Shape Optimization for Geometrically Inverse Problems

Stephan Schmidt

14 October 2019

Acoustic Horn Design (joint with M. Berggren, E. Wadbro)

- General problem formulation allows treatment of general problems
- Design of acoustic (linear wave) horn antenna, 3.5 • 10^{9} unknowns!

Maxwell Scattering Problem (joint with M. Schütte, o. Ebel, A. Walther)

VELA Aircraft (joint with V. Schulz and DLR Braunschweig)

Design study for blended wing-body configurations

- Transonic Inviscid Incompressible CFD
- >460, 000 surface node positions to be optimized
- Planform constant

Geometric Inverse Problem

$$
\min _{\left(\varphi, \Gamma_{\text {inc }}\right)} J(\varphi, \Omega):=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{\mathrm{i} / 0}}\left\|B(n)\left(\varphi-\varphi_{\text {meas }}\right)\right\|_{2}^{2} \mathrm{~d} t \mathrm{~d} s+\delta \int_{\Gamma_{\text {inc }}} 1 \mathrm{~d} s
$$

subject to

$$
\begin{aligned}
\dot{\varphi}+\operatorname{div} F(\varphi) & =0 & \text { in } \quad \Omega \\
\mathrm{BCs} & =g & \text { on } \quad \Gamma
\end{aligned}
$$

Acoustics:
Electromagnetism:

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\nabla p & =0 \text { in } \Omega, & \mu \frac{\partial H}{\partial t} & =-\nabla \times E \text { in } \Omega, \\
\frac{\partial p}{\partial t}+c^{2} \operatorname{div} u & =0 \text { in } \Omega, & \varepsilon \frac{\partial E}{\partial t} & =\nabla \times H-\sigma E \text { in } \Omega, \\
\frac{1}{2}(p-c\langle u, n\rangle) & =g \text { on } \Gamma_{\mathrm{i} / 0} & \text { BCs } & =g \text { on } \Gamma_{\mathrm{i} / 0}
\end{aligned}
$$

Introduction to Shape Optimization

- Shape is modeled by set Ω
- $\Omega_{\epsilon}:=\{x+\epsilon V(x): x \in \Omega\} \subset \mathcal{D}$
- $J: \mathcal{P}(\mathcal{D}) \rightarrow \mathbb{R}$: target function
- (Directional) derivative of J with respect to Ω ?
- Directional Derivative

$$
d J(\Omega)[V]:=\lim _{\epsilon \rightarrow 0^{+}} \frac{J\left(\Omega_{\epsilon}\right)-J(\Omega)}{\epsilon}
$$

The Shape Derivative

- Objective function:

$$
J_{1}(\epsilon, \Omega):=\int_{\Omega(\epsilon)} f\left(\epsilon, x_{\epsilon}\right) \mathrm{d} x_{\epsilon} \text { or } J_{2}(\epsilon, \Omega):=\int_{\Gamma(\epsilon)} g\left(\epsilon, s_{\epsilon}\right) \mathrm{d} s_{\epsilon}
$$

- Take Limit:

$$
d J_{1}(\Omega)[V]=\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} \int_{\Omega(\epsilon)} f\left(\epsilon, x_{\epsilon}\right) \mathrm{d} x_{\epsilon} \text { or } d J_{2}(\Omega)[V]=\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=\mathrm{O}_{\Gamma(\epsilon)}} \int_{(\epsilon,} g\left(\epsilon, s_{\epsilon}\right) \mathrm{d} s_{\epsilon}
$$

- Change of Variables = Change in Domain

$$
\begin{aligned}
& d J_{1}(\Omega)[V]=\left.\int_{\Omega} \frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0}\left[f\left(\epsilon, T_{\epsilon}(x)\right) \cdot\left|\operatorname{det} D T_{\epsilon}(x)\right|\right] \mathrm{d} x \\
& d J_{2}(\Omega)[V]=\left.\int_{\Gamma} \frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0}\left[g\left(\epsilon, T_{\epsilon}(s)\right) \cdot\left|\operatorname{det} D T_{\epsilon}(s)\right|\left\|\left(D T_{\epsilon}(s)\right)^{-T} n(s)\right\|_{2}\right] \mathrm{d} s
\end{aligned}
$$

The Shape Derivative (Weak vs Strong)

