Tensor Approach to Optimal Control problems with Fractional Elliptic Operator

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">OL</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">ALGORITHMIC</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">OPTIMIZATION</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| OL | ALGORITHMIC |
| :---: | :---: |
| OPTIMIZATION | |</table-markdown></div>
 www.alop.uni-trier.de

7. Universität Trier

Volker Schulz
Gennadij Heidel Britta Schmitt

Boris Khoromskij / Venera
Khoromskaia (MPI Leipzig)

Applications causing recent interest

Application fields of fractional operators:

- viscoelastics
- biophysics
- nonlocal electrostatics
- anomalous diffusion
- heat equation in plasmonic nanostructure networks/composite materials

An optimal control problem

Given a function $y_{\Omega} \in L^{2}(\Omega)$ on $\Omega:=(0,1)^{d}$, we consider the optimization problem

$$
\begin{aligned}
& \min _{y, u} J(y, u):=\int_{\Omega}\left(y(x)-y_{\Omega}(x)\right)^{2} \mathrm{~d} x+\frac{\gamma}{2} \int_{\Omega} u^{2}(x) \mathrm{d} x \\
& \text { s.t. }-\Delta y=\beta u \\
& y, u \in H_{0}^{1}(\Omega)
\end{aligned}
$$

An optimal control problem

Given a function $y_{\Omega} \in L^{2}(\Omega)$ on $\Omega:=(0,1)^{d}$, we consider the optimization problem

$$
\begin{aligned}
\min _{y, u} J(y, u) & :=\int_{\Omega}\left(y(x)-y_{\Omega}(x)\right)^{2} \mathrm{~d} x+\frac{\gamma}{2} \int_{\Omega} u^{2}(x) \mathrm{d} x \\
& \text { s. t. } \mathcal{A}^{\alpha} y=\beta u
\end{aligned}
$$

where \mathcal{A}^{α} is the spectral fractional Laplacian operator for some $\alpha \in(0,1)$.

$$
\left[\begin{array}{ccc}
i d & 0 & \mathcal{A}^{\alpha} \\
0 & \text { रid } & -\beta i d \\
\mathcal{A}^{\alpha} & -\beta i d & 0
\end{array}\right]\left(\begin{array}{l}
y \\
u \\
p
\end{array}\right)=\left(\begin{array}{c}
y_{\Omega} \\
0 \\
0
\end{array}\right)
$$

$$
\left[\begin{array}{ccc}
i d & 0 & \mathcal{A}^{\alpha} \\
0 & \gamma i d & -\beta i d \\
\mathcal{A}^{\alpha} & \text { - } \beta i d & 0
\end{array}\right]\left(\begin{array}{l}
y \\
u \\
p
\end{array}\right)=\left(\begin{array}{c}
y_{\Omega} \\
0 \\
0
\end{array}\right) \begin{aligned}
& \Rightarrow\left(\beta \mathcal{A}^{-\alpha}+\frac{\gamma}{\beta} \mathcal{A}^{\alpha}\right) u=y_{\Omega} \\
& \Rightarrow p=\frac{\gamma}{\beta} u \\
& \Rightarrow y=\beta \mathcal{A}^{-\alpha} u
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
i d & 0 & \mathcal{A}^{\alpha} \\
0 & \gamma i d & -\beta i d \\
\mathcal{A}^{\alpha} & -\beta i d & 0
\end{array}\right]\left(\begin{array}{l}
y \\
u \\
p
\end{array}\right)=\left(\begin{array}{c}
y_{\Omega} \\
0 \\
0
\end{array}\right) \begin{aligned}
& \Rightarrow\left(\beta \mathcal{A}^{-\alpha}+\frac{\gamma}{\beta} \mathcal{A}^{\alpha}\right) u=y_{\Omega} \\
& \Rightarrow p=\frac{\gamma}{\beta} u \\
& \Rightarrow y=\beta \mathcal{A}^{-\alpha} u
\end{aligned}
$$

Thus, we find the following necessary optimality conditions:

$$
u=\left(\beta \mathcal{A}^{-\alpha}+\frac{\gamma}{\beta} \mathcal{A}^{\alpha}\right)^{-1} y_{\Omega}
$$

for the control u, and

$$
y=\beta \mathcal{A}^{-\alpha} u=\left(\mathcal{I}+\frac{\gamma}{\beta^{2}} \mathcal{A}^{2 \alpha}\right)^{-1} y_{\Omega}
$$

for the state y.

