A1 hold. Then:
I For all w ∈ Wad the IBVP has a unique entropy solution

y(w) ∈ C([0, T ]; L1
loc(R+)) with y (t , .; w) ∈ L∞(R+) ∩ BVloc(R+) for all t ∈ [0, T ].

I The mapping w ∈ Wad 7→ y (w) ∈ C([0, T ]; L1
loc(R+)) is Lipschitz continuous.

See [Bardos, LeRoux, Nédélec 1979], [Le Floch 1988], [Otto 1996].
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Optimal control of the IBVP with state
constraints

min
w∈W

J(y (w), w) =
∫ b

a
ψ(y(T , x ; w), yd (x)) dx + R(w)

where y (w) solves IBVP

w ∈ Wad

y (T , ·; w) ≤ ȳ (x) ∀x ∈ [a, b]

(P)

I Prove existence of an optimal solution w̄ ∈ Wad .
I Derive necessary optimality conditions for (P).
I Analyze convergence of Moreau-Yosida type regularization.
I Convergence of numerical discretizations.
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Optimal control of the IBVP with state
constraints

min
w∈W

J(y (w), w) =
∫ b

a
ψ(y(T , x ; w), yd (x)) dx + R(w)

where y (w) solves IBVP

w ∈ Wad

y (T , ·; w) ≤ ȳ (x) ∀x ∈ [a, b]

(P)

Difficulty to derive necessary optimality conditions:
I The mapping w ∈ Wad 7→ y (T , ·; w) ∈ L1([a, b]) is Lipschitz continuous, but

not differentiable.
I State constraints require y (T , ·; w) ∈ L∞([a, b]) for a constraint qualification
I Well known: y (·; w) can develop shocks after finite time

Consequence: w 7→ y (T , ·; w) ∈ L∞([a, b]) not even continuous.
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Assumptions for the optimal control problem

Assumption A2:
I f ∈ C3

loc(R) and f ′−1 ∈ C2,β
loc (R) for some β ∈ (0, 1]

I g ∈ C
(
[0, T ]; C1

loc (Ω× R× Rm)
)

I g is Lipschitz w.r.t. x and affine linear w.r.t. y .

I There exists εg > 0 such that

g(t , x , y , u1) = 0 if x ∈ [0, εg ] .

I ψ ∈ C1,1
loc (R2), yd ∈ C(Ω) and ȳ ∈ C1(Ω)

October 18, 2019 | S. Ulbrich | 16 Nonlinear
Optimization



Assumptions for the optimal control problem

Assumption A2:
I Wad is convex and compact in

W := {(u0, uB , x0, t0, u1) ∈ C1(Ω)nx +1×C1([0, T ])nt +1×X×T ×C([0, T ]; C1(Ω)m)}

with X := {x0 ∈ Ωnx : 0 < x0
1 < ... < x0

nx
<∞},

T := {t0 ∈ [0, T ]nt : 0 < t0
1 < ... < t0

nt
< T}

I f ′(uB
j ) ≥ α > 0, j = 1, ... , nt + 1 holds for all w = (u0, uB , x0, t0, u1) ∈ Wad.

I There exists w̃ ∈ Wad such that y (T , x , w̃) ≤ ȳ (x) for all x ∈ [a, b].

I R : W → R is continuously Fréchet-differentiable.

⇒ There exists a global solution for (P).
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Nondegeneracy-condition

Definition: w ∈ Wad satisfies the nondegeneracy-condition (ND) if

1. Points where f ′(y (·, 0+; w)) changes sign (inflow-outflow change) are
nondegenerated and y (·, 0+; w) satisfies

essinf
t : uB (t ,w) 6=y (t ,0+;w)

|f (uB(t , w))− f (y (t , 0+; w))| > 0.

2. y (T , ·; w) has no shock generation points on [a, b],
3. y (T , ·; w) has a finite number of nondegenerated shocks

a < x1(w) < · · · < xK (w) < b

that are no shock interaction points.

