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Modeling issues : toward a shape optimization problem

Biological model : population dynamics

Logistic diffusive equation (Fisher-Kolmogorov 1937, Fleming 1975, Cantrell-Cosner 1989)

Introduce

; Ω ⊂ RN : bounded domain with Lipschitz boundary (habitat)

; µ : diffusion coefficient (µ > 0)

; u(t, x) : density of a species at location x and time t

; m(x) : control - intrinsic growth rate of species at location x and
Ω ∩ {m > 0} (resp. Ω ∩ {m < 0}) is the favorable (resp. unfavorable) part of habitat∫

Ω m measures the total resources in the spatially heterogeneous environment Ω
After renormalization, one is allowed to assume that

−1 ≤ m(x) ≤ κ with κ > 0 and m changes sign.

Biological model {
ut = µ∆u + u[m(x)− u] in Ω× R+,

u(0, x) ≥ 0, u(0, x) 6≡ 0 in Ω,
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Modeling issues : toward a shape optimization problem

Biological model : population dynamics

Choice of boundary conditions

∂nu = 0 on ∂Ω× R+ (no-flux boundary condition)

Here, the boundary ∂Ω acts as a barrier
; other kinds of B.C. have been considered in this study

The complete model
ut = µ∆u + u[m(x)− u] in Ω× R+,

∂nu = 0 on ∂Ω× R+,

u(0, x) ≥ 0, u(0, x) 6≡ 0 in Ω,

(; takes into account effects of dispersal and partial heterogeneity)

Yannick Privat (Univ. Strasbourg) New trends in PDE constrained optimization Linz, oct. 2019 4 / 26



Modeling issues : toward a shape optimization problem

Analysis of the model : extinction/survival condition

The complete model
ut = µ∆u + u[m(x)− u] in Ω× R+,

∂nu = 0 on ∂Ω× R+,

u(0, x) ≥ 0, u(0, x) 6≡ 0 in Ω,

Introduce the eigenvalue problem{
∆ϕ+ λmϕ = 0 in Ω,

∂nϕ = 0 on ∂Ω,
(EP)

Existence of a positive principal eigenvalue λ(m)

if
∫

Ω
m < 0, then (EP) has a unique principal eigenvalue λ(m).

if
∫

Ω
m ≥ 0, then 0 is the unique nonnegative principal eigenvalue of (EP).
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Theorem (Cantrell-Cosner 1989, Berestycki-Hamel-Roques 2005)

Let u∗ be the unique positive steady solution of the logistic equation above. One has

µ ≥ 1/λ(m) =⇒ u(t, x) −→
t→∞

0,

µ < 1/λ(m) =⇒ u(t, x) −→
t→∞

u∗(x).
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Modeling issues : toward a shape optimization problem

Comments on the eigenvalue problem (with a sign changing weight m)

Characterization of λ(m)

λ(m) is the unique principal (⇔ ϕ > 0) positive eigenvalue of the problem :{
∆ϕ+ λmϕ = 0 in Ω,

∂nϕ = 0 on ∂Ω,

Another characterization of λ(m)

λ(m) is also characterized by the min-formula :

λ(m) = inf

{∫
Ω
|∇ϕ|2∫

Ω
mϕ2 , ϕ ∈ H1(Ω),

∫
Ω

mϕ2 > 0

}
.
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Modeling issues : toward a shape optimization problem

Optimal arrangements of resources

Conclusion of this part : 2 optimal control problems

ut = µ∆u + ωu[m(x)− u]

Dynamical problem Static problem

∆ϕ+ λmϕ = 0

; species can be maintained iff µ <

1/λ(m). Hence, the smaller λ(m) is, the
more likely the species can survive

inf
m∈Mm0,κ

λ(m) (PDyn)

µ∆u∗ + u∗(m − u∗) = 0

; maximizes the total size of the popu-
lation

sup
m∈Mm0,κ

∫
Ω

u∗ (PStat)

Choice of admissible weights

Mm0,κ =

{
m ∈ L∞(Ω, [−1, κ]), |{m > 0}| > 0,

∫
Ω

m ≤ −m0|Ω|
}
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Analysis of optimal resources domains Known results about the minimizers of λ(m)

Bang-bang property of minimizers

Proposition (Lou-Yanagida 2006, Derlet-Gossez-Takac 2010)

Problem (PDyn) has a solution. Moreover, every minimizer m satisfies∫
Ω

m = −m0|Ω| and m = κ1E − 1Ω\E .