$$
\left[\begin{array}{ccc}
i d & 0 & \mathcal{A}^{\alpha} \\
0 & \text { रid } & -\beta i d \\
\mathcal{A}^{\alpha} & \text { - } \beta i d & 0
\end{array}\right]\left(\begin{array}{l}
y \\
u \\
p
\end{array}\right)=\left(\begin{array}{c}
y_{\Omega} \\
0 \\
0
\end{array}\right) \begin{aligned}
& \Rightarrow\left(\beta \mathcal{A}^{-\alpha}+\frac{\gamma}{\beta} \mathcal{A}^{\alpha}\right) u=y_{\Omega} \\
& \Rightarrow p=\frac{\gamma}{\beta} u \\
& \Rightarrow y=\beta \mathcal{A}^{-\alpha} u
\end{aligned}
$$

Thus, we find the following necessary optimality conditions:

$$
u=\underbrace{\left(\beta \mathcal{A}^{-\alpha}+\frac{\gamma}{\beta} \mathcal{A}^{\alpha}\right)^{-1}}_{G_{1}} y_{\Omega}
$$

for the control u, and

$$
y=\beta \underbrace{\mathcal{A}^{-\alpha}}_{G_{3}} u=\underbrace{\left(\mathcal{I}+\frac{\gamma}{\beta^{2}} \mathcal{A}^{2 \alpha}\right)^{-1}}_{G_{2}} y_{\Omega}
$$

for the state y.

Let $\Omega \in \mathbb{R}^{d}$ be a bounded Lipschitz domain, and let λ_{k} and e_{k} be the eigenvalues and the corresponding eigenfunctions of the Laplacian, i.e.

$$
\begin{aligned}
-\Delta e_{k} & =\lambda_{k} e_{k} & & \text { in } \Omega \\
e_{k} & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

and the functions e_{k} are an orthonormal basis of $L^{2}(\Omega)$. Then, for $\alpha \in[0,1]$ and a function $g \in H_{0}^{1}(\Omega)$

$$
g=\sum_{k=1}^{\infty} a_{k} e_{k}
$$

we consider the operator

$$
\mathcal{A}^{\alpha} g=\sum_{k=1}^{\infty} a_{k} \lambda_{k}^{\alpha} e_{k}
$$

The Riesz fractional Laplacian

For $\alpha \in(0,1)$, the fractional Laplacian $(-\Delta)^{\alpha}$ of a function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at a point $x \in \mathbb{R}^{d}$ is defined by

$$
(-\Delta)^{\alpha} g(x):=C_{d, \alpha} \int_{\mathbb{R}^{d}} \frac{g(x)-g(y)}{\|x-y\|^{d+2 \alpha}} \mathrm{~d} y
$$

For $\alpha \in(0,1)$, the fractional Laplacian $(-\Delta)^{\alpha}$ of a function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at a point $x \in \mathbb{R}^{d}$ is defined by

$$
(-\Delta)^{\alpha} g(x):=C_{d, \alpha} \int_{\mathbb{R}^{d}} \frac{g(x)-g(y)}{\|x-y\|^{d+2 \alpha}} \mathrm{~d} y
$$

- coincides with \mathcal{A}^{α} on \mathbb{R}^{d}, cf. details in: Lischke et al. (2018, arXiv:1801.09767)
- leads to multilevel Toeplitz structures on tensor grids (Ch. Vollmann, V. Schulz, CVS 2019)

General nonlocal operator

$$
L_{\phi} g(x)=\int_{\Omega} g(x) \phi(x, y)-g(y) \phi(y, x) d y
$$

- nonlocal calculus developed by Max Gunzburger et. al.
- unstructured discretization and shape optimization discussed in
- Ch. Vollmann: Nonlocal Models with Truncated Interaction Kernels- Analysis, Finite Element Methods and Shape Optimization, PhD dissertation Trier University, 2019
■ V. Schulz, Ch. Vollmann: Shape optimization for interface identification in nonlocal models, arXiv:1909.08884, 2019
\rightarrow more details in 2nd RICAM workshop in two weeks...

Example of nonlocal shape numerics
 $\triangle \Sigma$ IV:

A tale of two fractional Laplacians

On a bounded domain, the operators are different.

