Shape Optimization for Geometrically Inverse Problems

Stephan Schmidt

14 October 2019

Stephan Schmidt

Geometrically Inverse Problems

14 October 2019 1/39

Acoustic Horn Design (joint with M. Berggren, E. Wadbro)

- General problem formulation allows treatment of general problems
- Design of acoustic (linear wave) horn antenna, 3.5 · 10⁹ unknowns!

Maxwell Scattering Problem (joint with M. Schütte, O. Ebel, A. Walther)

Design study for blended wing-body configurations

- Transonic Inviscid Incompressible CFD
- > 460,000 surface node positions to be optimized
- Planform constant

Geometric Inverse Problem

$$\begin{split} \min_{(\varphi,\Gamma_{\text{inc}})} J(\varphi,\Omega) &:= \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{i/o}} \|B(n)(\varphi - \varphi_{\text{meas}})\|_{2}^{2} \, \operatorname{d} t \, \operatorname{d} s + \delta \int_{\Gamma_{\text{inc}}} 1 \, \operatorname{d} s \\ \text{subject to} \\ \dot{\varphi} + \operatorname{div} F(\varphi) &= 0 \quad \text{in} \quad \Omega \\ BCs &= g \quad \text{on} \quad \Gamma \end{split}$$

Acoustics:

Electromagnetism:

$$\begin{aligned} \frac{\partial u}{\partial t} + \nabla p &= 0 \text{ in } \Omega, \\ \frac{\partial p}{\partial t} + c^2 \text{div } u &= 0 \text{ in } \Omega, \\ \frac{1}{2}(p - c \langle u, n \rangle) &= g \text{ on } \Gamma_{i/o} \end{aligned}$$

$$\mu \frac{\partial H}{\partial t} = -\nabla \times E \text{ in } \Omega,$$

$$\varepsilon \frac{\partial E}{\partial t} = \nabla \times H - \sigma E \text{ in } \Omega,$$

BCs = g on $\Gamma_{i/o}$

Introduction to Shape Optimization

Directional Derivative

• Shape is modeled by set $\boldsymbol{\Omega}$

•
$$\Omega_{\epsilon} := \{ x + \epsilon V(x) : x \in \Omega \} \subset \mathcal{D}$$

- $J: \mathcal{P}(\mathcal{D}) \to \mathbb{R}$: target function
- (Directional) derivative of J with respect to Ω?

$$dJ(\Omega)[V] := \lim_{\epsilon \to 0^+} \frac{J(\Omega_{\epsilon}) - J(\Omega)}{\epsilon}$$

The Shape Derivative

• Objective function:

$$J_1(\epsilon,\Omega) := \int\limits_{\Omega(\epsilon)} f(\epsilon, x_{\epsilon}) \, \mathrm{d} \, x_{\epsilon} \text{ or } J_2(\epsilon,\Omega) := \int\limits_{\Gamma(\epsilon)} g(\epsilon, s_{\epsilon}) \, \mathrm{d} \, s_{\epsilon}$$

Take Limit:

$$dJ_1(\Omega)[V] = \frac{d}{d\epsilon} \bigg|_{\substack{\epsilon = 0 \\ \Omega(\epsilon)}} \int f(\epsilon, x_{\epsilon}) dx_{\epsilon} \text{ or } dJ_2(\Omega)[V] = \frac{d}{d\epsilon} \bigg|_{\substack{\epsilon = 0 \\ \Gamma(\epsilon)}} \int g(\epsilon, s_{\epsilon}) ds_{\epsilon}$$

• Change of Variables = Change in Domain

$$dJ_{1}(\Omega)[V] = \int_{\Omega} \frac{d}{d\epsilon} \bigg|_{\epsilon=0} \Big[f(\epsilon, T_{\epsilon}(x)) \cdot |\det DT_{\epsilon}(x)| \Big] dx$$

$$dJ_{2}(\Omega)[V] = \int_{\Gamma} \frac{d}{d\epsilon} \bigg|_{\epsilon=0} \Big[g(\epsilon, T_{\epsilon}(s)) \cdot |\det DT_{\epsilon}(s)| || (DT_{\epsilon}(s))^{-T} n(s)||_{2} \Big] ds$$

The Shape Derivative (Weak vs Strong)