Shape optimization version of the problem

Consequence : the two following problems

inf

{
λ(m), m ∈ L∞(Ω, [−1, κ]), |{m > 0}| > 0,

∫
Ω

m ≤ −m0|Ω|
}

(1)

and
inf
{
λ(E) := λ(κ1E − 1Ω\E ), |E | = c|Ω|

}
, (2)

where c = c(m0) ∈ (0, 1), are equivalent. Moreover, each infimum is in fact a minimum.
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Analysis of optimal resources domains Known results about the minimizers of λ(m)

State of the art (Highly non-exhaustive)

Proposition (Lou-Yanagida 2006, Derlet-Gossez-Takac 2010)

Problem (PDyn) has a solution. Moreover, every minimizer m satisfies∫
Ω

m = −m0|Ω| and m = κ1E − 1Ω\E .

Dirichlet case, with no sign changement on m : symmetrization, regularity in case of
symmetry [Krein 1955, Friedland 1977, Cox 1990]

Periodic case : [Hamel-Roques 2007]

Neumann 1D case : solved [Lou-Yanagida 2006]

Robin 1D case : optimization among intervals [Hintermüller-Kao-Laurain 2012]

Dirichlet 2D case : regularity [Chanillo-Kenig-To 2008]

Numerics : [Cox, Hamel-Roques, Hintermüller-Kao-Laurain]
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Analysis of optimal resources domains Known results about the minimizers of λ(m)

Conjectures in the Neumann case

Proposition (Lou & Yanagida 2006)

In 1D (Neumann case), the only solutions of inf
{
λ(κ1E − 1Ω\E ), |E | = c|Ω|

}
are

and

(a) c = 0.2 (b) c = 0.3 (c) c = 0.5 (d) c = 0.6

Figure – Ω = (0, 1)2. Optimal domains with κ = 0.5 and c ∈ {0.2, 0.3, 0.4, 0.5, 0.6}

Conjecture (Berestycki - Hamel - Roques)

For c small enough, the free boundaries of minimizers are quarters of circles.
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Analysis of optimal resources domains New results on λ(m) : a Faber-Krahn type inequality ?

New results : in dimension N ≥ 2, is the solution a part of ball ?

inf
{
λ(E) := λ(κ1E − 1Ω\E ), |E | = c|Ω|

}
(P)

Theorem (Lamboley, Laurain, Nadin, YP)

Let assume that N ≥ 2 and ∂Ω is connected and C 1. Let E is a critical point for Problem
(P). Then, If E or its complement set in Ω is invariant by rotation, then Ω is a ball.

Theorem (Lamboley, Laurain, Nadin, YP)

Let assume that N ≥ 2 and ∂Ω = (0, 1)N . Let E is a critical point for Problem (P). Then

E has only one connected component (concentration of minimizers)

|∂E ∩ ∂Ω| > 0,

E is not a quarter of ball.
;The wording "critical" means that E satisfies the 1st order optimality conditions, i.e.

shape derivative of λ at E in direction V = 〈dλ(E),V 〉 ≥ 0,

for all smooth vector fields V : RN → RN .
It also rewrites : E is a level set of ϕ, i.e. E = {ϕ > α}.
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Analysis of optimal resources domains New results on λ(m) : a Faber-Krahn type inequality ?

Steps of the proof of Theorem 2

Assume E = B(0, r) (or more generally that E in invariant by rotation).

; Continuation in E : ϕ is radial in E : show that vij := xi∂xjϕ− xj∂xiϕ vanishes
(i 6= j) ; to that end use optimality condition.

; Continuation in Ω : ϕ is radial in Ω :
Analytic regularity and Cauchy-Kowalevski Theorem.

; Ω is a ball.
Geometrical study of the contact angle between the inscribed and circumscribed
balls of Ω and ∂Ω.
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Analysis of optimal resources domains New results on λ(m) : a Faber-Krahn type inequality ?

