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Applications causing recent interest

Application fields of fractional operators:

viscoelastics

biophysics

nonlocal electrostatics

anomalous diffusion

heat equation in plasmonic nanostructure networks/composite
materials

...
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An optimal control problem

Given a function yΩ ∈ L2(Ω) on Ω := (0, 1)d , we consider the
optimization problem

min
y ,u

J(y , u) :=

∫
Ω

(y(x)− yΩ(x))2 dx +
γ

2

∫
Ω
u2(x) dx

s. t. −∆y = βu

y , u ∈ H1
0 (Ω)
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Given a function yΩ ∈ L2(Ω) on Ω := (0, 1)d , we consider the
optimization problem

min
y ,u

J(y , u) :=

∫
Ω

(y(x)− yΩ(x))2 dx +
γ

2

∫
Ω
u2(x) dx

s. t. Aαy = βu

where Aα is the spectral fractional Laplacian operator for some
α ∈ (0, 1).
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The KKT system

 id 0 Aα
0 γid −βid
Aα −βid 0

 y
u
p

 =

 yΩ

0
0

 ⇒ (βA−α + γ
βA

α)u = yΩ

⇒ p = γ
βu

⇒ y = βA−αu

Thus, we find the following necessary optimality conditions:

u =
(
βA−α + γ

βA
α
)−1

yΩ

for the control u, and

y = βA−αu =
(
I + γ

β2A2α
)−1

yΩ

for the state y .
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 y
u
p

 =

 yΩ

0
0

 ⇒ (βA−α + γ
βA

α)u = yΩ

⇒ p = γ
βu

⇒ y = βA−αu

Thus, we find the following necessary optimality conditions:

u =
(
βA−α + γ

βA
α
)−1︸ ︷︷ ︸

G1

yΩ

for the control u, and

y = βA−α︸︷︷︸
G3

u =
(
I + γ

β2A2α
)−1︸ ︷︷ ︸

G2

yΩ

for the state y .
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The spectral fractional Laplacian

Let Ω ∈ Rd be a bounded Lipschitz domain, and let λk and ek be
the eigenvalues and the corresponding eigenfunctions of the
Laplacian, i. e.

−∆ek = λkek in Ω,

ek = 0 on ∂Ω,

and the functions ek are an orthonormal basis of L2(Ω). Then, for
α ∈ [0, 1] and a function g ∈ H1

0 (Ω)

g =
∞∑
k=1

akek ,

we consider the operator

Aαg =
∞∑
k=1

akλ
α
k ek .
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The Riesz fractional Laplacian

For α ∈ (0, 1), the fractional Laplacian (−∆)α of a function
g : Rd → R at a point x ∈ Rd is defined by

(−∆)αg(x) := Cd ,α

∫
Rd

g(x)− g(y)

‖x − y‖d+2α
dy .

coincides with Aα on Rd , cf. details in: Lischke et al. (2018,
arXiv:1801.09767)

leads to multilevel Toeplitz structures on tensor grids (Ch.
Vollmann, V. Schulz, CVS 2019)
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General nonlocal operator

Lφg(x) =

∫
Ω
g(x)φ(x , y)− g(y)φ(y , x)dy

nonlocal calculus developed by Max Gunzburger et. al.

unstructured discretization and shape optimization discussed
in

Ch. Vollmann: Nonlocal Models with Truncated Interaction
Kernels– Analysis, Finite Element Methods and Shape
Optimization, PhD dissertation Trier University, 2019
V. Schulz, Ch. Vollmann: Shape optimization for interface
identification in nonlocal models, arXiv:1909.08884, 2019

→ more details in 2nd RICAM workshop in two weeks...
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Example of nonlocal shape numerics
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A tale of two fractional Laplacians

On a bounded domain, the operators are different.

Theorem, Servadei/Valdinoci (2014)

The operators Aα and (−∆)α are not the same, since they have
different eigenvalues and eigenfunctions (with respect to Dirichlet
boundary conditions). In particular,

the first eigenvalues of (−∆)α is strictly less than that of Aα

the eigenfunctions of (−∆)α are only Hölder continuous up to
the boundary, in contrast with those of Aα, which are as
smooth up to the boundary as the boundary allows.

Lischke et al. (2018, arXiv:1801.09767): Numerical tests for the
error between Aα and (−∆)α.
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Yet another fractional operator

RLβ :=− RDβ1
x1
− RDβ2

x2
, β1, β2 ∈ (1, 2)

RDβi
xi

: 1D Riemann-Liouville derivative

This operator is considered in the related publications:

S. Dolgov, J. W. Pearson, D. V. Savostyanov, M. Stoll:Fast
tensor product solvers for optimization problems with
fractional differential equations as constraints, Applied
Mathematics and Computation, 2016
T. Breiten, V. Simoncini, M. Stoll: Low-rank solvers for
fractional differential equations, ETNA 2016
S. Pougkakiotis, J. W. Pearson, S. Leveque, J. Gondzio: Fast
Solution Methods for Convex Fractional Differential Equation
Optimization, arXiv:1907.13428, 2019

Note:
(−∆)α 6= Aα 6= RL(2α,2α)
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Separation of variables and the Laplacian

For a function with separated variables, the Laplacian can be
applied in one dimension: Let

g : (0, 1)2 → R, g(x1, x2) = g1(x1)g2(x2).