- Material Derivative: $d f[V]:=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f\left(\epsilon, T_{\epsilon}(x)\right)=\langle\nabla f, V\rangle+f^{\prime}[V]$
- Local / Shape Derivative: $f^{\prime}(x)[V]:=\frac{\partial}{\partial \epsilon} f(0, x)$

$$
\begin{aligned}
d J_{1}(\Omega)[V] & =\int_{\Omega} f(0, x) \operatorname{div}(V)+\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} f\left(\epsilon, T_{\epsilon}(x)\right) \mathrm{d} x \\
& =\int_{\Omega} f \operatorname{div} V+d f[V] \mathrm{d} x \quad \text { (Weak/Volume/Distributed Formulation) } \\
& =\int_{\Omega} \operatorname{div}(f V)+f^{\prime}[V] \mathrm{d} x=\int_{\Gamma}\langle V, n\rangle f \mathrm{~d} s+\int_{\Omega} f^{\prime}[V] \mathrm{d} x \quad \text { (Surface Formulation) }
\end{aligned}
$$

$$
\begin{aligned}
d J_{2}(\Omega)[V] & =\int_{\Gamma} g \operatorname{div}_{\Gamma} V+d g[V] \mathrm{d} s \quad(\text { Weak/Volume/Distributed Formulation) } \\
& V \text { normal } \int_{\Gamma} \operatorname{div}_{\Gamma}(g V)+\langle V, n\rangle \frac{\partial g}{\partial n}+g^{\prime}[V] \mathrm{d} s \\
& =\int_{\Gamma}\langle V, n\rangle\left[\frac{\partial g}{\partial n}+\kappa g\right]+g^{\prime}[V] \mathrm{d} s
\end{aligned}
$$

Some Remarks...

- if f or g is "glued to mesh" (i.e. FEM function), then $d f[V]=f^{\prime}[V]$.
- if f or g is "fixed w.r.t. V^{\prime} ", then $f^{\prime}[V]=0$.
- Material derivative typically same regularity as state (Berggren, 2010)
- Correction terms make surface formulation exact (Berggren, 2010)

Dido's Problem

Find shape of maximum volume for given surface:

$$
\begin{aligned}
& \quad \max _{\Omega} J(\Omega):=\int_{\Omega} 1 \mathrm{~d} x \\
& \text { s.t. }
\end{aligned}
$$

$$
\int_{\Gamma} 1 \mathrm{~d} s=A_{0}
$$

Lagrangian:

$$
\begin{aligned}
F(\Omega, \lambda) & =\int_{\Omega}-1 \mathrm{~d} x+\lambda\left(\int_{\Gamma} 1 \mathrm{~d} s-A_{0}\right) \\
d F(\Omega, \lambda)[V] & =\int_{\Gamma}\langle V, n\rangle[-1+\lambda \kappa] \mathrm{d} s \stackrel{!}{=} 0 \quad \forall V
\end{aligned}
$$

Because $\lambda \in \mathbb{R}: \kappa=\frac{1}{\lambda} \in \mathbb{R}$. Thus, curvature constant! Optimality fulfilled by sphere!!

Dido's Problem (Gradient Descent + Newton)

Regularization, Approximate Newton, H^{1}-Descent

Shape-descent in H^{1} / Sobolev Gradient Method / Approximate Newton can all be motivated by surface area penalization:

$$
R(\Gamma)=\int_{\Gamma} 1 \mathrm{~d} s
$$

Then:

$$
\begin{aligned}
d R(\Gamma)[V] & =\int_{\Gamma}\langle V, n\rangle \kappa \mathrm{d} s \quad \text { Curvature Flow, Minimal Surface } \\
d^{2} R(\Gamma)[V, W] & =\int_{\Gamma}\left\langle\nabla_{\Gamma}\langle V, n\rangle, \nabla_{\Gamma}\langle W, n\rangle\right\rangle+\langle V, n\rangle\langle W, n\rangle \kappa^{2} \mathrm{~d} s
\end{aligned}
$$