Remark: One can show that 2. and 3. hold for a.a. T . (ND) is generically satisfied.
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Structure of the state

Theorem: (Pfaff 15, Pfaff, S.U. SICON 15, Schmitt, S.U. 18)
Let Assumption A2 hold and let w̄ ∈ Wad satisfy (ND).
Then: There exist a neighborhood U(w̄) ⊂ W of w̄ , ε > 0 and continuously
F-differentiable mappings

U(w̄) 3 w 7→ xk (w) ∈ (xk (w̄)− ε

2
, xk (w̄) +

ε

2
), k ∈ {1, ... , K}

U(w̄) 3 w 7→ Yk (T , ·; w) ∈ C (xk (w̄)− ε, xk+1(w̄) + ε) , k ∈ {0, ... , K}
x0 := a, xK +1 := b,

such that

y (T , x ; w) |(xk (w),xk+1(w)) = Yk (T , x ; w), ∀w ∈ U(w̄), k = 0, ... , K

Furthermore:
I Yk (T , ·; w) ∈ C1 (xk (w̄)− ε, xk+1(w̄) + ε) ∀w ∈ U(w̄), k = 0, ... , K
I U(w̄) 3 w 7→ J(y (w), w) ∈ R is continuously F-differentiable in w̄

Remark: Involved result, allows for arbitrary shock structures (uses gen. charact.).
October 18, 2019 | S. Ulbrich | 18 Nonlinear
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Characteristics for an example

x

t

t̄
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Adjoint representation of the derivative of the re-
duced cost functional

x
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x0
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l+1

t

T

t0
m

t0
k

t0
i
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0
0

D−

Is,0(w) := {j ∈ {1, ... , nx} : [u0(x0
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j )] < 0}

Is,B(w) := {j ∈ {1, ... , nt} : [uB,0(t0
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Ir,B(w) := {j ∈ {1, ... , nt} : [uB,0(t0
j )] > 0}
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Adjoint representation of the derivative of the
reduced cost functional

d
dw

J(y (w), w) · δw = R′(w)δw +
(
p, gu1 (·, y , u1)δu1

)
2,(0,T )×Ω +

nx +1∑
j=1

(p(0, ·), δu0
j )2,(x0

j−1,x0
j )

+
nt +1∑
j=1

(p(·, 0), f ′(uB
j )δuB

j )2,(t0
j−1,t0

j ) +
∑

j∈Is,0(w)

p(0, x0
j )[u0(xj )]δxj

+
∑

j∈Is,B (w)

p(t0
j , 0)[f (y (t0

j , 0+; w))]δt0
j −

∑
j∈Ir,0(w)

pr,0
j δx

0
j +

∑
j∈Ir,B (w)

pr,B
j δt0

j ,

where p denotes the reversible solution of the adjoint equation

pt + f ′(y )px = −gy (·, y , u1)p, on ΩT \ D−,

p(T , x) =

{
1[a,b](x)ψy (y (T , x ; w), yd (x)) if x is continuity point
1[a,b](x) [ψ(y (T ,x ;w),yd (x))]

[y (T ,x ;w)] if x is discontinuity point

and is equal to zero on D− (transport equation with OSLC coefficient).

Reversible solution: Internal boundary condition along shocks.

See also [Pfaff, S.U., 2015], [S.U., 2003] and [Bouchut, James, 1998].
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Adjoint representation of the derivative of the
reduced cost functional

d
dw

J(y (w), w) · δw = R′(w)δw +
(
p, gu1 (·, y , u1)δu1

)
2,(0,T )×Ω +

nx +1∑
j=1

(p(0, ·), δu0
j )2,(x0

j−1,x0
j )

+
nt +1∑
j=1

(p(·, 0), f ′(uB
j )δuB

j )2,(t0
j−1,t0

j ) +
∑

j∈Is,0(w)

p(0, x0
j )[u0(xj )]δxj

+
∑

j∈Is,B (w)

p(t0
j , 0)[f (y (t0

j , 0+; w))]δt0
j −

∑
j∈Ir,0(w)

pr,0
j δx

0
j +

∑
j∈Ir,B (w)

pr,B
j δt0

j ,

pr,0
j :=

∫ f ′(u0
j+1(x0

j ))

f ′(u0
j (x0

j ))
lim
t↘0

p(t , zt + x0
j )

z
f ′′(f ′−1(z))

dz, j ∈ Ir,0,

pr,B
j :=

∫ f ′(uB
j (t0

j ))

f ′(uB
j+1(t0

j ))
lim

t↘t0
j

p(t , z(t − t0
j ))

z
f ′′(f ′−1(z))

dz, j ∈ Ir,B .