• Material Derivative: $df[V] := \frac{d}{d\epsilon} \Big|_{\epsilon=0} f(\epsilon, T_{\epsilon}(x)) = \langle \nabla f, V \rangle + f'[V]$ • Local / Shape Derivative: $f'(x)[V] := \frac{\partial}{\partial \epsilon} f(0, x)$

$$dJ_{1}(\Omega)[V] = \int_{\Omega} f(0, x) \operatorname{div} (V) + \frac{d}{d \epsilon} \Big|_{\epsilon=0} f(\epsilon, T_{\epsilon}(x)) d x$$

$$= \int_{\Omega} f \operatorname{div} V + df[V] d x \quad (Weak/Volume/Distributed Formulation)$$

$$= \int_{\Omega} \operatorname{div} (fV) + f'[V] d x = \int_{\Gamma} \langle V, n \rangle f d s + \int_{\Omega} f'[V] d x \quad (Surface Formulation)$$

$$dJ_{2}(\Omega)[V] = \int_{\Gamma} g \operatorname{div}_{\Gamma} V + dg[V] d s \quad (Weak/Volume/Distributed Formulation)$$

$$V \underset{\Gamma}{\operatorname{normal}} \int_{\Gamma} \operatorname{div}_{\Gamma} (gV) + \langle V, n \rangle \frac{\partial g}{\partial n} + g'[V] d s$$

$$= \int_{\Gamma} \langle V, n \rangle \left[\frac{\partial g}{\partial n} + \kappa g \right] + g'[V] d s$$

- if *f* or *g* is "glued to mesh" (i.e. FEM function), then df[V] = f'[V].
- if f or g is "fixed w.r.t. V", then f'[V] = 0.
- Material derivative typically same regularity as state (Berggren, 2010)
- Correction terms make surface formulation exact (Berggren, 2010)

Dido's Problem

Find shape of maximum volume for given surface:

$$\max_{\Omega} J(\Omega) := \int_{\Omega} 1 \, \mathrm{d} x$$

s.t.
$$\int_{\Gamma} 1 \, \mathrm{d} s = A_0$$

Lagrangian:

$$F(\Omega, \lambda) = \int_{\Omega} -1 \, \mathrm{d} \, x + \lambda \left(\int_{\Gamma} 1 \, \mathrm{d} \, s - A_0 \right)$$
$$dF(\Omega, \lambda)[V] = \int_{\Gamma} \langle V, n \rangle \left[-1 + \lambda \kappa \right] \, \mathrm{d} \, s \stackrel{!}{=} 0 \quad \forall V$$

Because $\lambda \in \mathbb{R}$: $\kappa = \frac{1}{\lambda} \in \mathbb{R}$. Thus, curvature constant! Optimality fulfilled by sphere!!

Stephan Schmidt

Dido's Problem (Gradient Descent + Newton)

Geometrically Inverse Problems

Regularization, Approximate Newton, H¹-Descent

Shape-descent in H^1 / Sobolev Gradient Method / Approximate Newton can all be motivated by surface area penalization:

$$R(\Gamma) = \int\limits_{\Gamma} 1 \, \mathrm{d}\, s$$

Then:

$$dR(\Gamma)[V] = \int_{\Gamma} \langle V, n
angle \kappa \, \mathrm{d} \, s$$
 Curvature Flow, Minimal Surface
 $d^2R(\Gamma)[V, W] = \int_{\Gamma} \langle \nabla_{\Gamma} \langle V, n
angle, \nabla_{\Gamma} \langle W, n
angle
angle + \langle V, n
angle \langle W, n
angle \kappa^2 \, \mathrm{d} \, s$

Shape Linearization of General Conservation Law

Hyperbolic PDE:

 $\dot{arphi} + {
m div} \, F(arphi) = {
m 0}$

Find $\varphi'[V]$ such that

$$0 = \int_{0}^{T} \int_{\Gamma} \langle V, n \rangle [\langle \lambda, \dot{\varphi} \rangle - \langle F(\varphi), \nabla \lambda \rangle] \, \mathrm{d} \, s \, \mathrm{d} \, t \\ + \int_{0}^{T} \int_{\Gamma} \langle V, n \rangle [\langle \nabla(\lambda \cdot F_{\mathsf{b}}^{*}(\varphi, n)), n \rangle \\ + \kappa (\lambda \cdot F_{\mathsf{b}}^{*}(\varphi, n) - D_{n}(\lambda \cdot F_{\mathsf{b}}^{*}(\varphi, n)) \cdot n) + \operatorname{div}_{\Gamma} (D_{n}^{T}(\lambda \cdot F_{\mathsf{b}}^{*}(\varphi, n)))] \, \mathrm{d} \, s \, \mathrm{d} \, t \\ + \int_{0}^{T} \int_{\Omega} \langle \lambda, \dot{\varphi}'[V] \rangle - \langle DF(\varphi) \varphi'[V], \nabla \lambda \rangle \, \mathrm{d} \, x \, \mathrm{d} \, t + \int_{0}^{T} \int_{\Gamma} \langle \lambda, D_{\varphi} F_{\mathsf{b}}^{*}(\varphi, n) \varphi'[V] \rangle \, \mathrm{d} \, s \, \mathrm{d} \, t$$

(Existence Results: Cagnol/Eller/Marmorat/Zolésio):

Stephan Schmidt

Adjoint equation can be read from the shape-linearized equation: Find λ such that

$$0 = \int_{0}^{T} \int_{\Omega} \langle -\dot{\lambda}, \varphi'[V] \rangle - \langle \varphi'[V], D^{T}F(\varphi)\nabla\lambda \rangle \, \mathrm{d}x \, \mathrm{d}t \\ + \int_{0}^{T} \int_{\Gamma} \langle \varphi'[V], D_{\varphi}^{T}F_{\mathrm{b}}^{*}(\varphi, n) \cdot \lambda \rangle \, \mathrm{d}s \, \mathrm{d}t \\ + \int_{0}^{T} \int_{\Gamma_{\mathrm{i/o}}} \langle B^{T}(n)B(n) \cdot (\varphi - \varphi_{\mathrm{meas}}), \varphi'[V] \rangle \, \mathrm{d}s \, \mathrm{d}t$$

 \Rightarrow Flux for adjoint can be read: $D_{\varphi}^{T}F^{*}(\varphi, n) \cdot \lambda$

Shape Derivative for Tomography Problems

Maxwell (Existence Results: Cagnol/Eller/Marmorat/Zolésio):

$$dJ(H, E, \Omega)[V] = \int_{0}^{T} \int_{\Gamma_{\text{inc}}} \langle V, n \rangle \left[\langle \lambda_{H}, \dot{H} \rangle + \frac{1}{\mu} \langle E, \text{curl } \lambda_{H} \rangle + \langle \lambda_{E}, \dot{E} \rangle - \frac{1}{\epsilon} \langle H, \text{curl } \lambda_{E} \rangle + \frac{\sigma}{\epsilon} \langle \lambda_{E}, E \rangle \right] \, \mathrm{d} \, s \, \mathrm{d} \, t \\ + \int_{0}^{T} \int_{\Gamma_{\text{inc}}} \langle V, n \rangle \mathrm{div} \, \left(Zc(H \times \lambda_{E}) \right) \, \mathrm{d} \, s \, \mathrm{d} \, t$$

Horn/Linear Wave:

$$dJ(u, p, \Omega)[V] = \int_{0}^{T} \int_{\Gamma_{horn}} \langle V, n \rangle \left[\langle \lambda_{u}, \dot{u} \rangle - p \operatorname{div} \lambda_{u} + \lambda_{p} \dot{p} - c^{2} \langle u, \nabla \lambda_{p} \rangle \right] \, \mathrm{d} \, s \, \mathrm{d} \, t \\ + \int_{0}^{T} \int_{\Gamma_{horn}} \langle V, n \rangle \operatorname{div} \left(c^{2} \lambda_{p} \cdot u \right) \, \mathrm{d} \, s \, \mathrm{d} \, t$$

"Backwards in time" adjoint equations for (λ_H, λ_E) and (λ_u, λ_p)

Stephan Schmidt

Obstacle Without Antenna

- 4.1 12.3 Ghz SINC-puls
- 2.4 7.3 cm waves, 3.65 cm obstacle

Optimal Emitter for Acoustics

Boundary Data Compression: $3.5\cdot10^9$ unknowns: 26 TB to 3.26 GB, 3 Months on 48 CPUs $_{\text{(S., Wadbro, Berggren, 2016)}}$