Shape Linearization of General Conservation Law

Hyperbolic PDE:

$$
\dot{\varphi}+\operatorname{div} F(\varphi)=0
$$

Find $\varphi^{\prime}[V]$ such that

$$
\begin{aligned}
0 & =\int_{0}^{T} \int_{\Gamma}\langle V, n\rangle[\langle\lambda, \dot{\varphi}\rangle-\langle F(\varphi), \nabla \lambda\rangle] \mathrm{d} s \mathrm{~d} t \\
& +\int_{0}^{T} \int_{\Gamma}\langle V, n\rangle\left[\left\langle\nabla\left(\lambda \cdot F_{b}^{*}(\varphi, n)\right), n\right\rangle\right. \\
& \left.+\kappa\left(\lambda \cdot F_{\mathrm{b}}^{*}(\varphi, n)-D_{n}\left(\lambda \cdot F_{b}^{*}(\varphi, n)\right) \cdot n\right)+\operatorname{div}_{\Gamma}\left(D_{n}^{T}\left(\lambda \cdot F_{b}^{*}(\varphi, n)\right)\right)\right] \mathrm{d} s \mathrm{~d} t \\
& +\int_{0}^{T} \int_{\Omega}^{T}\left\langle\lambda, \dot{\varphi}^{\prime}[V]\right\rangle-\left\langle D F(\varphi) \varphi^{\prime}[V], \nabla \lambda\right\rangle \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Gamma}\left\langle\lambda, D_{\varphi} F_{b}^{*}(\varphi, n) \varphi^{\prime}[V]\right\rangle \mathrm{d} s \mathrm{~d} t
\end{aligned}
$$

(Existence Results: Cagnol/Eller/Marmorat/Zolésio):

Adjoint Equation

Adjoint equation can be read from the shape-linearized equation: Find λ such that

$$
\begin{aligned}
0 & =\int_{0}^{T} \int_{\Omega}\left\langle-\dot{\lambda}, \varphi^{\prime}[V]\right\rangle-\left\langle\varphi^{\prime}[V], D^{T} F(\varphi) \nabla \lambda\right\rangle \mathrm{d} x \mathrm{~d} t \\
& +\int_{0}^{T} \int_{\Gamma}\left\langle\varphi^{\prime}[V], D_{\varphi}^{T} F_{\mathrm{b}}^{*}(\varphi, n) \cdot \lambda\right\rangle \mathrm{d} s \mathrm{~d} t \\
& +\int_{0}^{T} \int_{\Gamma_{1} / 0}\left\langle B^{T}(n) B(n) \cdot\left(\varphi-\varphi_{\text {meas }}\right), \varphi^{\prime}[V]\right\rangle \mathrm{d} s \mathrm{~d} t
\end{aligned}
$$

\Rightarrow Flux for adjoint can be read: $D_{\varphi}^{\top} F^{*}(\varphi, n) \cdot \lambda$

Shape Derivative for Tomography Problems

Maxwell (Existence Results: Cagnol/Eller/Marmorat/Zolésio):

$$
\begin{aligned}
& d J(H, E, \Omega)[V] \\
= & \int_{0}^{T} \int_{\Gamma_{\text {inc }}}^{T}\langle V, n\rangle\left[\left\langle\lambda_{H}, \dot{H}\right\rangle+\frac{1}{\mu}\left\langle E, \operatorname{curl} \lambda_{H}\right\rangle+\left\langle\lambda_{E}, \dot{E}\right\rangle-\frac{1}{\epsilon}\left\langle H, \operatorname{curl} \lambda_{E}\right\rangle+\frac{\sigma}{\epsilon}\left\langle\lambda_{E}, E\right\rangle\right] \mathrm{d} s \mathrm{~d} t \\
& +\int_{0}^{T} \int_{\text {rinc }}\langle V, n\rangle \operatorname{div}\left(Z c\left(H \times \lambda_{E}\right)\right) \mathrm{d} s \mathrm{~d} t
\end{aligned}
$$

Horn/Linear Wave:

$$
\begin{aligned}
d J(u, p, \Omega)[V]= & \int_{0}^{T} \int_{\Gamma_{\text {horn }}}\langle V, n\rangle\left[\left\langle\lambda_{u}, \dot{u}\right\rangle-p \operatorname{div} \lambda_{u}+\lambda_{p} \dot{p}-c^{2}\left\langle u, \nabla \lambda_{p}\right\rangle\right] \mathrm{d} s \mathrm{~d} t \\
& +\int_{0}^{T} \int_{\Gamma_{\text {hoor }}}\langle V, n\rangle \operatorname{div}\left(c^{2} \lambda_{p} \cdot u\right) \mathrm{d} s \mathrm{~d} t
\end{aligned}
$$

"Backwards in time" adjoint equations for $\left(\lambda_{H}, \lambda_{E}\right)$ and $\left(\lambda_{U}, \lambda_{p}\right)$