See also [Pfaff, S.U., 2015], [S.U., 2003] and [Bouchut, James, 1998].
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Characteristics for an example

x

t

t̄
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Technical tool: Reformulation of the state

Introduce new state variables (y0, ... , yK , x1, ... , xK ):

yk (λ, w) := Yk (T , xk (w) + λ (xk+1 (w)− xk (w)) , w) , λ ∈ [0, 1], w ∈ U(w̄)

I The mappings

U(w̄) 3 w 7→ (y0 (λ, w) , ... , yK (λ, w) , x1(w), ... , xK (w)) ∈ C ([0, 1])K +1 × RK

are continuously Fréchet-differentiable.

I Reformulated upper bounds (ȳ0, ... , ȳK ) (λ, w):

yk (λ, w) ≤ ȳ (a + λ (xk+1 (w)− xk (w))) =: ȳk (λ, w) ∀k ∈ {0, ... , K}

October 18, 2019 | S. Ulbrich | 23 Nonlinear
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Reformulation of optimal control problem

min J((y0, ... , yK , x1, ... , xK )(w), w) s.t. G((y0, ... , yK , x1, ... , xK )(w)) ∈ K, w ∈ Wad,

where

G(y0, ... , yK , x1, ... , xK ) =



y0 − ȳ0
...

yK − ȳK

x1
...

xK


∈ C([0, 1])K +1×RK , K =



C≤0([0, 1])
...

C≤0([0, 1])
R
...
R


Robinson’s Constraint Qualification: Holds at w̄ ∈ Wad with G((y , x)(w̄)) ∈ K if

0 ∈ int
(

G((y , x)(w̄)) +
d

dw
G((y , x)(w̄))(Wad − w̄)−K

)
.
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Optimality conditions for IBVP with state
constraints

Theorem: (Karush-Kuhn-Tucker conditions, [Schmitt, S.U. 2018])
I Assume that (A2) holds and
I w̄ ∈ Wad is a local solution of (P) that satisfies Robinson’s CQ and (ND).

Then: ∃ nonneg. regular Borel measures µ0, ... ,µK ∈M ([0, 1]): such that:

yk (λ, w̄) ≤ ȳk (λ, w̄) ∀λ ∈ [0, 1] , ∀k ∈ {0, ... , K} (F)
K∑

k=0

∫
[0,1]

(
ȳk (λ, w̄)− yk (λ, w̄)

)
dµk (λ) = 0 (C)

d
dw

J (y (w̄), w̄) (w − w̄) +
K∑

k=0

∫
[0,1]

d
dw

(
yk (λ, w̄)− ȳk (λ, w̄)

)
(w − w̄) dµk (λ) ≥ 0,

∀ w ∈ Wad (S)

Robinson’s CQ can be shown to hold under suitable assumptions on Wad and the
source term.
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Formulation in the original state

Theorem: (Karush-Kuhn-Tucker conditions, [Schmitt, S.U. 2018])
I Assume that (A2) holds and
I w̄ ∈ Wad is a local solution of (P) that satisfies Robinson’s CQ and (ND).

Then: ∃ nonneg. regular Borel measures µk ∈M ([xk (w̄), xk+1(w̄)]), 0 ≤ k ≤ K :

y (T , x , w̄) ≤ ȳ (x) ∀x ∈ [a, b] (F)

K∑
k=0

∫ xk+1(w̄)

xk (w̄)

(
y (T , x , w̄)− ȳ (x)

)
dµk (x) = 0 (C)
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Formulation in the original state

Theorem: (Karush-Kuhn-Tucker conditions, [Schmitt, S.U. 2018])
I Assume that (A2) holds and
I w̄ ∈ Wad is a local solution of (P) that satisfies Robinson’s CQ and (ND).

Then: ∃ nonneg. regular Borel measures µk ∈M ([xk (w̄), xk+1(w̄)]), 0 ≤ k ≤ K :

d
dw

J (y (w̄), w̄) (w − w̄)

+
K∑

k=0

[∫ xk+1(w̄)

xk (w̄)

∂

∂x
[y (T , x , w̄)− ȳ (x)]

x − xk (w̄)
xk+1(w̄)− xk (w̄)

dµk (x) · d
dw

xk+1(w̄)(w − w̄)

+
∫ xk+1(w̄)

xk (w̄)

∂

∂x
[y (T , x , w̄)− ȳ (x)]

xk+1(w̄)− x
xk+1(w̄)− xk (w̄)

dµk (x) · d
dw

xk (w̄)(w − w̄)

+
∫ xk+1(w̄)

xk (w̄)

d
dw

y (T , x , w̄)(w − w̄) dµk (x)

]
≥ 0 ,∀w ∈ Wad (S)
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Formulation in the original state

Theorem: (Karush-Kuhn-Tucker conditions, [Schmitt, S.U. 2018])
I Assume that (A2) holds and
I w̄ ∈ Wad is a local solution of (P) that satisfies Robinson’s CQ and (ND).