Stephan Schmidt

Geometrically Inverse Problems

3D Euler Flow: VELA

$$d^2 J_1[V, W] = \int_{\Omega} f \operatorname{div} V \operatorname{div} W - f \operatorname{tr}(DVDW)$$

 $+ df[V] \operatorname{div} W + df[W] \operatorname{div} V + d^2 f[V, W] \, \mathrm{d} x$

• Material and Spatial Derivatives do not commute:

d(Df)[V] = Ddf[V] - DfDV

- Excessively long expressions with normal, curvature or PDEs
- Typically rank deficient

One-Shot Volume Hessian CFD (joint with S. Funke, J. Dokken, SIMULA)

Incompressible CFD cooling and tidal turbine placement

$$\min_{(u,p,\Omega)} E_{NS}(u,p,\Omega) := \frac{1}{2} \int_{\Omega} \mu \sum_{j,k=1}^{3} \left(\frac{\partial u_k}{\partial x_j} \right)^2 dA$$

subject to

$$-\mu\Delta u + \rho u \nabla u + \nabla p = 0 \quad \text{in} \quad \Omega$$

div $u = 0$
$$u = u_{+} \quad \text{on} \quad \Gamma_{+}$$

$$u = 0 \quad \text{on} \quad \Gamma_{0}$$

$$pn - \mu \frac{\partial u}{\partial n} = 0 \quad \text{on} \quad \Gamma_{-}$$

FEM-Multimesh Implementation

Automatic Shape Derivatives in FEniCS/UFL

- Change expression into "maximally expanded form"
- Sort all sums closest to integral
- Apply rules to each sub-branch
- Pattern Recognition Problems
- Agument UFL derivatives in dolfin-adjoint/pyadjoint with release 2018.1

Freely Available: www.bitbucket.org/Epoxid/femorph

Weak Navier–Stokes Shape Derivative

Optimality:

$$0 = \int_{\Omega} \|\nabla u\|^{2} \operatorname{div} V + 2\langle (DV)^{T} \nabla u, \nabla u \rangle - \mu \langle (DV)^{T} \nabla u, \nabla \lambda^{u} \rangle$$
$$- \mu \langle \nabla u, (DV)^{T} \nabla \lambda^{u} \rangle - \rho \langle \lambda^{u}, DuDVu \rangle + \rho \operatorname{tr}(D\lambda^{u}DV) - \lambda^{\rho} \operatorname{tr}(DuDV) \, \mathrm{d} \, x$$

Use adjoint to eliminate material derivatives: Find $(\lambda^{u}, \lambda^{p})$ such that:

$$0 = \int_{\Omega} 2\langle \nabla(du), \nabla u \rangle + \mu \langle \nabla(du), \nabla \lambda^{u} \rangle + \rho[\langle \lambda^{u}, D(du)u \rangle + \langle \lambda^{u}, Du \cdot du \rangle]$$

- $dp \cdot div \lambda^{u} + \lambda^{p} div du dx$, for all (du, dp) and Dirichlet BCs

Not shown: Volume and Centroid, Hessian (MUCH too long) See also:

- (Yang, Stadler, Moser, Ghattas (2011))
- (Brandenburg, Lindemann, Ulbrich, Ulbrich (2012))

SQP Strategy

- Build the full KKT-System (state + shape + adjoint)
- No approximations

Volume Hessian has large Kernel:

• SQP: Find W, such that

 $\textit{KKT}(\textit{V},\textit{W},...) + \langle\textit{V},\textit{W}\rangle_{\Omega} + 0.1 \langle \nabla\textit{V}, \nabla\textit{W}\rangle_{\Omega} = \textit{dL}(\textit{V},...)$

- Testfunction: V, Trialfunction W
- KKT and *dL* generated with automatic symbolic calculation

Mesh Defo:

- Boundary trace of *W* as Dirichlet BC in Laplace mesh deformation
- Inexact PDE ⇒ Spurious volume movement (One Shot)

SQP / Newton Results

Validation of the Hessian: (joint with J. Dokken, SIMULA)

Numerical tests have shown that for certain types of integrals, the Taylor expansion can be truncated after the Hessian with no error!!