Obstacle Without Antenna

- 4.1-12.3 Ghz SINC-puls
- $2.4-7.3 \mathrm{~cm}$ waves, 3.65 cm obstacle

Optimal Emitter for Acoustics

Boundary Data Compression:
$3.5 \cdot 10^{9}$ unknowns: 26 TB to 3.26 GB, 3 Months on 48 CPUs (S., Wadbro, Berggren, 2016)

3D Euler Flow: VELA

Shape Hessians

$$
\begin{aligned}
& d^{2} J_{1}[V, W]=\int_{\Omega} f \operatorname{div} V \operatorname{div} W-f \operatorname{tr}(D V D W) \\
&+d f[V] \operatorname{div} W+d f[W] \operatorname{div} V+d^{2} f[V, W] \mathrm{d} x
\end{aligned}
$$

- Material and Spatial Derivatives do not commute:

$$
d(D f)[V]=\operatorname{Ddf}[V]-D f D V
$$

- Excessively long expressions with normal, curvature or PDEs
- Typically rank deficient

One-Shot Volume Hessian CFD

Incompressible CFD
cooling and tidal turbine placement

subject to

$$
\begin{array}{rlrl}
-\mu \Delta u+\rho u \nabla u+\nabla p & =0 & & \text { in } \quad \Omega \\
\operatorname{div} u & =0 & & \\
u & =u_{+} & & \text {on } \\
u & \Gamma_{+} \\
& =0 & & \text { on } \\
\Gamma_{0} \\
p n-\mu \frac{\partial u}{\partial n} & =0 & & \text { on } \\
\Gamma_{-}
\end{array}
$$

FEM-Multimesh Implementation

Automatic Shape Derivatives in FEniCS/UFL

- Change expression into "maximally expanded form"
- Sort all sums closest to integral
- Apply rules to each sub-branch
- Pattern Recognition Problems
- Agument UFL derivatives in dolfin-adjoint/pyadjoint with release 2018.1

Freely Available: www.bitbucket.org/Epoxid/femorph

Weak Navier-Stokes Shape Derivative

Optimality:

$$
\begin{aligned}
0= & \int_{\Omega}\|\nabla u\|^{2} \operatorname{div} V+2\left\langle(D V)^{T} \nabla u, \nabla u\right\rangle-\mu\left\langle(D V)^{T} \nabla u, \nabla \lambda^{u}\right\rangle \\
& -\mu\left\langle\nabla u,(D V)^{T} \nabla \lambda^{u}\right\rangle-\rho\left\langle\lambda^{u}, D u D V u\right\rangle+p \operatorname{tr}\left(D \lambda^{u} D V\right)-\lambda^{p} \operatorname{tr}(D u D V) \mathrm{d} x
\end{aligned}
$$

Use adjoint to eliminate material derivatives: Find $\left(\lambda^{u}, \lambda^{p}\right)$ such that:

$$
0=\int_{\Omega} 2\langle\nabla(d u), \nabla u\rangle+\mu\left\langle\nabla(d u), \nabla \lambda^{u}\right\rangle+\rho\left[\left\langle\lambda^{u}, D(d u) u\right\rangle+\left\langle\lambda^{u}, D u \cdot d u\right\rangle\right]
$$

$-d p \cdot \operatorname{div} \lambda^{u}+\lambda^{p} \operatorname{div} d u \mathrm{~d} x, \quad$ for all $(d u, d p)$ and Dirichlet BCs
Not shown: Volume and Centroid, Hessian (MUCH too long) See also:

- (Yang, Stadler, Moser, Ghattas (2011))
- (Brandenburg, Lindemann, Ulbrich, Ulbrich (2012))

SQP Strategy

- Build the full KKT-System (state + shape + adjoint)
- No approximations

Volume Hessian has large Kernel:

- SQP: Find W, such that

$$
K K T(V, W, \ldots)+\langle V, W\rangle_{\Omega}+0.1\langle\nabla V, \nabla W\rangle_{\Omega}=d L(V, \ldots)
$$

- Testfunction: V, Trialfunction W
- KKT and $d L$ generated with automatic symbolic calculation

Mesh Defo:

- Boundary trace of W as Dirichlet BC in Laplace mesh deformation
- Inexact PDE \Rightarrow Spurious volume movement (One Shot)

SQP / Newton Results

3rd Order Shape Derivatives

Validation of the Hessian: (Join with. Dokken, smuLa)
 Numerical tests have shown that for certain types of integrals, the Taylor expansion can be truncated after the Hessian with no error!!