Then: ∃ nonneg. regular Borel measures µk ∈M ([xk (w̄), xk+1(w̄)]), 0 ≤ k ≤ K :

d
dw

J (y (w̄), w̄) (w − w̄)

+
K∑

k=0

[
∂

∂x
[y (T , xk+1(w̄)−, w̄)− ȳ (xk+1(w̄))] · µk

(
{xk+1(w̄)}

)
· d

dw
xk+1(w̄) · (w − w̄)

+
∂

∂x
[y (T , xk (w̄)+, w̄)− ȳ (xk (w̄))] · µk

(
{xk (w̄)}

)
· d

dw
xk (w̄) · (w − w̄)

+
∫ xk+1(w̄)

xk (w̄)

d
dw

y (T , x , w̄)(w − w̄) dµk (x)

]
≥ 0 ,∀w ∈ Wad (S)

d
dw J(y (w̄), w̄) and d

dw xk (w̄) can be expressed by using an adjoint state.
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Moreau-Yosida type regularization

Approximate (P) by:

min
w∈W

Jγ(y (w), w) := J(y (w), w) +
1

2γ

∫ b

a
(y (T , x ; w)− ȳ (x))2

+ dx

where y (w) solves IBVP

w ∈ Wad

(Pγ)

See, e.g., [Ito, Kunisch, 2003], [Hintermüller, Kunisch, 2005]
[Hintermüller, Hinze, 2009], [Meyer, Yousept, 2009] ...

For alternative approaches, see for example: [Hinze, Meyer, 2008],
[Krumbiegel, Neitzel, Rösch 2010], ...
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Moreau-Yosida type regularization

Approximate (P) by:

min
w∈W

Jγ(y (w), w) := J(y (w), w) +
1

2γ

∫ b

a
(y (T , x ; w)− ȳ (x))2

+ dx

where y (w) solves IBVP

w ∈ Wad

(Pγ)

Let (A2) hold then
I For all γ > 0 there exists a global solution wγ of Pγ .

I If w̄ ∈ Wad satisfies (ND), then Wad 3 w 7→ Jγ(y (w)) is continuously
differentiable in w̄ with the above adjoint representation of the gradient.
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Moreau-Yosida type regularization:
Convergence result

Theorem:
I Assume that (A1) holds and
I (wγl )l∈N ⊂ Wad is a sequence of local solutions of (Pγl ) with lim

l→∞
γl = 0.

I There exist ε, δ > 0 such that for all l ∈ N and all w ∈ Wad with
‖w − wγl‖W < ε it holds

Jγl (y (wγl ), wγl ) +
δ

2
‖w − wγl‖2

H ≤ Jγl (y (w), w), (QGC)

where H Hilbert space with W ↪→ H.

Then: There exists a subsequence (wγl )l∈N such that

lim
l→∞

wγl = w∗ and w∗ is a local solution of (P).

See: [Meyer, Yousept, 2009], [De Los Reyes, Yousept, 2009]
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Moreau-Yosida type regularization:
Convergence result

Theorem:
I Assume that (A1) holds and
I (wγl )l∈N ⊂ Wad is a sequence of local solutions of (Pγl ) with lim

l→∞
γl = 0.

I There exist ε, δ > 0 such that for all l ∈ N and all w ∈ Wad with
‖w − wγl‖W < ε it holds

Jγl (y (wγl ), wγl ) +
δ

2
‖w − wγl‖2

H ≤ Jγl (y (w), w), (QGC)

where H Hilbert space with W ↪→ H.

Then: There exists a subsequence (wγl )l∈N such that

lim
l→∞

wγl = w∗ and w∗ is a local solution of (P).

Remark: If (wγl )l∈N ⊂ Wad are global solutions, then (QGC) not necessary.
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Necessary optimality conditions for (Pγ)

Theorem:
I Assume that (A2) holds and
I wγ ∈ Wad is a local solution for (Pγ) with γ > 0 satifsfying (ND).