Validation of the Hessian: (joint with J. Dokken, SIMULA)

Numerical tests have shown that for certain types of integrals, the Taylor expansion can be truncated after the Hessian with no error!!

Suppose df[V] = 0. Then, in 1D:

$$d^{2} J(\Omega)[V, W] = \int_{\Omega} \operatorname{div} V \operatorname{div} W - \operatorname{tr}(DV DW) d x$$
$$= \int_{\Omega} \frac{\partial V}{\partial x} \frac{\partial W}{\partial x} - \frac{\partial V}{\partial x} \frac{\partial W}{\partial x} d x = 0 \quad \forall V, W$$

What about 2D?

3rd order shape derivative:

$$\begin{aligned} d^{3}J(\Omega)[V, W, X] \\ &= \int_{\Omega} f \text{div } V \text{div } W \text{div } X - f \operatorname{tr}(DV DX) \text{div } W - f \operatorname{tr}(DW DX) \text{div } V \\ &+ f \operatorname{tr}(DV DX DW + DV DW DX) \\ &+ df[V] \text{div } W \text{div } X + df[W] \text{div } V \text{div } X + df[X] \text{div } V \text{div } W \\ &- df[X] \operatorname{tr}(DV DW) - df[V] \operatorname{tr}(DW DX) - df[W] \operatorname{tr}(DV DX) \\ &+ d^{2}f[V, X] \text{div } (W) + d^{2}f[W, X] \text{div } (V) + d^{2}f[V, W] \text{div } (X) + d^{3}f[V, W, X] \ d x \end{aligned}$$

Suppose df[V] = 0. Then what?

$$\operatorname{tr}(DA DB)\operatorname{div} C = \left(\frac{\partial a_1}{\partial x_1}\frac{\partial b_1}{\partial x_1} + \frac{\partial a_1}{\partial x_2}\frac{\partial b_2}{\partial x_1} + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_2}{\partial x_2}\right) \left(\frac{\partial c_1}{\partial x_1} + \frac{\partial c_2}{\partial x_2}\right) \\ = \frac{\partial a_1}{\partial x_1}\frac{\partial b_1}{\partial x_1}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_1}{\partial x_1}\frac{\partial b_1}{\partial x_1}\frac{\partial c_2}{\partial x_2} + \frac{\partial a_1}{\partial x_2}\frac{\partial b_2}{\partial x_1}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_1}{\partial x_2}\frac{\partial b_2}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_1}{\partial x_2}\frac{\partial b_2}{\partial x_1}\frac{\partial c_2}{\partial x_2} \\ + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2}\frac{\partial c_2}{\partial x_2} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_2}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_2}{\partial x_2}\frac{\partial c_2}{\partial x_2} \\ + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2}\frac{\partial c_2}{\partial x_2} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_2}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_2}{\partial x_2}\frac{\partial c_2}{\partial x_2} \\ + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2}\frac{\partial c_2}{\partial x_2} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_2}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_2}{\partial x_2}\frac{\partial c_2}{\partial x_2} \\ + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2}\frac{\partial c_2}{\partial x_2} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_2}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_2}{\partial x_2}\frac{\partial c_2}{\partial x_2} \\ + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_1}{\partial x_2}\frac{\partial c_2}{\partial x_2} + \frac{\partial a_2}{\partial x_2}\frac{\partial c_2}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2}\frac{\partial b_2}{\partial x_2}\frac{\partial c_2}{\partial x_2} \\ + \frac{\partial a_2}{\partial x_1}\frac{\partial b_1}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2}\frac{\partial c_2}{\partial x_2}\frac{\partial c_2}{\partial x_2} + \frac{\partial a_2}{\partial x_2}\frac{\partial c_2}{\partial x_2}\frac{\partial c_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2}\frac{\partial c_2}{\partial x_2}\frac{\partial c_2}{\partial x_2} \\ + \frac{\partial a_2}{\partial x_2}\frac{\partial a_2}{\partial x_1}\frac{\partial a_2}{\partial x_1}\frac{\partial a_2}{\partial x_2}\frac{\partial c_2}{\partial x_2} + \frac{\partial a_2}{\partial x_2}\frac{\partial c_2}{\partial x_2}$$

Sum up all similar terms... get zero!

