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Acoustic Horn Design (joint with M. Berggren, E. Wadbro)

General problem formulation allows treatment of general problems
Design of acoustic (linear wave) horn antenna, 3.5 · 109 unknowns!
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Maxwell Scattering Problem (joint with M. Schütte, O. Ebel, A. Walther)
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VELA Aircraft (joint with V. Schulz and DLR Braunschweig)

Design study for blended wing-body configurations
Transonic Inviscid Incompressible CFD
> 460,000 surface node positions to be optimized
Planform constant
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Geometric Inverse Problem

min
(ϕ,Γinc)

J(ϕ,Ω) :=
1
2

T∫
0

∫
Γi/o

‖B(n)(ϕ− ϕmeas)‖22 d t d s + δ

∫
Γinc

1 d s

subject to

ϕ̇+ div F (ϕ) = 0 in Ω

BCs = g on Γ

Acoustics:

∂u
∂t

+∇p = 0 in Ω,

∂p
∂t

+ c2div u = 0 in Ω,

1
2

(p − c〈u,n〉) = g on Γi/o

Electromagnetism:

µ
∂H
∂t

= −∇× E in Ω,

ε
∂E
∂t

= ∇× H − σE in Ω,

BCs = g on Γi/o
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Introduction to Shape Optimization

ΩV

Ωε

Shape is modeled by set Ω

Ωε := {x + εV (x) : x ∈ Ω} ⊂ D

J : P(D)→ R: target function

(Directional) derivative of J
with respect to Ω?

Directional Derivative

dJ(Ω)[V ] := lim
ε→0+

J(Ωε)− J(Ω)

ε
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The Shape Derivative

Objective function:

J1(ε,Ω) :=

∫
Ω(ε)

f (ε, xε) d xε or J2(ε,Ω) :=

∫
Γ(ε)

g(ε, sε) d sε

Take Limit:

dJ1(Ω)[V ] =
d

d ε
ε=0

∫
Ω(ε)

f (ε, xε) d xε or dJ2(Ω)[V ] =
d

d ε
ε=0

∫
Γ(ε)

g(ε, sε) d sε

Change of Variables = Change in Domain

dJ1(Ω)[V ] =

∫
Ω

d

d ε
ε=0

[
f (ε,Tε(x)) · | det DTε(x)|

]
d x

dJ2(Ω)[V ] =

∫
Γ

d

d ε
ε=0

[
g(ε,Tε(s)) · | det DTε(s)|‖(DTε(s))−T n(s)‖2

]
d s
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The Shape Derivative (Weak vs Strong)

Material Derivative: df [V ] := d
d ε

ε=0
f (ε,Tε(x)) = 〈∇f ,V 〉+ f ′[V ]

Local / Shape Derivative: f ′(x)[V ] := ∂
∂ε

f (0, x)

dJ1(Ω)[V ] =

∫
Ω

f (0, x)div (V ) +
d

d ε
ε=0

f (ε,Tε(x)) d x

=

∫
Ω

f div V + df [V ] d x (Weak/Volume/Distributed Formulation)

=

∫
Ω

div (fV ) + f ′[V ] d x =

∫
Γ

〈V , n〉f d s +

∫
Ω

f ′[V ] d x (Surface Formulation)

dJ2(Ω)[V ] =

∫
Γ

gdivΓ V + dg[V ] d s (Weak/Volume/Distributed Formulation)

V normal
=

∫
Γ

divΓ (gV ) + 〈V , n〉∂g
∂n

+ g′[V ] d s

=

∫
Γ

〈V , n〉
[
∂g
∂n

+ κg
]

+ g′[V ] d s
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Some Remarks...

if f or g is “glued to mesh” (i.e. FEM function), then df [V ] = f ′[V ].

if f or g is “fixed w.r.t. V ”, then f ′[V ] = 0.