Theorem, Servadei/Valdinoci (2014)

The operators \mathcal{A}^{α} and $(-\Delta)^{\alpha}$ are not the same, since they have different eigenvalues and eigenfunctions (with respect to Dirichlet boundary conditions). In particular,

- the first eigenvalues of $(-\Delta)^{\alpha}$ is strictly less than that of \mathcal{A}^{α}
- the eigenfunctions of $(-\Delta)^{\alpha}$ are only Hölder continuous up to the boundary, in contrast with those of \mathcal{A}^{α}, which are as smooth up to the boundary as the boundary allows.

A tale of two fractional Laplacians

On a bounded domain, the operators are different.

Theorem, Servadei/Valdinoci (2014)

The operators \mathcal{A}^{α} and $(-\Delta)^{\alpha}$ are not the same, since they have different eigenvalues and eigenfunctions (with respect to Dirichlet boundary conditions). In particular,

- the first eigenvalues of $(-\Delta)^{\alpha}$ is strictly less than that of \mathcal{A}^{α}
- the eigenfunctions of $(-\Delta)^{\alpha}$ are only Hölder continuous up to the boundary, in contrast with those of \mathcal{A}^{α}, which are as smooth up to the boundary as the boundary allows.

Lischke et al. (2018, arXiv:1801.09767): Numerical tests for the error between \mathcal{A}^{α} and $(-\Delta)^{\alpha}$.

Yet another fractional operator

$$
{ }^{R} L^{\beta}:=-{ }^{R} D_{x_{1}}^{\beta_{1}}-{ }^{R} D_{x_{2}}^{\beta_{2}}, \quad \beta_{1}, \beta_{2} \in(1,2)
$$

${ }^{R} D_{x_{i}}^{\beta_{i}}: 1 D$ Riemann-Liouville derivative

Yet another fractional operator

$$
{ }^{R} L^{\beta}:=-{ }^{R} D_{x_{1}}^{\beta_{1}}-{ }^{R} D_{x_{2}}^{\beta_{2}}, \quad \beta_{1}, \beta_{2} \in(1,2)
$$

${ }^{R} D_{x_{i}}^{\beta_{i}}: 1 D$ Riemann-Liouville derivative
This operator is considered in the related publications:
■ S. Dolgov, J. W. Pearson, D. V. Savostyanov, M. Stoll:Fast tensor product solvers for optimization problems with fractional differential equations as constraints, Applied Mathematics and Computation, 2016

- T. Breiten, V. Simoncini, M. Stoll: Low-rank solvers for fractional differential equations, ETNA 2016
- S. Pougkakiotis, J. W. Pearson, S. Leveque, J. Gondzio: Fast Solution Methods for Convex Fractional Differential Equation Optimization, arXiv:1907.13428, 2019
Note:

$$
(-\Delta)^{\alpha} \neq \mathcal{A}^{\alpha} \neq{ }^{R} L^{(2 \alpha, 2 \alpha)}
$$

Separation of variables and the Laplacian ALGORITHMIC

For a function with separated variables, the Laplacian can be applied in one dimension: Let

$$
g:(0,1)^{2} \rightarrow \mathbb{R}, g\left(x_{1}, x_{2}\right)=g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right)
$$

Then

$$
-\Delta g\left(x_{1}, x_{2}\right)=-g_{1}^{\prime \prime}\left(x_{1}\right) g_{2}\left(x_{2}\right)-g_{1}\left(x_{1}\right) g_{2}^{\prime \prime}\left(x_{2}\right)
$$

Separation of variables and the Laplacian $\left\lvert\, \begin{aligned} & \text { ALGORITHMIC } \\ & \text { OPTIMIIATION }\end{aligned}\right.$

For a function with separated variables, the Laplacian can be applied in one dimension: Let

$$
g:(0,1)^{2} \rightarrow \mathbb{R}, g\left(x_{1}, x_{2}\right)=g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right)
$$

Then

$$
-\Delta g\left(x_{1}, x_{2}\right)=-g_{1}^{\prime \prime}\left(x_{1}\right) g_{2}\left(x_{2}\right)-g_{1}\left(x_{1}\right) g_{2}^{\prime \prime}\left(x_{2}\right)
$$

The case

$$
g\left(x_{1}, x_{2}\right)=\sum_{j=1}^{S} g_{1}^{(j)}\left(x_{1}\right) g_{2}^{(j)}\left(x_{2}\right)
$$

follows immediately.