Proposition:

If the material derivatives vanish, then the n + 1 directional shape derivative in *n*-dimensions is always zero.

The Regularization Term (joint with R. Herzog, J.Vidal-Nuñez, R. Bergmann, M. Herrmann)

Example: Geoelectrical Impedance Tomography:

Minimize $\frac{1}{2} \sum_{i=1}^{r} \int_{\Gamma_2} |u_i - z_i|^2 \, ds + \beta \, R(\Gamma_1)$ s.t. $\begin{cases} -\Delta u_i = 0 & \text{in } \Omega, \\ \frac{\partial u_i}{\partial n} = 0 & \text{on } \Gamma_1, \\ \frac{\partial u_i}{\partial n} + \alpha \, u_i = f_i & \text{on } \Gamma_2 \end{cases}$

- *z_i* given measurement data
- Previously:

R surface area:

Laplace Smoothing/Curvature Flow

- Idea: Regularization to favor kinks
- Idea: Total Variation of the Normal!

Total Variation for Surfaces and Manifold S^2

Classical Total Variation:

$$|u|_{TV(\Omega)} := \int_{\Omega} \|\nabla u\|_{2} \, \mathrm{d} \, x = \int_{\Omega} \left(\|(Du) \, e_{1}\|^{2} + \|(Du) \, e_{2}\|^{2} \right)^{\frac{1}{2}} \, \mathrm{d} \, x$$
$$|u|_{DTV(\Omega)} := \sum_{T} \int_{T} \|\nabla u\|_{2} \, \mathrm{d} \, x + \sum_{E} \int_{E} \|\|u\|\| \, \mathrm{d} \, s$$
$$T^{+}$$
$$T^{-}$$
$$\stackrel{r=0}{=} \sum_{E} |E| \, |u^{+} - u^{-}|$$

New difficulty here: Γ is a manifold and *n* maps to S^2

$$|n|_{TV(\Gamma)} := \int_{\Gamma} \left(\| (D_{\Gamma}n) \xi_1 \|_{\mathfrak{g}}^2 + \| (D_{\Gamma}n) \xi_2 \|_{\mathfrak{g}}^2 \right)^{1/2} \mathrm{d} s$$
$$|n|_{DTV(\Gamma)} := \sum_{E} |E| \, d(n_E^+, n_E^-) = \sum_{E} |E| \, \left| \log_{n_E^+} n_E^- \right|_2$$

F

Properties of $|n|_{TV(\Gamma)}$ and $|n|_{DTV(\Gamma)}$

Let $\{\Gamma_{\varepsilon}\}$ denote a family of smooth approximations of Γ_h obtained by mollification, with normal vector fields n_{ε} . Then

$$|n_{\varepsilon}|_{TV(\Gamma_{\varepsilon})} o |n|_{DTV(\Gamma_{h})}$$
 as $\varepsilon \searrow 0$.

Proof: Utilize different convergence orders for edges and vertex caps

Bergmann, Herrmann, Herzog, Schmidt, Vidal-Núñez (SPP 1962 preprint, in review)

Stephan Schmidt

Geometrically Inverse Problems

Properties of $|n|_{TV(\Gamma)}$ and $|n|_{DTV(\Gamma)}$

Properties of $|n|_{TV(\Gamma)}$:

Spheres are stationary points among all surfaces Γ of constant area.

Proof: By construction: Derive shape derivative and use that integrand is spatially constant on a sphere

Properties of $|n|_{TV(\Gamma)}$ and $|n|_{DTV(\Gamma)}$

Properties of $|n|_{TV(\Gamma)}$:

Spheres are stationary points among all surfaces Γ of constant area.

Proof: By construction: Derive shape derivative and use that integrand is spatially constant on a sphere

Properties of $|n|_{DTV(\Gamma)}$:

The icosahedron and the cube with crossed diagonals are stationary points within the class of triangulated surfaces Γ_h of constant area and identical connectivity.