3rd Order Shape Derivatives

Validation of the Hessian: (Joint with. Dokken, SmuLA)

Numerical tests have shown that for certain types of integrals, the Taylor expansion can be truncated after the Hessian with no error!!

Suppose $d f[V]=0$. Then, in 1D:

$$
\begin{aligned}
\mathrm{d}^{2} J(\Omega)[V, W] & =\int_{\Omega} \operatorname{div} V \operatorname{div} W-\operatorname{tr}(D V D W) \mathrm{d} x \\
& =\int_{\Omega} \frac{\partial V}{\partial x} \frac{\partial W}{\partial x}-\frac{\partial V}{\partial x} \frac{\partial W}{\partial x} \mathrm{~d} x=0 \quad \forall V, W
\end{aligned}
$$

What about 2D?

The 3rd Shape Derivative in 2D

3rd order shape derivative:

$$
\begin{aligned}
& d^{3} J(\Omega)[V, W, X] \\
& =\int_{\Omega} f \operatorname{div} V \operatorname{div} W \operatorname{div} X-f \operatorname{tr}(D V D X) \operatorname{div} W-f \operatorname{tr}(D W D X) \operatorname{div} V \\
& \quad+f \operatorname{tr}(D V D X D W+D V D W D X) \\
& \quad+d f[V] \operatorname{div} W \operatorname{div} X+d f[W] \operatorname{div} V \operatorname{div} X+d f[X] \operatorname{div} V \operatorname{div} W \\
& \\
& \quad-d f[X] \operatorname{tr}(D V D W)-d f[V] \operatorname{tr}(D W D X)-d f[W] \operatorname{tr}(D V D X) \\
& \\
& \quad+d^{2} f[V, X] \operatorname{div}(W)+d^{2} f[W, X] \operatorname{div}(V)+d^{2} f[V, W] \operatorname{div}(X)+d^{3} f[V, W, X] d x
\end{aligned}
$$

Suppose $d f[V]=0$. Then what?

3rd Derivative in 2D is Zero

$$
\begin{aligned}
\operatorname{tr}(D A D B) \operatorname{div} C & =\left(\frac{\partial a_{1}}{\partial x_{1}} \frac{\partial b_{1}}{\partial x_{1}}+\frac{\partial a_{1}}{\partial x_{2}} \frac{\partial b_{2}}{\partial x_{1}}+\frac{\partial a_{2}}{\partial x_{1}} \frac{\partial b_{1}}{\partial x_{2}}+\frac{\partial a_{2}}{\partial x_{2}} \frac{\partial b_{2}}{\partial x_{2}}\right)\left(\frac{\partial c_{1}}{\partial x_{1}}+\frac{\partial c_{2}}{\partial x_{2}}\right) \\
& =\frac{\partial a_{1}}{\partial x_{1}} \frac{\partial b_{1}}{\partial x_{1}} \frac{\partial c_{1}}{\partial x_{1}}+\frac{\partial a_{1}}{\partial x_{1}} \frac{\partial b_{1}}{\partial x_{1}} \frac{\partial c_{2}}{\partial x_{2}}+\frac{\partial a_{1}}{\partial x_{2}} \frac{\partial b_{2}}{\partial x_{1}} \frac{\partial c_{1}}{\partial x_{1}}+\frac{\partial a_{1}}{\partial x_{2}} \frac{\partial b_{2}}{\partial x_{1}} \frac{\partial{c_{2}}_{\partial x_{2}}}{} \\
& +\frac{\partial a_{2}}{\partial x_{1}} \frac{\partial b_{1}}{\partial x_{2}} \frac{\partial c_{1}}{\partial x_{1}}+\frac{\partial a_{2}}{\partial x_{1}} \frac{\partial b_{1}}{\partial x_{2}} \frac{\partial c_{2}}{\partial x_{2}}+\frac{\partial a_{2}}{\partial x_{2}} \frac{\partial b_{2}}{\partial x_{2}} \frac{\partial c_{1}}{\partial x_{1}}+\frac{\partial a_{2}}{\partial x_{2}} \frac{\partial b_{2}}{\partial x_{2}} \frac{\partial c_{2}}{\partial x_{2}}
\end{aligned}
$$

Sum up all similar terms... get zero!

Proposition:

If the material derivatives vanish, then the $n+1$ directional shape derivative in n-dimensions is always zero.