Now consider (FEM/FDM) discretizations $A_{(1)}, A_{(2)}$ of the one-dimensional Laplacian in the first and variables, respectively. The a discretization of $\mathcal{A}=-\Delta$ on $(0,1)^{2}$ is given by

$$
A=A_{(1)} \otimes I_{2}+I_{1} \otimes A_{(2)}
$$

Let $\mathbf{g}=\mathbf{g}_{1} \otimes \mathbf{g}_{2}$ be the function g evaluated on the grid. It follows that

$$
A \mathbf{g}=A_{(1)} \mathbf{g}_{1} \otimes \mathbf{g}_{2}+\mathbf{g}_{1} \otimes A_{(2)} \mathbf{g}_{2}
$$

\Rightarrow The Laplacian \mathcal{A} admits a tensor product representation with Kronecker rank 2.

\section*{Low rank and the discretized Laplacian | \triangle |
| :--- | \left\lvert\, \(\begin{aligned} \& ALGORITHMIC

\& OPTIMIZATION\end{aligned}\right.\)}

Therefore, the discrete Laplacian A can be applied efficiently to function g, given by

$$
g\left(x_{1}, x_{2}\right)=\sum_{j=1}^{S} g_{1}^{(j)}\left(x_{1}\right) g_{2}^{(j)}\left(x_{2}\right) .
$$

We get

$$
A \mathbf{g}=\sum_{j=1}^{S}\left(A_{(1)} \mathbf{g}_{1}^{(j)} \otimes \mathbf{g}_{2}^{(j)}+\mathbf{g}_{1}^{(j)} \otimes A_{(2)} \mathbf{g}_{2}^{(j)}\right)
$$

for discretizations $\mathbf{g}_{i}^{(j)}$ of $g_{i}^{(j)}$.
From now on: Let A^{α} be the discretization of \mathcal{A}^{α}.

Low rank for solution operators?

Gavrilyuk/Hackbusch/Khoromskij (2005): using the integral representation

$$
\mathcal{A}^{-\alpha}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} e^{-t \mathcal{A}} \mathrm{~d} t
$$

(based on the Laplace transform), it can be shown that (discretized) $A^{-\alpha}$ has exponentially decaying singular values, and thus admits a low Kronecker rank approximation.

Proof: Sinc quadrature \rightarrow exponentially decaying coefficients.

Low rank for solution operators?

Gavrilyuk/Hackbusch/Khoromskij (2005): using the integral representation

$$
\mathcal{A}^{-\alpha}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} e^{-t \mathcal{A}} \mathrm{~d} t
$$

(based on the Laplace transform), it can be shown that (discretized) $A^{-\alpha}$ has exponentially decaying singular values, and thus admits a low Kronecker rank approximation.

Proof: Sinc quadrature \rightarrow exponentially decaying coefficients.
Open question: Similar results for

$$
G_{1}:=\left(\beta A^{-\alpha}+\frac{\gamma}{\beta} A^{\alpha}\right)^{-1}, \quad G_{2}:=\left(I+\frac{\gamma}{\beta^{2}} A^{2 \alpha}\right)^{-1} .
$$

But: Numerical experiments (later) show similar behaviour for all three operators.

Singular value decay for $A^{-\alpha}$

\therefore ALGORITHMIC IVI ORTOMIZATION

Decay of singular values with $\alpha=1$ in vs. n (left); singular values vs. $\alpha>0$ with fixed $n=511$ (right).

Decay for discretized solution operatorsíg |aLGORITHMIC

Decay of singular values of G_{1} (left) and G_{2} (right) vs.

$$
\alpha=1,1 / 2,1 / 10 \text { for } n=511 .
$$

Laplacian eigenvalue decomposition

Let $A_{(i)}$ be the discretized one-dimensional Laplacian on a uniform grid. Then $A_{(i)}$ is diagonalized in the sine basis, i. e.

