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The Obstacle Problem

We consider the following variational inequality:

Find y ∈ Kψ : 〈Ly − f (u), z − y〉H−1(Ω),H1
0 (Ω) ≥ 0 ∀ z ∈ Kψ

I Kψ := {z ∈ H1
0 (Ω) : z ≥ ψ q.e.}

I ψ quasi upper-semicontinuous
with Kψ 6= ∅

I L ∈ L(H1
0 (Ω), H−1(Ω)) coercive

and strictly T-monotone, i.e.,

〈L(v − z), (v − z)+〉H−1(Ω),H1
0 (Ω) > 0

∀ v , z ∈ H1
0 (Ω), (v − z)+ 6= 0

Ω

obstacleψ

membrane

external forces
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The Obstacle Problem: Assumptions

Find y ∈ Kψ : 〈Ly − f (u), z − y〉H−1(Ω),H1
0 (Ω) ≥ 0 ∀ z ∈ Kψ

Assumptions:
I f : U → H−1(Ω) Lipschitz continuous, continuously differentiable, monotone
I U partially ordered, separable Banach space

I V partially ordered, separable Banach space, V≥0 has an interior point
I continuous and order preserving embedding ι : V ↪→ U with dense image in U
I prototype examples:

I f = id on U = H−1(Ω)
I f embedding of U = L2(Ω) into H−1(Ω)
I f : Rn → H−1(Ω) “finite-dimensional”, U = Rn
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Notation: Solution Operator and Subsets of Ω

I solution operator S : U → H1
0 (Ω) of the obstacle problem

I Lipschitz continuous and monotone

Subsets of Ω

I active set
A(u) = {ω ∈ Ω : S(u)(ω) = ψ(ω)}

I inactive set I(u) = Ω \ A(u)
I strictly active set

As(u) = f-supp(LS(u)− f (u)) ⊂ A(u) (G.
Wachsmuth, 2014)
 (fine) support of the Borel measure
associated with LS(u)− f (u) ∈ H−1(Ω)+

I weakly active set A(u) \ As(u)

Ω

ψ

S(u)

A(u)I(u) As (u) A(u) \ As (u)
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Outline

Derivation of a Generalized Derivative

Related Problems, Applications and Extensions

Remarks and Conclusion
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Motivation

Goal
Find an element of a suitable set of generalized derivatives for the solution
operator of the infinite dimensional obstacle problem.

I can be used for infinite dimensional bundle methods (current cooperation with
Hertlein, M. Ulbrich within SPP 1962) for optimal control of the obstacle
problem

I gives theoretical insights into the problem structure of the obstacle problem

I results may be adapted and transferred to related problems

 second part of the talk
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Generalized Differential

I X separable, Y separable, reflexive

I T : X → Y locally Lipschitz

I DT := {x ∈ X : T Gâteaux differentiable in x}

Bouligand generalized differential

∂BT (u) :=
{
Σ ∈ L (X , Y ) : T ′ (un)→ Σ in the strong operator

topology for some sequence (un)n∈N ⊆ DT with lim
n→∞

un = u
}

I strong operator topology: T ′(un)v → Σv in Y for all v ∈ X
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Strategy for Finding an Element ξ in ∂BS(u)

I characterize Gâteaux derivative S′(u) in points u of differentiability
(characterization via (in)active sets)

I find a sequence un → u with a certain property (e.g. monotonicity) such that

I the property of the sequence guarantees that active sets are decreasing

I we can show that the derivatives
(
S′(un)

)
n∈N converge to an element

ξ ∈ L(U, H1
0 (Ω)) with respect to the strong operator topology

I we can characterize the limit ξ exploiting the monotonicity properties

I S is Gâteaux differentiable in each un  Rademacher type argument

 then ξ is an element of ∂BS(u)
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Differentiability Properties

I S is directionally differentiable with directional derivative S′(u; h) in direction h
given by the unique solution ξ to

Find ξ ∈ KKψ (f (u)) : 〈Lξ − f ′(u; h), z − ξ〉 ≥ 0 ∀ z ∈ KKψ (f (u))

(Mignot, 1976)

I structure of the critical cone KKψ (f (u)) = TKψ (S(u)) ∩ (LS(u)− f (u))⊥:

KKψ (u) =
{

z ∈ H1
0 (Ω) : z ≥ 0 q.e. on A(u), z = 0 q.e. on As(u)

}
I possible source of nondifferentiability: A(u) 6= As(u) (violation of strict

complementarity condition)
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Points of Gâteaux Differentiability

Assume S is Gâteaux differentiable in u, then S′(u; h) also uniquely solves the VI
with KKψ (f (u)) replaced by

I the largest linear subset of KKψ (f (u)):

H1
0 (I(u)) =

{
z ∈ H1

0 (Ω) : z = 0 q.e. on A(u)
}

I the linear hull of KKψ (f (u)):

H1
0 (Ω \ As(u)) =

{
z ∈ H1

0 (Ω) : z = 0 q.e. on As(u)
}

I all linear subsets H1
0 (D(u)) for quasi-open sets I(u) ⊆ D(u) ⊆ Ω \ As(u)
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Points of Gâteaux Differentiability

VE for the Gâteaux Derivative
In points of differentiability, S′(u; h) is the solution ξ of the VE/ Dirichlet problem on
a quasi-open domain

Find ξ ∈ H1
0 (I(u)) : 〈Lξ − f ′(u; h), z〉 = 0 ∀ z ∈ H1

0 (I(u)).

 need to investigate convergence properties of solutions to VIs/ VEs for a
sequence of sets

(
H1

0 (I(un))
)

n∈N to obtain an element of ∂BS(u)
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Tool: Convergence of Solutions of VIs/ VEs

Theorem (Rodrigues, 1987)
Let Cn, C be nonempty, closed, convex subsets of X with Cn → C in the sense of
Mosco and let hn → h in X∗. Then the unique solutions (ξn)n∈N of

Find ξn ∈ Cn : 〈Lξn − hn, z − ξn〉X∗,X ≥ 0 ∀ z ∈ Cn

converge to the solution ξ of the limit problem

Find ξ ∈ C : 〈Lξ − h, z − ξ〉X∗,X ≥ 0 ∀ z ∈ C.
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Influence of Monotonicity

Ω

ψ

I piecewise quadratic
obstacle ψ

I S(0) in red
I strict complementarity

condition is not satisfied in
u = 0

but in the instances
plotted for u ≤ 0 and u ≥ 0

I S(u) for u ≤ 0 in green
I S(u) for u ≥ 0 in blue
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Influence of Monotonicity:
The Sets A(u)

Ωψ

I ‘stable’ from below
I ‘unstable’ from above

 Mosco convergence of the sets(
H1

0 (I(un))
)

n∈N towards H1
0 (I(0))

might not hold for a decreasing
sequence (un)n∈N converging to 0

I opposite behavior occurs for the
sets H1

0 (Ω \ As(un))
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Mosco Convergence of the Sets H1
0(I(un))

Theorem (R., Ulbrich, SICON 2019)
Let (un)n∈N be an increasing sequence such that un → u. Then
H1

0 (I(un))→ H1
0 (I(u)) in the sense of Mosco.

Proof strategy:
I consequence of the monotonicity structures of the sets H1

0 (I(un)) and the
Lipschitz continuity of S

I use tools and approximation results for elements in H1
0 (I(u)) (quasi-converings

etc.) (Kilpeläinen, Maly, 1992)
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A Generalization of Rademacher’s Theorem

Theorem (Mignot, 1976; Aronszajn, 1976)
Let X be a separable Banach space and let Y be a Hilbert space. Let S be a
Lipschitz function from X into Y . Then the set of points in X where S is Gâteaux
differentiable is a dense set.

Corollary
Let u ∈ U be arbitrary. Then there is an increasing sequence (un)n∈N such that S is
differentiable in each un and un → u.
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Overview

I for u ∈ U we find an approximating increasing sequence of points (un)n∈N
where S is differentiable

I the monotone sequence of sets
(
H1

0 (I(un))
)

n∈N converges to H1
0 (I(u))

I for each h ∈ U the directional derivatives (S′(un; h))n∈N for (un)n∈N increasing
converge to the solution ξ = ξ(u; h) of the variational equation