Example:
Geoelectrical Impedance Tomography:

$$
\begin{aligned}
& \text { Minimize } \frac{1}{2} \sum_{i=1}^{r} \int_{\Gamma_{2}}\left|u_{i}-z_{i}\right|^{2} d s+\beta R\left(\Gamma_{1}\right) \\
& \text { s.t. }\left\{\begin{array}{rlr}
-\Delta u_{i} & =0 & \\
\text { in } \Omega, \\
\frac{\partial u_{i}}{\partial n} & =0 & \\
\text { on } \Gamma_{1}, \\
\frac{\partial u_{i}}{\partial n}+\alpha u_{i} & =f_{i} & \\
\text { on } \Gamma_{2}
\end{array}\right.
\end{aligned}
$$

- z_{i} given measurement data
- Previously:
R surface area:
Laplace Smoothing/Curvature Flow
- Idea: Regularization to favor kinks
- Idea: Total Variation of the Normal!

Total Variation for Surfaces and Manifold \mathcal{S}^{2}

Classical Total Variation:

$$
\begin{aligned}
|u|_{T V(\Omega)} & :=\int_{\Omega}\|\nabla u\|_{2} \mathrm{~d} x=\int_{\Omega}\left(\left\|(D u) e_{1}\right\|^{2}+\left\|(D u) e_{2}\right\|^{2}\right)^{\frac{1}{2}} \mathrm{~d} x \\
|u|_{D T V(\Omega)} & :=\sum_{T} \int_{T}\|\nabla u\|_{2} \mathrm{~d} x+\sum_{E} \int_{E}|\llbracket u \|| \mathrm{d} s \\
& \stackrel{r=0}{=} \sum_{E}|E|\left|u^{+}-u^{-}\right|
\end{aligned}
$$

New difficulty here: Γ is a manifold and n maps to \mathcal{S}^{2}

$$
\begin{aligned}
|n|_{T V(\Gamma)} & :=\int_{\Gamma}\left(\left\|\left(D_{\Gamma} n\right) \xi_{1}\right\|_{\mathfrak{g}}^{2}+\left\|\left(D_{\Gamma} n\right) \xi_{2}\right\|_{\mathfrak{g}}^{2}\right)^{1 / 2} \mathrm{~d} s \\
|n|_{D T V(\Gamma)} & :=\sum_{E}|E| d\left(n_{E}^{+}, n_{E}^{-}\right)=\left.\sum_{E}|E| \log _{n_{E}} n_{E}^{-}\right|_{2}
\end{aligned}
$$

Properties of $|n|_{T V(\Gamma)}$ and $|n|_{D T V(\Gamma)}$

Let $\left\{\Gamma_{\varepsilon}\right\}$ denote a family of smooth approximations of Γ_{h} obtained by mollification, with normal vector fields n_{ε}. Then

$$
\left|n_{\varepsilon}\right|_{T V\left(\Gamma_{\varepsilon}\right)} \rightarrow|n|_{D T V\left(\Gamma_{n}\right)} \quad \text { as } \varepsilon \searrow 0 .
$$

Proof: Utilize different convergence orders for edges and vertex caps

Properties of $|n|_{T V(\Gamma)}$ and $|n|_{D T V(\Gamma)}$

Properties of $|n|_{T V(\Gamma)}$:

Spheres are stationary points among all surfaces Γ of constant area.
Proof: By construction: Derive shape derivative and use that integrand is spatially constant on a sphere

Properties of $|n|_{T V(\Gamma)}$ and $|n|_{D T V(\Gamma)}$

Properties of $|n|_{T V(\Gamma)}$:
Spheres are stationary points among all surfaces Γ of constant area.
Proof: By construction: Derive shape derivative and use that integrand is spatially constant on a sphere

Properties of $|n|_{D T V(\Gamma)}$:

The icosahedron and the cube with crossed diagonals are stationary points within the class of triangulated surfaces Γ_{h} of constant area and identical connectivity.