Then it holds

d
dw

Jγ(y (wγ)) ·
(
w − wγ

)
≥ 0 ∀w ∈ Wad . (1)

Define the Lagrange multiplier estimates:

λk (x ; wγ) =


(
y (T , x ; wγ)− ȳ (x)

)
+

γ
, for xk (wγ) ≤ x ≤ xk+1(wγ),

0, else.

October 18, 2019 | S. Ulbrich | 30 Nonlinear
Optimization



Convergence of Lagrange multiplier estimates

Theorem: [Schmitt, S.U. 2018]
I Assume that (A2) holds and
I (wγl )l∈N ⊂ Wad is sequence of local solutions of (Pγl ) satisfying (ND) with

lim
l→∞

wγl = w̄ ,

where w̄ is a local solution for (P) such that Robinson’s CQ is satisfied.
Then: There exists a subsequence (γl )l∈N, such that

y (·; wγl )→ y (·; w̄) in C([0, T ]; L1
loc(Ω)),

λk (·, wγl )
w∗−→ µk (·) in M([a, b]), ∀k = 0, ... , K ,

Furthermore: (w̄ ,µ0, ... ,µK ) satisfy the KKT-conditions for (P).
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Convergence of Lagrange multiplier estimates

Theorem: [Schmitt, S.U. 2018]
I Assume that (A2) holds and
I (wγl )l∈N ⊂ Wad is sequence of local solutions of (Pγl ) satisfying (ND) with

lim
l→∞

wγl = w̄ ,

where w̄ is a local solution for (P) such that Robinson’s CQ is satisfied.
Then: There exists a subsequence (γl )l∈N, such that

y (·; wγl )→ y (·; w̄) in C([0, T ]; L1
loc(Ω)),

λk (·, wγl )
w∗−→ µk (·) in M([a, b]), ∀k = 0, ... , K ,

λk

(
xk (wγl ) + (x − xk (w̄))

xk+1(wγl )− xk (wγl )
xk+1(w̄)− xk (w̄)

)
w∗−→ µk (·) in M([xk (w̄), xk+1(w̄)]).

Furthermore: (w̄ ,µ0, ... ,µK ) satisfy the KKT-conditions for (P).
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Optimal control problem for IVP:
Convergence of discretizations

Objective function: J(y (u), u) =
∫
R ω(x)ψ(y (T , x ; u), yd (x)) dx , ω ∈ C1

c (R)

State equation: yt + (f (y ))x = 0 on (0, T )× R, y (0, ·) = u0 on R.

Adjoint equation: p reversible solution of

pt + f ′(y )px = 0, on (0, T )× R,

p(T , x) =

{
ω(x)ψy (y (T , x ; u), yd (x)) if x is continuity point
ω(x) [ψ(y (T ,x ;u),yd (x))]

[y (T ,x ;u)] if x is discontinuity point

Reversible solution: Define the generalized forward characteristics

d
ds

X (s; t , x) ∈ [f ′(y(s, X (s; t , x)+)), f ′(y (s, X (s; t , x)−))], s ∈ [t , T ], X (t ; t , x) = x .

Then the reversible solution is uniquely defined by

p(s, X (s; t , x) = pT (T , X (T ; t , x)), s ∈ [t , T ].
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Characteristics for an example
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Discrete approximation (1)

Let λ > 0 be fixed and set for a grid size h > 0

∆t = λh, tn := n∆t , xj := jh.

Conservative finite difference scheme for the IVP:

yn+1
j = yn

j − λ∆+F n
j− 1

2
=: H(yn

j−1, yn
j , yn

j+1), j ∈ Z, n = 0, ... , NT − 1,

y0
j = uj , j ∈ Z,

with a numerical flux F n
j− 1

2
:= F (yn

j−1, yn
j ), F (y , y ) = f (y ), ∆+F n

j− 1
2

:= F n
j+ 1

2
− F n

j− 1
2
.

Engquist-Osher scheme: For ȳ ∈ R fixed set

F EO(y0, y1) = f (ȳ ) +
∫ y0

ȳ
max(0, f ′(y )) dy +

∫ y1

ȳ
min(0, f ′(y)) dy .