Find ξ ∈ H1
0 (I(u)) : 〈Lξ − f ′(u; h), z〉 = 0 ∀ z ∈ H1

0 (I(u))

as a consequence of the Mosco convergence

 ξ(u; ·) ∈ L(U, H1
0 (Ω)) is an element of the generalized differential ∂BS(u)
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Adjoint Representation of the Subgradient

I J : H1
0 (Ω)× U → R continuously differentiable

I consider reduced objective function Ĵ(u) := J(S(u), u) for optimal control of the
obstacle problem

I ∂C Ĵ(u) Clarke subdifferential of Ĵ in u ∈ U

Adjoint Representation
Let q be the unique solution of the VE

q ∈ H1
0 (I(u)) : 〈L∗q, v〉 = 〈Jy (S(u), u), v〉 ∀ v ∈ H1

0 (I(u)),

then we have

f ′(u)∗q + Ju(S(u), u) ∈ ∂C Ĵ(u).
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Optimal Control of a Stochastic VI:
Problem Setting and Assumptions
Joint work with L. Hertlein and M. Ulbrich.

Parameter Dependent Obstacle Problem

Find yξ ∈ Kψ : 〈Lξyξ − f (ξ, u), z − yξ〉H−1(Ω),H1
0 (Ω) ≥ 0 ∀ z ∈ Kψ

I (Ξ,A, P) measure space, Ξ separable Banach space

I keep the assumptions on U as before
I f (ξ, ·) monotone and continuously differentiable
I f (·, u) and f (ξ, ·) equi-Lipschitz continuous
I operators (Lξ)ξ∈Ξ uniformly coercive
I Ξ 3 ξ 7→ Lξy ∈ H−1(Ω) equi-Lipschitz continuous for all y ∈ H1

0 (Ω)
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Optimal Control of a Stochastic VI:
Problem Setting and Possible Approaches

Parameter Dependent Obstacle Problem

Find yξ ∈ Kψ : 〈Lξyξ − f (ξ, u), z − yξ〉H−1(Ω),H1
0 (Ω) ≥ 0 ∀ z ∈ Kψ

I Sξ : U → H1
0 (Ω) corresponding solution operator

I Task: construct Clarke subgradient for Ĵ(u) :=
∫
Ξ

Jξ(Sξ(u)), u) dP(ξ)

I Intuitive idea: use formula ∂C Ĵ(u) ?=
∫
Ξ
∂C Ĵξ(u) dP(ξ)

I Problem: regularity of the maps Ĵξ(·) in u in the sense of Clarke (Clarke, 1990)
is needed  

I Remedy: find common points of differentiability for almost all ξ ∈ Ξ to
exchange limits and the integral
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Optimal Control of a Stochastic VI:
Differentiability

I Lipschitz continuity of Ξ× U 3 (ξ, u)→ Sξ(u) ∈ H1
0 (Ω) for P-a.a. ξ ∈ Ξ

I exists Lipschitz continuous T on Ξ× U with T (ξ, u) = Sξ(u) for P-a.a. ξ ∈ Ξ

Assumption
There is a nondegenerate Gaussian measure P on Ξ such that P � P.

I Example: Ξ finite-dimensional and P has any nonnegative function as density
w.r.t. the Lebesgue measure λd

Lemma
The map T : Ξ× V → H1

0 (Ω) is Gâteaux differentiable except on a P ⊗ V-null set
in Ξ× V. Here, V is an arbitrary nondegenerate Gaussian measure on V (↪→ U).

I holds since set of nondifferentiability is Gauss null, i.e., each nondegenerate
Gaussian measure vanishes on it (Benyamini, Lindenstrauß, 2000)
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Optimal Control of a Stochastic VI:
Result

Corollary
There is an increasing sequence (un)n∈N ⊆ U converging to u where T (ξ, ·) = Sξ(·)
is differentiable for P-almost all ξ ∈ Ξ.

Theorem (Hertlein, R., Ulbrich, Ulbrich, 2019)

Let u ∈ U be arbitrary. A Clarke subgradient for Ĵ =
∫
Ξ

Jξ(Sξ(·), ·) is given by∫
Ξ
Σξ(u) dP(ξ), where Σξ(u) is the Clarke subgradient of Ĵξ = Jξ(Sξ(·), ·) we have

constructed in the first part of the talk.