$$
A_{(i)}=F_{i}^{*} \Lambda_{(i)} F_{i},
$$

where $\Lambda_{(i)}=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, and the action of $F_{i}\left(F_{i}^{*}\right)$ is given by the (inverse) sine transform.
Thus, we can write

$$
\begin{aligned}
A & =\left(F_{1}^{*} \otimes F_{2}^{*}\right)\left(\Lambda_{1} \otimes I_{2}\right)\left(F_{1} \otimes F_{2}\right)+\left(F_{1}^{*} \otimes F_{2}^{*}\right)\left(I_{1} \otimes \Lambda_{2}\right)\left(F_{1} \otimes F_{2}\right) \\
& =\left(F_{1}^{*} \otimes F_{2}^{*}\right) \underbrace{\left(\left(\Lambda_{1} \otimes I_{2}\right)+\left(I_{1} \otimes \Lambda_{2}\right)\right)}_{=: \Lambda}\left(F_{1} \otimes F_{2}\right),
\end{aligned}
$$

and, for a function f applied to A, we get

$$
f(A)=\left(F_{1}^{*} \otimes F_{2}^{*}\right) f(\Lambda)\left(F_{1} \otimes F_{2}\right)
$$

Data in low rank format

Now assume that $f(A)$ may be approximated by a linear combination of Kronecker rank 1 matrices. Then, to approximate $f(A)$, it is sufficient to approximate $f(\Lambda)$ (e.g. by a truncated SVD).
Assume we have a decomposition

$$
f(\Lambda)=\sum_{k=1}^{R} \operatorname{diag}\left(\mathbf{u}_{1}^{(k)} \otimes \mathbf{u}_{2}^{(k)}\right)
$$

and let

$$
\mathbf{x}=\sum_{j=1}^{S} \mathbf{x}_{1}^{(j)} \otimes \mathbf{x}_{2}^{(j)}
$$

Fast application of the fractional Laplacianoviaitatic

Now we can compute a matrix-vector product

$$
\begin{aligned}
f(A) \mathbf{x} & =\left(F_{1}^{*} \otimes F_{2}^{*}\right)\left(\sum_{k=1}^{R} \operatorname{diag}\left(\mathbf{u}_{1}^{(k)} \otimes \mathbf{u}_{2}^{(k)}\right)\right)\left(F_{1} \otimes F_{2}\right)\left(\sum_{j=1}^{S} \mathbf{x}_{1}^{(j)} \otimes \mathbf{x}_{2}^{(j)}\right) \\
& =\sum_{k=1}^{R} \sum_{j=1}^{S} F_{1}^{*}\left(\mathbf{u}_{1}^{(k)} \odot F_{1} \mathbf{x}_{1}^{(j)}\right) \otimes F_{2}^{*}\left(\mathbf{u}_{2}^{(k)} \odot F_{2} \mathbf{x}_{2}^{(j)}\right),
\end{aligned}
$$

where \odot denotes the componentwise (Hadamard) product.

Fast application of the fractional Laplacianoviaitatic

Now we can compute a matrix-vector product

$$
\begin{aligned}
f(A) \mathbf{x} & =\left(F_{1}^{*} \otimes F_{2}^{*}\right)\left(\sum_{k=1}^{R} \operatorname{diag}\left(\mathbf{u}_{1}^{(k)} \otimes \mathbf{u}_{2}^{(k)}\right)\right)\left(F_{1} \otimes F_{2}\right)\left(\sum_{j=1}^{S} \mathbf{x}_{1}^{(j)} \otimes \mathbf{x}_{2}^{(j)}\right) \\
& =\sum_{k=1}^{R} \sum_{j=1}^{S} F_{1}^{*}\left(\mathbf{u}_{1}^{(k)} \odot F_{1} \mathbf{x}_{1}^{(j)}\right) \otimes F_{2}^{*}\left(\mathbf{u}_{2}^{(k)} \odot F_{2} \mathbf{x}_{2}^{(j)}\right)
\end{aligned}
$$

where \odot denotes the componentwise (Hadamard) product.
\Rightarrow Can be computed in $\mathcal{O}(R S n \log n)$ flops