Material derivative typically same regularity as state (Berggren, 2010)

Correction terms make surface formulation exact (Berggren, 2010)
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Dido’s Problem

Find shape of maximum volume for given surface:

max
Ω

J(Ω) :=

∫
Ω

1 d x

s.t. ∫
Γ

1 d s = A0

Lagrangian:

F (Ω, λ) =

∫
Ω

−1 d x + λ

∫
Γ

1 d s − A0


dF (Ω, λ)[V ] =

∫
Γ

〈V , n〉 [−1 + λκ] d s !
= 0 ∀V

Because λ ∈ R: κ = 1
λ ∈ R. Thus, curvature constant!

Optimality fulfilled by sphere!!
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Dido’s Problem (Gradient Descent + Newton)
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Regularization, Approximate Newton, H1-Descent

Shape-descent in H1 / Sobolev Gradient Method / Approximate Newton
can all be motivated by surface area penalization:

R(Γ) =

∫
Γ

1 d s

Then:

dR(Γ)[V ] =

∫
Γ

〈V ,n〉κ d s Curvature Flow, Minimal Surface

d2R(Γ)[V ,W ] =

∫
Γ

〈∇Γ〈V ,n〉,∇Γ〈W ,n〉〉+ 〈V ,n〉〈W ,n〉κ2 d s
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Shape Linearization of General Conservation Law

Hyperbolic PDE:
ϕ̇+ div F (ϕ) = 0

Find ϕ′[V ] such that

0 =

T∫
0

∫
Γ

〈V ,n〉 [〈λ, ϕ̇〉 − 〈F (ϕ),∇λ〉] d s d t

+

T∫
0

∫
Γ

〈V ,n〉[〈∇(λ · F ∗b (ϕ,n)),n〉

+ κ (λ · F ∗b (ϕ,n)− Dn(λ · F ∗b (ϕ,n)) · n) + divΓ (DT
n (λ · F ∗b (ϕ,n)))] d s d t

+

T∫
0

∫
Ω

〈λ, ϕ̇′[V ]〉 − 〈DF (ϕ)ϕ′[V ],∇λ〉 d x d t +

T∫
0

∫
Γ

〈λ,DϕF ∗b (ϕ,n)ϕ′[V ]〉 d s d t

(Existence Results: Cagnol/Eller/Marmorat/Zolésio):
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Adjoint Equation

Adjoint equation can be read from the shape-linearized equation: Find λ
such that

0 =

T∫
0

∫
Ω

〈−λ̇, ϕ′[V ]〉 − 〈ϕ′[V ],DT F (ϕ)∇λ〉 d x d t

+

T∫
0

∫
Γ

〈ϕ′[V ],DT
ϕF ∗b (ϕ,n) · λ〉 d s d t

+

T∫
0

∫
Γi/o

〈BT (n)B(n) · (ϕ− ϕmeas), ϕ′[V ]〉 d s d t

⇒ Flux for adjoint can be read: DT
ϕF ∗(ϕ,n) · λ
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Shape Derivative for Tomography Problems
Maxwell (Existence Results: Cagnol/Eller/Marmorat/Zolésio):

dJ(H,E ,Ω)[V ]

=

T∫
0

∫
Γinc

〈V , n〉
[
〈λH , Ḣ〉+

1
µ
〈E , curlλH〉+ 〈λE , Ė〉 −

1
ε
〈H, curlλE〉+

σ

ε
〈λE ,E〉

]
d s d t

+

T∫
0

∫
Γinc

〈V , n〉div (Zc(H × λE )) d s d t

Horn/Linear Wave:

dJ(u, p,Ω)[V ] =

T∫
0

∫
Γhorn

〈V , n〉
[
〈λu, u̇〉 − p div λu + λp ṗ − c2〈u,∇λp〉

]
d s d t

+

T∫
0

∫
Γhorn

〈V , n〉div
(

c2λp · u
)

d s d t

“Backwards in time” adjoint equations for (λH , λE ) and (λu, λp)
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Obstacle Without Antenna