Proof: By construction
Bergmann, Herrmann, Herzog, Schmidt, Vidal-Núñez (in review)

Sketch of Proof for Continuous Case

Same strategy as with Dido's Problem:

$$
g\left(\varepsilon, s_{\varepsilon}\right)=\left(k_{1, \varepsilon}^{2}\left(s_{\varepsilon}\right)+k_{2, \varepsilon}^{2}\left(s_{\varepsilon}\right)\right)^{\frac{1}{2}}=\left(\left|\left(D_{\Gamma} n_{\varepsilon}\right) \xi_{1, \varepsilon}\right|_{\mathfrak{g}}^{2}+\left|\left(D_{\Gamma} n_{\varepsilon}\right) \xi_{2, \varepsilon}\right|_{\mathfrak{g}}^{2}\right)^{\frac{1}{2}}
$$

Shape/Material derivative:

$$
\left.g^{\prime}[V]\right]^{\text {tangent argument }} \mathrm{d}[V]=\frac{1}{g(s)} \sum_{i=1}^{2} \mathfrak{g}\left(\left(D_{\Gamma} n\right) \xi_{i}, \mathrm{~d}\left[\left(D_{\Gamma} n\right) \xi_{i}[V]\right)\right.
$$

Tangents with Gram-Schmidt:

$$
\begin{aligned}
& \mathrm{d} \xi_{1}[V]=(D V) \xi_{1}-\left(\xi_{1}^{\top}(D V) \xi_{1}\right) \xi_{1} \\
& \mathrm{~d} \xi_{2}[V]=(D V) \xi_{2}-\left(\xi_{2}^{\top}(D V) \xi_{2}\right) \xi_{2}-\left(\xi_{1}^{\top}\left(D V+D V^{\top}\right) \xi_{2}\right) \xi_{1} .
\end{aligned}
$$

On sphere: $g(s)=\left(\kappa_{1}^{2}(s)+\kappa_{2}^{2}(s)\right)^{\frac{1}{2}}=\frac{\sqrt{2}}{r}$
Shape Derivative Lagrangian with tangential Stokes:

$$
\mathrm{d} \mathcal{L}(0, \lambda)[V]=\left[\frac{2}{r}\left(\frac{1}{\sqrt{2} r}+\lambda\right)\right] \int_{\Gamma}\langle V, n\rangle \mathrm{d} s
$$

ADMM Optimization for $|n|_{D T V(\Gamma)}$

Not (shape-) differentiable:

$$
\min _{\Gamma} \frac{1}{2}|u(\Gamma)-z|_{2}^{2}+\beta|n|_{D T V(\Gamma)}
$$

Idea: ADMM: Solve independently for Γ, d and b

$$
\min _{\Gamma, d} \frac{1}{2}|u(\Gamma)-z|_{2}^{2}+\beta \sum_{E}|E|\left|d_{E}\right|_{2}+\frac{\lambda}{2} \sum_{E}|E|\left|d_{E}-\log _{n_{E}^{+}} n_{E}^{-}-b_{E}\right|_{2}^{2}
$$

- 「-problem: smooth shape problem, adjoint calculus
- Parallel transport: $b_{E} \in \mathcal{T}_{n_{E}^{+}} \mathcal{S}^{2}$
- d-problem:
- b-update:

$$
d_{E}=\operatorname{shrink}\left(b_{E}+\log _{n_{E}^{+}} n_{E}^{-}, \frac{\beta}{\lambda}\right)
$$

$$
b_{E}:=b_{E}+\log _{n_{E}^{+}} n_{E}^{-}-d_{E}
$$

Geoelectric Reconstruction of a Cube

noise free input noise

$$
\begin{aligned}
& |n|_{\operatorname{DTV}(\Gamma)} \\
& \beta=10^{-6}
\end{aligned}
$$

perimeter
$\beta=2 \cdot 10^{-5}$

Fully integrated DG-Suite

3D Scan \Rightarrow FEM/DG/Optimization (FEniCS) \Rightarrow 3D Print

FEM vs Computer Graphics

Computer Graphics:
Texture Mapping: Multiple Pixels per Triangle on Surface

Here:

- Convert Geometry + Texture (Bitmap) to DG-FEM on Surface
- Information in Higher Order or Refinement!

Common 3D Scan Problems

Noisy Geometry: Tracking Term

Missing Geometry: Subdomain

Noisy/Missing Textures: No shape, different manifold

Common 3D Scan Problems: Results

Noisy Geometry

Missing Geometry

Noisy/Missing Textures

Conclusions and Outlook

- Inverse Problems and Surfaces with Kinks!
- Optimization for Variable Geometries and HPC
- 1st, 2nd and 3rd order Shape Derivatives
- $|n|_{T V(\Gamma)}$ and $|n|_{D T V(\Gamma)}$ non-smooth reconstructions