Fast application of the fractional Laplacianoviaitatic

Now we can compute a matrix-vector product

$$
\begin{aligned}
f(A) \mathbf{x} & =\left(F_{1}^{*} \otimes F_{2}^{*}\right)\left(\sum_{k=1}^{R} \operatorname{diag}\left(\mathbf{u}_{1}^{(k)} \otimes \mathbf{u}_{2}^{(k)}\right)\right)\left(F_{1} \otimes F_{2}\right)\left(\sum_{j=1}^{S} \mathbf{x}_{1}^{(j)} \otimes \mathbf{x}_{2}^{(j)}\right) \\
& =\sum_{k=1}^{R} \sum_{j=1}^{S} F_{1}^{*}\left(\mathbf{u}_{1}^{(k)} \odot F_{1} \mathbf{x}_{1}^{(j)}\right) \otimes F_{2}^{*}\left(\mathbf{u}_{2}^{(k)} \odot F_{2} \mathbf{x}_{2}^{(j)}\right)
\end{aligned}
$$

where \odot denotes the componentwise (Hadamard) product.
\Rightarrow Can be computed in $\mathcal{O}(R S n \log n)$ flops
Computational time on a 2^{15}-by- 2^{15} grid $\left(>10^{9}\right)$: under 1 s Preprocessing time: 300 s

Shapes of the right hand side y_{Ω}

Shapes of the right-hand side y_{Ω} computed with $\mathrm{n}=255$.

Computed u with $\alpha=1$

Computed u with $\alpha=1 / 2$

Computed u with $\alpha=1 / 10$

Decay of the error with respect to rank $\hat{C} \left\lvert\, \begin{aligned} & \text { ALCORITHMIC } \\ & \text { OPTIMIZATION }\end{aligned}\right.$

Error norm of optimal solution in full rank vs low rank format with $n=255$ and $\alpha=1 / 2$.

PCG iterations for 2D and $\alpha=1 / 10$
 $a=$
 ALGORITHMIC IV : O! OPTIMIZATION

| | G_{1} | | | | G_{2} | | | | G_{3} | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| r | 256 | 512 | 1024 | 2048 | 256 | 512 | 1024 | 2048 | 256 | 512 | 1024 | 2048 |
| 4 | 4 | 4 | 4 | 5 | 4 | 4 | 4 | 5 | 3 | 4 | 4 | 4 |
| 5 | 3 | 3 | 4 | 4 | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 4 |
| 6 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | 4 | 2 | 3 | 3 | 3 |
| 7 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 3 |
| 8 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 3 |
| 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 |
| 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |

- univariate grid size n
- preconditioner rank r
- convergence to relative residual of 10^{-6}

CPU times for 2D

CPU times (sec) vs. univariate grid size n for a single PCG iteration for a 2D problem, for different fractional operators and fixed preconditioner

Low-rank $m \times n$ matrix given by the singular value decomposition:

Low-rank $m \times n$ matrix given by the singular value decomposition:

Formally: $A=U \Sigma V^{\top}=\sum_{k=1}^{r} \sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{\top}=: \sum_{k=1}^{r} \sigma_{k} \mathbf{u}_{k} \circ \mathbf{v}_{k}$

Formally: $A=\mathbf{C} \times{ }_{1} U_{1} \cdots \times_{d} U_{d}=\mathbf{C} \underset{i=1}{\stackrel{d}{X}} U_{i}$

Formally: $A=\mathbf{C} \times{ }_{1} U_{1} \cdots \times_{d} U_{d}=\mathbf{C} \underset{i=1}{\stackrel{d}{X}} U_{i}$
Storage cost: $\mathcal{O}\left(r^{d}+d n r\right)$

to the truncated HOSVD

A Tucker decomposition of a rank-r tensor can be computed by computing an SVD for each tensor mode.

to the truncated HOSVD

A Tucker decomposition of a rank-r tensor can be computed by computing an SVD for each tensor mode.

We are interested in computing rank-r approximations.

A Tucker decomposition of a rank-r tensor can be computed by computing an SVD for each tensor mode.

We are interested in computing rank-r approximations. To this end, let $\mathrm{P}_{r_{i}}^{i}$ be the best rank- r_{i} approximation operator in the i th mode. Then the rank-r truncated HOSVD operator $\mathrm{P}_{\mathbf{r}}^{\mathrm{HO}}$ is given by

$$
\mathrm{P}_{\mathbf{r}}^{\mathrm{HO}} \mathbf{A}:=\mathrm{P}_{r_{1}}^{1} \cdots \mathrm{P}_{r_{d}}^{d} \mathbf{A} .
$$

to the truncated HOSVD

A Tucker decomposition of a rank-r tensor can be computed by computing an SVD for each tensor mode.