4.1 – 12.3 Ghz SINC-puls
2.4 – 7.3 cm waves, 3.65 cm obstacle
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Optimal Emitter for Acoustics

Boundary Data Compression:
3.5 · 109 unknowns: 26 TB to 3.26 GB, 3 Months on 48 CPUs
(S., Wadbro, Berggren, 2016)
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3D Euler Flow: VELA

Shape CD % CL %
460,517 3.342 · 10−3 −30.06% 1.775 · 10−1 −0.67%

DLR Flow Solver TAU for primal and adjoint equation
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Shape Hessians

d2J1[V ,W ] =

∫
Ω

f div V div W − f tr(DVDW )

+ df [V ]div W + df [W ]div V + d2f [V ,W ] d x

Material and Spatial Derivatives do not commute:

d(Df )[V ] = Ddf [V ]− DfDV

Excessively long expressions with normal, curvature or PDEs

Typically rank deficient
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One-Shot Volume Hessian CFD (joint with S. Funke, J. Dokken, SIMULA)

Incompressible CFD
cooling and tidal turbine placement

min
(u,p,Ω)

ENS(u,p,Ω) :=
1
2

∫
Ω

µ

3∑
j,k=1

(
∂uk

∂xj

)2

dA

subject to

−µ∆u + ρu∇u +∇p = 0 in Ω

div u = 0
u = u+ on Γ+

u = 0 on Γ0

pn − µ∂u
∂n

= 0 on Γ−

FEM-Multimesh Implementation
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Automatic Shape Derivatives in FEniCS/UFL

exterior facet integral

Sum

Inner/Dot

ṽ vector v

Sum

Product

scalar c Inner/Dot

ṽ vector v

Sum

scalar c ...

Change expression into
“maximally expanded form”

Sort all sums closest to integral

Apply rules to each sub-branch

Pattern Recognition Problems

Agument UFL derivatives in
dolfin-adjoint/pyadjoint with
release 2018.1

Freely Available: www.bitbucket.org/Epoxid/femorph
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Weak Navier–Stokes Shape Derivative

Optimality:

0 =

∫
Ω

‖∇u‖2div V + 2〈(DV )T∇u,∇u〉 − µ〈(DV )T∇u,∇λu〉

− µ〈∇u, (DV )T∇λu〉 − ρ〈λu,DuDVu〉+ ptr(DλuDV )− λptr(DuDV ) d x

Use adjoint to eliminate material derivatives: Find (λu, λp) such that:

0 =

∫
Ω

2〈∇(du),∇u〉+ µ〈∇(du),∇λu〉+ ρ[〈λu,D(du)u〉+ 〈λu,Du · du〉]

− dp · div λu + λpdiv du d x , for all (du, dp) and Dirichlet BCs

Not shown: Volume and Centroid, Hessian (MUCH too long)
See also:

(Yang, Stadler, Moser, Ghattas (2011))

(Brandenburg, Lindemann, Ulbrich, Ulbrich (2012))
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SQP Strategy

Build the full KKT-System (state + shape + adjoint)
No approximations

Volume Hessian has large Kernel:

SQP: Find W , such that

KKT (V ,W , ...) + 〈V ,W 〉Ω + 0.1〈∇V ,∇W 〉Ω = dL(V , ...)

Testfunction: V , Trialfunction W
KKT and dL generated with automatic symbolic calculation

Mesh Defo:
Boundary trace of W as Dirichlet BC in Laplace mesh deformation
Inexact PDE⇒ Spurious volume movement (One Shot)
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SQP / Newton Results

Stephan Schmidt Geometrically Inverse Problems 14 October 2019 24 / 39



3rd Order Shape Derivatives

Validation of the Hessian: (joint with J. Dokken, SIMULA)

Numerical tests have shown that for certain types of integrals, the Taylor
expansion can be truncated after the Hessian with no error!!