Then
−∆g(x1, x2) = −g ′′1 (x1)g2(x2)− g1(x1)g ′′2 (x2).

The case

g(x1, x2) =
S∑

j=1

g
(j)
1 (x1)g

(j)
2 (x2)

follows immediately.
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Low rank and the discretized Laplacian

Now consider (FEM/FDM) discretizations A(1), A(2) of the
one-dimensional Laplacian in the first and variables, respectively.
The a discretization of A = −∆ on (0, 1)2 is given by

A = A(1) ⊗ I2 + I1 ⊗ A(2).

Let g = g1 ⊗ g2 be the function g evaluated on the grid. It follows
that

Ag = A(1)g1 ⊗ g2 + g1 ⊗ A(2)g2.

⇒ The Laplacian A admits a tensor product representation with
Kronecker rank 2.
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Low rank and the discretized Laplacian

Therefore, the discrete Laplacian A can be applied efficiently to
function g , given by

g(x1, x2) =
S∑

j=1

g
(j)
1 (x1)g

(j)
2 (x2).

We get

Ag =
S∑

j=1

(
A(1)g

(j)
1 ⊗ g

(j)
2 + g

(j)
1 ⊗ A(2)g

(j)
2

)
,

for discretizations g
(j)
i of g

(j)
i .

From now on: Let Aα be the discretization of Aα.
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Low rank for solution operators?

Gavrilyuk/Hackbusch/Khoromskij (2005): using the integral
representation

A−α =
1

Γ(α)

∫ ∞
0

tα−1e−tA dt

(based on the Laplace transform), it can be shown that
(discretized) A−α has exponentially decaying singular values, and
thus admits a low Kronecker rank approximation.

Proof: Sinc quadrature → exponentially decaying coefficients.

Open question: Similar results for

G1 :=
(
βA−α + γ

βA
α
)−1

, G2 :=
(
I + γ

β2A
2α
)−1

.

But: Numerical experiments (later) show similar behaviour for all
three operators.
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Singular value decay for A−α

0 10 20 30 40 50
10

−20

10
−15

10
−10

10
−5

10
0

singular values

 

 

n=255

n=511

n=1023

0 10 20 30 40 50
10

−20

10
−15

10
−10

10
−5

10
0

singular values

 

 

α =1

α=1/2

α =1/10

Decay of singular values with α = 1 in vs. n (left);
singular values vs. α > 0 with fixed n = 511 (right).
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Decay for discretized solution operators
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Laplacian eigenvalue decomposition

Let A(i) be the discretized one-dimensional Laplacian on a uniform
grid. Then A(i) is diagonalized in the sine basis, i. e.

A(i) = F ∗i Λ(i)Fi ,

where Λ(i) = diag{λ1, . . . , λn}, and the action of Fi (F ∗i ) is given
by the (inverse) sine transform.

Thus, we can write

A = (F ∗1 ⊗ F ∗2 )(Λ1 ⊗ I2)(F1 ⊗ F2) + (F ∗1 ⊗ F ∗2 )(I1 ⊗ Λ2)(F1 ⊗ F2)

= (F ∗1 ⊗ F ∗2 )
(
(Λ1 ⊗ I2) + (I1 ⊗ Λ2)

)︸ ︷︷ ︸
=:Λ

(F1 ⊗ F2),

and, for a function f applied to A, we get

f (A) = (F ∗1 ⊗ F ∗2 )f (Λ)(F1 ⊗ F2).
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Data in low rank format

Now assume that f (A) may be approximated by a linear
combination of Kronecker rank 1 matrices. Then, to approximate
f (A), it is sufficient to approximate f (Λ) (e. g. by a truncated
SVD).
Assume we have a decomposition

f (Λ) =
R∑

k=1

diag
(
u

(k)
1 ⊗ u

(k)
2

)
,

and let

x =
S∑

j=1

x
(j)
1 ⊗ x

(j)
2 .
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Fast application of the fractional Laplacian via FFT

Now we can compute a matrix-vector product

f (A)x = (F ∗1 ⊗ F ∗2 )

( R∑
k=1

diag
(
u

(k)
1 ⊗ u

(k)
2

))
(F1 ⊗ F2)

( S∑
j=1

x
(j)
1 ⊗ x

(j)
2

)

=
R∑

k=1

S∑
j=1

F ∗1
(
u

(k)
1 � F1x

(j)
1

)
⊗ F ∗2

(
u

(k)
2 � F2x

(j)
2

)
,

where � denotes the componentwise (Hadamard) product.