We are interested in computing rank-r approximations. To this end, let $\mathrm{P}_{r_{i}}^{i}$ be the best rank- r_{i} approximation operator in the i th mode. Then the rank-r truncated HOSVD operator $\mathrm{P}_{\mathbf{r}}^{\mathrm{HO}}$ is given by

$$
\mathrm{P}_{\mathbf{r}}^{\mathrm{HO}} \mathbf{A}:=\mathrm{P}_{r_{1}}^{1} \cdots \mathrm{P}_{r_{d}}^{d} \mathbf{A} .
$$

Remark:

A Tucker decomposition of a rank-r tensor can be computed by computing an SVD for each tensor mode.

We are interested in computing rank-r approximations. To this end, let $\mathrm{P}_{r_{i}}^{i}$ be the best rank- r_{i} approximation operator in the i th mode. Then the rank-r truncated HOSVD operator $\mathrm{P}_{\mathbf{r}}^{\mathrm{HO}}$ is given by

$$
\mathrm{P}_{\mathbf{r}}^{\mathrm{HO}} \mathbf{A}:=\mathrm{P}_{r_{1}}^{1} \cdots \mathrm{P}_{r_{d}}^{d} \mathbf{A} .
$$

Remark:

- P_{r}^{HO} only gives a quasi-best rank-r approximation

Tucker-ALS approximation in 3D

$\AA \because$ ALGORITHMIC NO: OR? OPTIMIZATION

Tucker-ALS approximation error of G_{1} (left) and G_{2} (right) vs.

$$
\alpha=1,1 / 2,1 / 10 \text { for } d=3 .
$$

PCG iterations for 3D and $\alpha=1 / 2$
 ^O ALGORITHMIC IVI : OPTIMIZATION

	G_{1}				G_{2}				G_{3}			
	n	64	128	256	512	64	128	256	512	64	128	256
				512								
4	1	2	1	1	1	6	1	2	1	2	1	1
5	1	1	1	2	1	1	8	4	1	1	1	2
6	1	1	1	1	2	2	1	1	1	1	1	1
7	1	3	1	2	1	1	5	4	1	2	1	2
8	1	1	1	1	1	1	1	1	1	1	1	1
9	1	1	1	2	1	6	5	4	1	1	1	2
10	1	1	1	1	1	6	1	1	1	1	1	1

- univariate grid size n
- preconditioner rank r
- convergence to relative residual of 10^{-6}

CPU times for 3D

$$
\alpha=1 / 2, r=4
$$

$\alpha=1 / 10, r=7$

CPU times (in seconds) vs. grid size n of a single PCG iteration for a 3D problem, for different fractional operators and fixed preconditioner rank r.

3D level curves

$$
\alpha=1:
$$

$$
\alpha=\frac{1}{2}:
$$

$$
\alpha=\frac{1}{10}:
$$

Solutions u for analogous right-hand sides $(n=255)$.

Generalization to varying coefficient

Generalization to different elliptic equation [Schmitt 2019]:

$$
(-\operatorname{div}(\mathbb{A g r a d}))^{\alpha} y=\beta u, \quad \mathbb{A}\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
a_{1}\left(x_{1}\right) & 0 \\
0 & a_{2}\left(x_{2}\right)
\end{array}\right]
$$

- needs affordable preparation step for 1D eigenvalues/vectors
- similarly good numerical complexity
- more general \mathbb{A} in preparation

$$
\alpha=\frac{1}{2}:
$$

- Gennadij Heidel: Optimization in Tensor Spaces for Data Science and Scientific Computing, PhD Dissertation, Trier University 2019
- Gennadij Heidel, Venera Khoromskaia, Boris N. Khoromskij, Volker Schulz: Tensor approach to optimal control problems with fractional d-dimensional elliptic operator in constraints, 2018, arXiv:1809.01971 (revised version submitted to SICON)
- Britta Schmitt: Niedrigrang-Tensorapproximation bei heterogen verteilten Optimalsteuerungsproblemen, Masters's Thesis, Trier University, 2019
- Britta Schmitt, Venera Khoromskaia, Boris N. Khoromskij, Volker Schulz: Low-Rank Tensor Approximation of Heterogenously Distributed Optimal Control Problems (in preparation)
- Solution of a nonlocal PDE on a tensor grid in $\mathcal{O}(R S n \log n) \ll \mathcal{O}\left(n^{d}\right)$

■ Numerical complexity independent of d
■ Even for $\alpha=1$ the methodology is significantly faster than multigrid

- Numerical results convincing; theoretical justification w.r.t. low rank still open