Proof strategy:

I (un)n∈N increasing sequence of differentiability points of Sξ(·)
I exchange limit and integral to obtain differentiability of Ĵ in each un
I exchange limit and integral to obtain that lim

n→∞
Ĵu(un) =

∫
Ξ

lim
n→∞

(Ĵξ)u(un) dP(ξ)
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(Ĵξ)u(un) dP(ξ)

October 15, 2019 | Anne-Therese Rauls | 24



Optimal Control of a Stochastic VI:
Result

Corollary
There is an increasing sequence (un)n∈N ⊆ U converging to u where T (ξ, ·) = Sξ(·)
is differentiable for P-almost all ξ ∈ Ξ.

Theorem (Hertlein, R., Ulbrich, Ulbrich, 2019)

Let u ∈ U be arbitrary. A Clarke subgradient for Ĵ =
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Shape Optimization:
Problem Setting and Assumptions

Obstacle Problem Dependent on Domains

Find yτ ∈ Kψ,Ωτ : 〈−∆yτ , z − yτ 〉H−1(Ωτ ),H1
0 (Ωτ ) ≥ 0 ∀ z ∈ Kψ,Ωτ

I U = C1(Rd )d with norm
‖u‖U = ‖u‖L∞(Rd )d + ‖∇u‖L∞(Rd )d ,d

I Ωτ = τ (Ω), τ = idRd +u
I u ∈ Uρ := {u ∈ U : ‖u‖U < ρ}, ρ > 0 small enough
I Ωτ bounded domains with C1-boundary

I ψ ∈ H1(Rd ), ess supω∈Ω ψ(ω) > 0
I assume there exists δ > ρ with ψ|Gδ < 0 on

Gδ = {ω ∈ Ω : dist(ω, ∂Ω) ≤ δ}
I Kψ,Ωτ = {z ∈ H1

0 (Ωτ ) : z ≥ ψ q.e. on Ωτ},

Ω

ψ

Gδ Gδ
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Shape Optimization:
A Reformulation and Possible Approaches

I yτ = yτ ◦ τ ∈ H1
0 (Ω), ψτ = ψ ◦ τ

Reformulation of the Problem to a Problem on Ω

Find yτ ∈ Kψτ : aτ (yτ , z − yτ ) ≥ 0 ∀ z ∈ Kψτ

Here, aτ is a bilinear form resulting from applying transformation to the above
problem and Kψτ = {z ∈ H1

0 (Ω) : z ≥ ψτ}.

I S : Uρ,0 → H1
0 (Ω) solution operator of the transformed problem on

Uρ,0 = {u ∈ Uρ : supp(u) ⊂ Gδ}

I Task: find generalized derivative for S : Uρ,0 → H1
0 (Ω) at u = 0

I Strategy: use sequence of transformations that transforms active sets
monotonically
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Shape Optimization:
Key Properties and Result

Theorem (R., Ulbrich, 2019)
The solution operator of the variational equation

Find ξ ∈ H1
0 (I(0)) : aid(ξ, z) + 〈a′id(S(0), z), h〉 = 0 ∀ z ∈ H1

0 (I(0))

is a Bouligand generalized derivative of S : Uρ,0 → H1
0 (Ω) at u = 0.

Proof strategy:

I Lipschitz continuity of S on Uρ,0
I S is directionally differentiable on Uρ,0 and directional derivative is solution to

variational inequality on critical cone

{z ∈ H1
0 (Ω) : z ≥ 0 q.e. on A(u), aid +u(S(u), z) = 0}

I monotonicity of the active sets: u1, u2 ∈ Uρ,0, Ωid +u1 ⊂ Ωid +u2  A(u1) ⊃ A(u2)
I existence of differentiability points with above property
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Remarks

I it is possible to characterize the whole generalized differential for the solution
operator of the basic obstacle problem with distributed forces (no operator f )

Find y ∈ Kψ : 〈Ly − u, z − y〉H−1(Ω),H1
0 (Ω) ≥ 0 ∀ z ∈ Kψ

(R., Wachsmuth, 2019)
I also possible when using different combinations of topologies in the definition

of the generalized differential

I current work on error estimates for discretized inexact subgradients
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Conclusion

I derivation of a generalized derivative for the obstacle problem

I extension to the optimal control of a stochastic obstacle problem

I extension to a shape optimization problem for the obstacle problem
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