Modified Lax-Friedrichs scheme:

F LF (y0, y1) =
1
2

(
f (y0) + f (y1)− γ

λ
(y1 − y0)

)
, γ ∈ [λmax|y|≤My |f

′(y )|, 1).
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Discrete approximation (2)

Discrete state and control: With Rj := [xj− 1
2
, xj+ 1

2
), Qn

j := [tn, tn+1)× Rj set

yh(t , x) :=
∑

n≥0,j
yn

j 1Qn
j
(t , x), uh(x) :=

∑
j
uj1Rj (x)

Discrete objective function:

uh 7→ Jh(yh) :=
∑

j
hω(xj )ψ(yNT

j , yd ,j ), yd ,j :=
1
h

∫
Rj

yd (x) dx .

Corresponding discrete adjoint scheme:

pn
j = pn+1

j + λ
1∑

k=0

(∂yn
j
F n

j−k+ 1
2
)∆+pn+1

j−k , j ∈ Z, n = NT , ... , 1,

pNT
j = ω(xj ) ∂y

NT
j
ψ(yNT

j , yd ,j ).
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Properties of the discrete state (1)

Finite difference scheme for the IVP:

yn+1
j = yn

j − λ∆−F n
j+ 1

2
=: H(yn

j−1, yn
j , yn

j+1), j ∈ Z, n = 0, ... , NT − 1,

y0
j = uj , j ∈ Z, uj =

1
h

∫
Rj

u(x) dx .

Theorem SC. Consider a monotone scheme, i.e. H(yn
j−1, yn

j , yn
j+1) is monotone

increasing in each argument. Then for any u, û ∈ BV (R) ∩ L1(R)
1. ‖yh(t , ·; u)‖∞ ≤ ‖uh‖∞ ≤ ‖u‖∞ ∀ t ∈ [0, T ]
2. ‖yh(t , ·; uh)− yh(t , ·; ûh)‖1 ≤ ‖uh − ûh‖1 ≤ ‖u − û‖1 ∀ t ∈ [0, T ]
3. |yh(t , ·; uh)|TV ≤ |uh|TV ≤ |u|TV ∀ t ∈ [0, T ]
4. yh → y in L∞(0, T ; L1

loc(R)) as h↘ 0 with the entropy solution y = y (u) of IVP.
5. There exists a constant C(t) > 0 such that

‖yh(t , ·; uh)− y (t , ·; u)‖1 ≤ C(t) |u|TV h1/2 ∀ t ∈ [0, T ], 0 < h ≤ h0.

Proof: See, e.g., Crandall, Majda 1980, Kuznecov 1976.
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Properties of the discrete state (2)

Discrete one-sided Lipschitz condition (DOSLC):
As the entropy solution y = y (u), also yh satisfies e.g. for modified Lax-Friedrichs
and Enquist-Osher scheme, under a CFL-cond. (λ = ∆t

h small enough) for a β > 0

∆+yn
j

h
≤ 1

M−1
u′ + βn∆t

∀ j ∈ Z, n = 0, ... , NT − 1, where u′ ≤ Mu′ ∈ (0,∞].

Interpolation between the OSLC and the L1-norm yields

Theorem. Let the state scheme satisfy the DOSLC. Then for any t > 0 and x ∈ R
there exists a constant C(t) > 0 such that

|y (t , x)− yh(t , x)| ≤ C(t)
(

1 + max
|ξ−x|≤h1/3

|yx (t , ξ)|
)

h1/3.

Proof: See Nessyahu, Tadmor 1992.
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Convergence of the discrete adjoint:
Lipschitz end data

Discrete adjoint scheme: Consider first Lipschitz end data pT ∈ C0,1(R).

pn
j = pn+1

j + λ
1∑

k=0

(∂yn
j
F n

j−k+ 1
2
)∆+pn+1

j−k , j ∈ Z, n = NT , ... , 1, pNT
j =

1
h

∫
Rj

pT (x) dx .

Theorem. Let u ∈ L1(R) ∩ BV (R). Consider the EO-scheme with 1/2-CFL
condition or modified LF-scheme with min(γ, 1− γ)-CFL condition. Then

1. yh → y in the sense of Theorem SC and satisfies DOSLC.
2. ‖ph(t , ·; u)‖∞ ≤ ‖pT

h ‖∞ ≤ ‖p
T‖∞ ∀ t ∈ [0, T ]

3. |ph(t , ·)|TV ≤ |pT
h |TV ≤ |pT |TV ∀ t ∈ [0, T ]

4. If u′ ≤ Mu′ <∞ then there is C > 0 such that |ph(t , ·)|Liph
≤ C‖(pT )′‖∞ and

ph → p uniformly on any compact subset of [0, T ]× R

with the reversibel solution p of the adjoint equation.
Else this holds outside of any neighborhood of the up-jumps of y (0, ·) = u.