Proof: By construction

Bergmann, Herrmann, Herzog, Schmidt, Vidal-Núñez (in review)

Stephan Schmidt

Sketch of Proof for Continuous Case

Same strategy as with Dido's Problem:

$$g(\varepsilon, \mathbf{s}_{\varepsilon}) = \left(k_{1,\varepsilon}^{2}(\mathbf{s}_{\varepsilon}) + k_{2,\varepsilon}^{2}(\mathbf{s}_{\varepsilon})\right)^{\frac{1}{2}} = \left(\left|\left(D_{\Gamma}n_{\varepsilon}\right)\xi_{1,\varepsilon}\right|_{\mathfrak{g}}^{2} + \left|\left(D_{\Gamma}n_{\varepsilon}\right)\xi_{2,\varepsilon}\right|_{\mathfrak{g}}^{2}\right)^{\frac{1}{2}}$$

Shape/Material derivative:

$$g'[V] \stackrel{\text{tangent argument}}{=} d g[V] = \frac{1}{g(s)} \sum_{i=1}^{2} \mathfrak{g}((D_{\Gamma}n) \xi_{i}, d[(D_{\Gamma}n) \xi_{i}][V])$$

Tangents with Gram-Schmidt:

$$d\xi_{1}[V] = (DV)\xi_{1} - (\xi_{1}^{\top}(DV)\xi_{1})\xi_{1}$$

$$d\xi_{2}[V] = (DV)\xi_{2} - (\xi_{2}^{\top}(DV)\xi_{2})\xi_{2} - (\xi_{1}^{\top}(DV + DV^{\top})\xi_{2})\xi_{1}.$$

On sphere: $g(s) = (\kappa_1^2(s) + \kappa_2^2(s))^{\frac{1}{2}} = \frac{\sqrt{2}}{r}$

Shape Derivative Lagrangian with tangential Stokes:

$$\mathrm{d}\,\mathcal{L}(\mathbf{0},\lambda)[V] = \left[\frac{2}{r}\left(\frac{1}{\sqrt{2}r} + \lambda\right)\right] \int_{\Gamma} \langle V, n \rangle \,\,\mathrm{d}\,s$$

ADMM Optimization for $|n|_{DTV(\Gamma)}$

Not (shape-) differentiable:

$$\min_{\Gamma} \frac{1}{2} |u(\Gamma) - z|_2^2 + \beta |n|_{DTV(\Gamma)}$$

Idea: ADMM: Solve independently for Γ , *d* and *b*

$$\min_{\Gamma,d} \frac{1}{2} |u(\Gamma) - z|_2^2 + \beta \sum_E |E| |d_E|_2 + \frac{\lambda}{2} \sum_E |E| |d_E - \log_{n_E^+} n_E^- - b_E|_2^2$$

• Γ-problem: smooth shape problem, adjoint calculus

• Parallel transport:
$$b_E \in \mathcal{T}_{n_F^+}\mathcal{S}^2$$

• *d*-problem:

$$d_E = \operatorname{shrink}(b_E + \log_{n_E^+} n_E^-, \frac{\beta}{\lambda})$$

• *b*-update:

$$b_E := b_E + \log_{n_E^+} n_E^- - d_E$$

Geoelectric Reconstruction of a Cube

input noise

Fully integrated DG-Suite

$\begin{array}{l} \text{3D Scan} \Rightarrow \text{FEM/DG/Optimization} \\ (\text{FEniCS}) \Rightarrow \text{3D Print} \end{array}$

FEM vs Computer Graphics

(Source: Wikipedia)

Computer Graphics: Texture Mapping: Multiple Pixels per Triangle on Surface

Here:

- Convert Geometry + Texture (Bitmap) to DG-FEM on Surface
- Information in Higher Order or Refinement!

Stephan Schmidt

Geometrically Inverse Problems

Common 3D Scan Problems

Noisy Geometry: Tracking Term Missing Geometry: Subdomain Noisy/Missing Textures: No shape, different manifold

Common 3D Scan Problems: Results

Noisy Geometry

Missing Geometry

Noisy/Missing Textures

Conclusions and Outlook

- Inverse Problems and Surfaces with Kinks!
- Optimization for Variable Geometries and HPC
- 1st, 2nd and 3rd order Shape Derivatives
- |n|_{TV(Γ)} and |n|_{DTV(Γ)} non-smooth reconstructions

Geometrically Inverse Problems