⇒ Can be computed in O(RSn log n) flops

Computational time on a 215-by-215 grid (> 109): under 1 s
Preprocessing time: 300 s
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Shapes of the right hand side yΩ

Shapes of the right-hand side yΩ computed with n=255.
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Computed u with α = 1
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Computed u with α = 1/2
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Computed u with α = 1/10
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Decay of the error with respect to rank
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square
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Error norm of optimal solution in full rank vs low rank format with
n = 255 and α = 1/2.
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PCG iterations for 2D and α = 1/10

G1 G2 G3

r
n

256 512 1024 2048 256 512 1024 2048 256 512 1024 2048

4 4 4 4 5 4 4 4 5 3 4 4 4
5 3 3 4 4 3 4 4 4 3 3 3 4
6 3 3 3 4 3 3 3 4 2 3 3 3
7 2 3 3 3 2 3 3 3 2 2 3 3
8 2 2 2 3 2 2 2 3 2 2 2 3
9 2 2 2 2 2 2 2 2 2 2 2 3

10 2 2 2 2 2 2 2 2 2 2 2 2

univariate grid size n

preconditioner rank r

convergence to relative residual of 10−6
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CPU times for 2D
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CPU times (sec) vs. univariate grid size n for a single PCG iteration for a
2D problem, for different fractional operators and fixed preconditioner

rank r = 5.
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3D: from SVD ...

Low-rank m × n matrix given by the singular value decomposition:

ΣU V T

A =

= σ1

u1

vT
1

+ · · · + σr

ur

vT
r

m

︸ ︷︷ ︸
n

︸ ︷︷ ︸
r

Formally: A = UΣV T =
r∑

k=1

σk uk vT
k =:

r∑
k=1

σk uk ◦ vk
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...over the Tucker format...

A

C= U1 U2

U3

︸ ︷︷
︸

n1

︸ ︷︷ ︸
n2

n3

︸︷︷︸r3

}
r1

︸ ︷︷ ︸
r2

Formally: A = C×1 U1 · · · ×d Ud = C
d

×
i=1

Ui

Storage cost: O(rd + dnr)

29 Volker Schulz, Tensor approach to optimal control problems, October 16, 2019



...over the Tucker format...

A

C= U1 U2

U3

︸ ︷︷
︸

n1

︸ ︷︷ ︸
n2

n3

︸︷︷︸r3

}
r1

︸ ︷︷ ︸
r2

Formally: A = C×1 U1 · · · ×d Ud = C
d

×
i=1

Ui

Storage cost: O(rd + dnr)

29 Volker Schulz, Tensor approach to optimal control problems, October 16, 2019



...over the Tucker format...

A

C= U1 U2

U3

︸ ︷︷
︸

n1

︸ ︷︷ ︸
n2

n3

︸︷︷︸r3

}
r1

︸ ︷︷ ︸
r2

Formally: A = C×1 U1 · · · ×d Ud = C
d

×
i=1

Ui

Storage cost: O(rd + dnr)

29 Volker Schulz, Tensor approach to optimal control problems, October 16, 2019



... to the truncated HOSVD

A Tucker decomposition of a rank-r tensor can be computed by
computing an SVD for each tensor mode.

We are interested in computing rank-r approximations. To this end,
let Pi

ri
be the best rank-ri approximation operator in the ith mode.

Then the rank-r truncated HOSVD operator PHO
r is given by

PHO
r A := P1

r1
· · ·Pd

rd
A.

Remark:

PHO
r only gives a quasi-best rank-r approximation
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Tucker-ALS approximation in 3D
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Tucker-ALS approximation error of G1 (left) and G2 (right) vs.
α = 1, 1/2, 1/10 for d = 3.
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PCG iterations for 3D and α = 1/2

G1 G2 G3

r
n

64 128 256 512 64 128 256 512 64 128 256 512

4 1 2 1 1 1 6 1 2 1 2 1 1
5 1 1 1 2 1 1 8 4 1 1 1 2
6 1 1 1 1 2 2 1 1 1 1 1 1
7 1 3 1 2 1 1 5 4 1 2 1 2
8 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 2 1 6 5 4 1 1 1 2

10 1 1 1 1 1 6 1 1 1 1 1 1

univariate grid size n

preconditioner rank r

convergence to relative residual of 10−6
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CPU times for 3D
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α = 1/2, r = 4 α = 1/10, r = 7

CPU times (in seconds) vs. grid size n of a single PCG iteration for a 3D
problem, for different fractional operators and fixed preconditioner rank r .
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3D level curves

α = 1:

α = 1
2 :

α = 1
10 :

Solutions u for analogous right-hand sides (n = 255).
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Generalization to varying coefficient

Generalization to different elliptic equation [Schmitt 2019]:

(−div(Agrad))αy = βu , A(x1, x2) =

[
a1(x1) 0

0 a2(x2)

]

needs affordable preparation step for 1D eigenvalues/vectors

similarly good numerical complexity

more general A in preparation

α = 1
2 :
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Conclusions

Solution of a nonlocal PDE on a tensor grid in
O(RSn log n)� O(nd)

Numerical complexity independent of d

Even for α = 1 the methodology is significantly faster than
multigrid

Numerical results convincing; theoretical justification
w.r.t. low rank still open
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