Proof: See, e.g., S.U. 2001, Schäfer Aguilar, Schmitt, S.U., Moos 2019.
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Convergence of the discrete adjoint:
Discontinuous end data

The end data in the adjoint equation are

p(T , x) =

{
ω(x)ψy (y (T , x ; u), yd (x)) if x is continuity point
ω(x) [ψ(y (T ,x ;u),yd (x))]

[y (T ,x ;u)] if x is discontinuity point

The value at the discontinuity points is propagated within the whole shock funnel.
The discrete adjoint scheme does usually not converge to the correct value.

Possible approaches to achieve convergence:
I Use modified LF-scheme with numerical viscosity O(hα), 2/3 < α < 1, i.e.,

with λ = ∆t
h = O(h1−α), see Giles, S.U. 2010.

I Use modified end data for the discrete adjoint scheme, Schäfer Aguilar,
Schmitt, S.U., Moos 2019.
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Convergence of the discrete adjoint:
Discontinuous end data

The end data in the adjoint equation are

pT (x) = p(T , x) =

{
ω(x)ψy (y (T , x ; u), yd (x)) if x is continuity point
ω(x) [ψ(y (T ,x ;u),yd (x))]

[y (T ,x ;u)] if x is discontinuity point

Algorithm pT ,r
h Given r > 0 small do

I Compute the discrete state yh and approximate shock locations xh
k ,

k = 1, ... , K , of yh(T , ·) as midpoints of the K regions with ∆+yNT
j = −O(

√
h).

I Define the weight function w r (x) =

{
1 if |x | ≤ r ,

max
{

2r−|x|
r , 0

}
if |x | > r .

I Set pT
xh

k
= ω(xh

k ) ψ(yh(T ,xh
k +h1/3),yd (xh

k ))−ψ(yh(T ,xh
k−h1/3),yd (xh

k ))
yh(T ,xh

k +h1/3)−yh(T ,xh
k−h1/3) .

I Now approximate pT by

pNT ,r
j =

{
ω(xj )ψy (yNT

j , yd ,j ) if |xj − xh
k | > 2r ,

w r (xj − xh
k )pT

xh
k

+ (1− w r (xj − xh
k ))ω(xj )ψy (yNT

j , yd ,j ) else.
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Convergence of the discrete adjoint:
Discontinuous end data

Theorem. Let u ∈ L1(R) ∩ PC1(R). Consider the EO-scheme with 1/2-CFL
condition or modified LF-scheme with min(γ, 1− γ)-CFL condition.

Then: There exists a piecewise constant function r (h) > 0 with r (h)→ 0 as h→ 0
such that: adjoint scheme with end data pNT ,r (h)

j obtained from Algorithm pT ,r
h yields

ph → p in C([0, T ]; L1
loc(R)) and boundedly everywhere on [0, T ]× R as h→ 0

with the unique reversible solution p of the adjoint equation.

Proof: See Schäfer Aguilar, Schmitt, S.U., Moos 2019.

Choice of r (h): For the EO-scheme and a stationary Riemann problem we proved
that the choice r (h) = O(hα) with α ∈ [1/3, 1/2) is possible in the above theorem.

Remark: One can also use yh of any convergent scheme satisfying a DOSLC.
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Numerical example

Consider Burgers equation, i.e., f (y ) = y2/2.

Initial data: u(x) =

{
2 for x ≤ 0,
−1 for x > 0

.

Objective function: J(y ) =
∫
R ω(x) y (1,x)2

2 dx , ω ∈ C1
c (R), ω ≡ 1 on [−2, 2].

Entropy solution: Has a single shock with speed s = 1/2 and is given by

y (t , x) =

{
2 for x ≤ t/2,
−1 for x > t/2.