Suppose df [V ] = 0. Then, in 1D:

d2 J(Ω)[V ,W ] =

∫
Ω

div V div W − tr(DV DW ) d x

=

∫
Ω

∂V
∂x

∂W
∂x
− ∂V
∂x

∂W
∂x

d x = 0 ∀V ,W

What about 2D?
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The 3rd Shape Derivative in 2D

3rd order shape derivative:

d3J(Ω)[V ,W ,X ]

=

∫
Ω

f div V div W div X − f tr(DV DX )div W − f tr(DW DX )div V

+ f tr(DV DX DW + DV DW DX )

+ df [V ]div W div X + df [W ]div V div X + df [X ]div V div W

− df [X ]tr(DV DW )− df [V ]tr(DW DX )− df [W ]tr(DV DX )

+ d2f [V ,X ]div (W ) + d2f [W ,X ]div (V ) + d2f [V ,W ]div (X ) + d3f [V ,W ,X ] d x

Suppose df [V ] = 0. Then what?

Stephan Schmidt Geometrically Inverse Problems 14 October 2019 26 / 39



3rd Derivative in 2D is Zero

tr(DA DB)div C =

(
∂a1

∂x1

∂b1

∂x1
+
∂a1

∂x2

∂b2

∂x1
+
∂a2

∂x1

∂b1

∂x2
+
∂a2

∂x2

∂b2

∂x2

)(
∂c1

∂x1
+
∂c2

∂x2

)
=
∂a1

∂x1

∂b1

∂x1

∂c1

∂x1
+
∂a1

∂x1

∂b1

∂x1

∂c2

∂x2
+
∂a1

∂x2

∂b2

∂x1

∂c1

∂x1
+
∂a1

∂x2

∂b2

∂x1

∂c2

∂x2

+
∂a2

∂x1

∂b1

∂x2

∂c1

∂x1
+
∂a2

∂x1

∂b1

∂x2

∂c2

∂x2
+
∂a2

∂x2

∂b2

∂x2

∂c1

∂x1
+
∂a2

∂x2

∂b2

∂x2

∂c2

∂x2

Sum up all similar terms... get zero!

Proposition:
If the material derivatives vanish, then the n + 1 directional shape
derivative in n-dimensions is always zero.
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The Regularization Term (joint with R. Herzog, J.Vidal-Nuñez, R. Bergmann, M. Herrmann)

Example:
Geoelectrical Impedance Tomography:

Minimize
1
2

r∑
i=1

∫
Γ2

|ui − zi |2 ds + β R(Γ1)

s.t.


−∆ui = 0 in Ω,

∂ui

∂n
= 0 on Γ1,

∂ui

∂n
+ α ui = fi on Γ2

zi given measurement data
Previously:
R surface area:
Laplace Smoothing/Curvature Flow
Idea: Regularization to favor kinks
Idea: Total Variation of the Normal!
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Total Variation for Surfaces and Manifold S2

Classical Total Variation:

|u|TV (Ω) :=

∫
Ω
‖∇u‖2 d x =

∫
Ω

(
‖(Du) e1‖2 + ‖(Du) e2‖2

) 1
2

d x

|u|DTV (Ω) :=
∑

T

∫
T
‖∇u‖2 d x +

∑
E

∫
E
|JuK| d s

r=0
=
∑

E

|E |
∣∣u+ − u−

∣∣

E

T +

T−

New difficulty here: Γ is a manifold and n maps to S2

|n|TV (Γ) :=

∫
Γ

(
‖(DΓn) ξ1‖2g + ‖(DΓn) ξ2‖2g

)1/2
d s

|n|DTV (Γ) :=
∑

E

|E |d(n+
E ,n

−
E ) =

∑
E

|E |
∣∣∣logn+

E
n−E
∣∣∣
2
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Properties of |n|TV (Γ) and |n|DTV (Γ)

Let {Γε} denote a family of smooth approximations of Γh obtained by
mollification, with normal vector fields nε. Then

|nε|TV (Γε) → |n|DTV (Γh) as ε↘ 0.