Adjoint state: The reversible solution of the adjoint equation on [0, T ]× [−2, 2] is

p(t , x) =


2 for −2 ≤ x < 1/2− 2(1− t),
−1 for 1/2 + (1− t) < x ≤ 2,
1
2 for 1/2− 2(1− t) ≤ x ≤ 1/2 + (1− t).
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Characteristics of the state
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Discrete state
EO-scheme 1/2-CFL

Discrete state EO-scheme yh(1, ·) for h = 2−6 (left), h = 2−10 (right).
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Discrete adjoint: Original end data
EO-scheme 1/2-CFL

Discrete adjoint EO-scheme ph(0, ·) for h = 2−6 (left), h = 2−10 (right) original end
data. No convergence to p in shock funnel!
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Discrete adjoint: Preprocessed end data
EO-scheme 1/2-CFL, r (h) = h9/20

Discrete adjoint EO-scheme ph(0, ·) for h = 2−6 (left), h = 2−10 (right) preprocessed
end data .

October 18, 2019 | S. Ulbrich | 47 Nonlinear
Optimization



Errors for the discrete adjoints

h ‖(ph − p)(0)‖L1 orig. data ‖(ph − p)(0)‖L1 proc. data exp. ord. of conv.

2−6 1.0749 0.3785
2−7 1.0194 0.2579 0.5536
2−8 0.9815 0.1856 0.4741
2−9 0.9552 0.1273 0.5443
2−10 0.9369 0.0887 0.5215
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Current work

Current work for the initial-boundary value control problem:
I Extend above results to boundary control.
I Characterization of reversible solutions of the adjoint equation by monotonicity

properties (with P. Schäfer Aguilar).
I Higher order methods for the adjoint?
I Extension to networks to handle Nash equilibrium problems on networks (with

M. Ulbrich, M. Moos, J. Wachter)
Current work for systems of conservation laws:

I Analogous differentiability result for generalized Riemann problem and
piecewise C1-solutions. See also revious results for directional variational
calculus by (Bressan, Marson 1995, Bressan, Shen 2007).

I Adjoint representation of reduced gradients for objective functions.
I The results for state constraints can then be extended to systems.
I Consider numerical approximations in the case of piecewise C1-solutions.
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Summary

I Sensitivity analysis of boundary control for hyperbolic conservation laws,
especially for controls with switching times

I Necessary optimality conditions for problems with state constraints
I Convergence of Moreau-Yosida regularization
I Convergence of numerical approximations of the optimal control problem
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Thank you for your attention!
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Optimality conditions for (Pγ)

d
dw J

(
y (wγ), wγ

)
(w − wγ)

+
K∑

k=0

[ ∫ xk+1(wγ )

xk (wγ )

∂
∂x

[
y (T , x , wγ)− ȳ (x)

] xk+1(wγ )−x
xk+1(wγ )−xk (wγ )λk (x , wγ) dx · d

dw xk (wγ)(w − wγ)

+
∫ xk+1(wγ )

xk (wγ )

∂
∂x

[
y (T , x , wγ)− ȳ (x)

] x−xk (wγ )
xk+1(wγ )−xk (wγ )λk (x , wγ) dx · d

dw xk+1(wγ)(w − wγ)

+
∫ xk+1(wγ )

xk (wγ )

d
dw y (T , x , wγ)(w − wγ)λk (x , wγ) dx

+
∫ xk+1(wγ )

xk (wγ )

(
y (T , x , wγ)− ȳ (x)

)2
+

2γ
(
xk+1(wγ)− xk (wγ)

) dx · d
dw (xk+1(wγ)− xk (wγ))︸ ︷︷ ︸

→ 0 for γ → 0 can be proven

(
w − wγ

)]
≥ 0
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Sketch of the proof

Proof of the first assertion (similar to the usual procedure)

I Show by using Robinson’s CQ that λ0(·, wγl ), ... ,λK (·, wγl ) are uniformly
bounded in L1([a, b]).

I Hence, there exists a subsequence wγl and nonnegative Borel measures
µ0, ... ,µK ∈M([a, b])

λk (·, wγl )
w∗−→ µk (·) ∈M([a, b]), k = 0, ... , K . (∗)

Moreover, one can show

λk

(
xk (wγl ) + (x − xk (w̄))

xk+1(wγl )− xk (wγl )
xk+1(w̄)− xk (w̄)

)
w∗−→ µk (·) ∈M([xk (w̄), xk+1(w̄)]).

Proof of the second assertion:
I w̄ local solution for (P) ⇒ (F)
I Regularity of the extensions Yk (T , ·, wγ), k = 0, ... , K , and (∗)⇒ (C),(S)
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