Proof: Utilize different convergence orders for edges and vertex caps

Bergmann, Herrmann, Herzog, Schmidt, Vidal-Núñez (SPP 1962 preprint, in review)
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Properties of |n|TV (Γ) and |n|DTV (Γ)

Properties of |n|TV (Γ):

Spheres are stationary points among all surfaces Γ of constant area.

Proof: By construction: Derive shape derivative and use that integrand
is spatially constant on a sphere

Properties of |n|DTV (Γ):

The icosahedron and the cube with crossed
diagonals are stationary points within the class of
triangulated surfaces Γh of constant area and
identical connectivity.

Proof: By construction
Bergmann, Herrmann, Herzog, Schmidt, Vidal-Núñez (in review)
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Sketch of Proof for Continuous Case
Same strategy as with Dido’s Problem:

g(ε, sε) =
(

k2
1,ε(sε) + k2

2,ε(sε)
) 1

2
=
(
|(DΓnε) ξ1,ε|2g + |(DΓnε) ξ2,ε|2g

) 1
2

Shape/Material derivative:

g′[V ]
tangent argument

= d g[V ] =
1

g(s)

2∑
i=1

g((DΓn) ξi , d[(DΓn) ξi ][V ])

Tangents with Gram-Schmidt:
d ξ1[V ] = (DV ) ξ1 − (ξ>1 (DV ) ξ1) ξ1

d ξ2[V ] = (DV ) ξ2 − (ξ>2 (DV ) ξ2) ξ2 − (ξ>1 (DV + DV>) ξ2) ξ1.

On sphere: g(s) = (κ2
1(s) + κ2

2(s))
1
2 =

√
2

r

Shape Derivative Lagrangian with tangential Stokes:

dL(0, λ)[V ] =

[
2
r

(
1√
2r

+ λ

)]∫
Γ

〈V , n〉 d s
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ADMM Optimization for |n|DTV (Γ)

Not (shape-) differentiable:

min
Γ

1
2
|u(Γ)− z|22 + β |n|DTV (Γ)

Idea: ADMM: Solve independently for Γ, d and b

min
Γ,d

1
2
|u(Γ)− z|22 + β

∑
E

|E | |dE |2 +
λ

2

∑
E

|E |
∣∣∣dE − logn+

E
n−E − bE

∣∣∣2
2

• Γ-problem: smooth shape problem, adjoint calculus

• Parallel transport: bE ∈ Tn+
E
S2

• d-problem:

dE = shrink(bE + logn+
E

n−E ,
β

λ
)

• b-update:
bE := bE + logn+

E
n−E − dE
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Geoelectric Reconstruction of a Cube

noise
free

input
noise

|n|DTV (Γ)

β = 10−6
perimeter
β = 5 · 10−5

perimeter
β = 2 · 10−5
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Fully integrated DG-Suite

3D Scan⇒ FEM/DG/Optimization
(FEniCS)⇒ 3D Print
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FEM vs Computer Graphics

(Source: Wikipedia)

Computer Graphics:
Texture Mapping: Multiple Pixels per Triangle on Surface

Here:
Convert Geometry + Texture (Bitmap) to DG-FEM on Surface
Information in Higher Order or Refinement!
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Common 3D Scan Problems

Noisy Geometry:
Tracking Term

Missing Geometry:
Subdomain

Noisy/Missing Textures:
No shape, different

manifold
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Common 3D Scan Problems: Results

Noisy Geometry Missing Geometry Noisy/Missing Textures
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Conclusions and Outlook

Inverse Problems and Surfaces with Kinks!

Optimization for Variable Geometries and HPC

1st, 2nd and 3rd order Shape Derivatives

|n|TV (Γ) and |n|DTV (Γ)

non-smooth reconstructions

Stephan Schmidt Geometrically Inverse Problems 14 October 2019 39 / 39