Neumann case with Ω = B(0, 1)

inf
{
λ(E) := λ(κ1E − 1Ω\E ), |E | = c|Ω|

}
(P)

(a) c = 0.2 (b) c = 0.3 (c) c = 0.4 (d) c = 0.5

Theorem (Lamboley, Laurain, Nadin, YP)

Let N ∈ {2, 3, 4} and Ω = B(0, 1) ⊂ RN .
Then the centered ball of volume c|Ω| is not a minimizer for Problem (P).
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Analysis of optimal resources domains New results on λ(m) : a Faber-Krahn type inequality ?

Ideas of the proof

Ω = B(0, 1), E rotationnally symmetric :

Disymmetrization procedure :

One proves : λ(Ê) <

(
5N − 4
4N

)
λ(E).
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Analysis of optimal resources domains Maximizing the total population size
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Analysis of optimal resources domains Maximizing the total population size

Minimizing the total population size (1)

sup
|E |=c|Ω|

∫
Ω

u∗ where u∗ solves the PDE
{
µ∆u∗ + u∗(κ1E − u∗) = 0 in Ω
∂nu
∗ = 0 on ∂Ω

; In this model, we always have persistence of species (i.e. u(t, ·)→ u∗ as t → +∞)

Theorem (Mazari, Nadin, YP)

Let Ω =
∏N

i=1(ai , bi ).

The problem above has a solution Eµ whenever µ is large enough.

In 1D, if µ ≥ µ∗ : Eµ is an interval meeting one extremity of Ω

In 1D, if µ is small enough, optimal domains are "fragmented".

; Similar conclusions for general domains Ω

Yannick Privat (Univ. Strasbourg) New trends in PDE constrained optimization Linz, oct. 2019 19 / 26



Analysis of optimal resources domains Maximizing the total population size

Minimizing the total population size (2)

sup
|E |=c|Ω|

∫
Ω

u∗ where u∗ solves the PDE
{
µ∆u∗ + u∗(κ1E − u∗) = 0 in Ω
∂nu
∗ = 0 on ∂Ω

; In this model, we always have persistence of species (i.e. u(t, ·)→ u∗ as t → +∞)

Theorem (Mazari, Nadin, YP)

Let Ω be a convex domain. As µ → +∞, Eµ converges in the sense of characteristic
functions to a solution of the shape optimization problem

sup
|E |=c|Ω|

∫
Ω

|∇u∞|2 where u∞ solves the PDE
{

∆u∞ + c(κ1E − c) = 0 in Ω∫
Ω
u∞ = 0, ∂nu

∞ = 0 on ∂Ω

Simulations
by courtesy
of Michel
Duprez
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Analysis of optimal resources domains Maximizing the total population size

Sketch of proof : existence of optimal shapes as µ→ +∞

Let u∗ be the solution of
{
µ∆u∗ + u∗(κ1E − u∗) = 0 in Ω
∂nu
∗ = 0 on ∂Ω

Expansion in powers of µ : expands as

u∗ = c +
û

µ
+
Rµ
µ2 ,

with û = η̂ + β, where η̂ is the unique solution of{
∆η̂ + c(κ1E − c) = 0 in Ω
∂nη̂ = 0, on ∂Ω

, with
∫

Ω

η̂ = 0

Fµ(1E ) =
∫

Ω
u∗ enjoys a convexity property whenever µ is large enough. One shows

that

d2Fµ(1E )(h, h) =
1
µ

∫
Ω

|∇ ˙̂η|2 + O

(
1
µ2

)
where ∆ ˙̂η + 1Eh = 0.

; Estimate of the remainder term by using series expansions and Sobolev type estimates
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Biased movement of species

Similar problem when adding a drift term

; We enrich the model by adding an advection term along the gradient of the habitat
quality (according to Belgacem and Cosner){

∂tu = div(∇u − αu∇m) + λu(m − u) in Ω× (0,∞),

eαm(∂nu − αu∂nm) + βu = 0 on ∂Ω× (0,∞),

This models the tendency of the population to move up along the gradient of m.

New shape optimization problem

inf
m∈Mm0,κ

λα(m),

with λα(m) = inf
ϕ∈S0

∫
Ω
eαm|∇ϕ|2∫

Ω
meαmϕ2 and S0 = {ϕ ∈ H1(Ω),

∫
Ω

meαmϕ2 > 0}
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Biased movement of species

Similar problem when adding a drift term

Theorem (1D model, Caubet, Deheuvels, YP (2017))

Assume that Ω = (0, 1). There exists β∗ > 0 such that

if β < β∗,

are the only solutions.

if β > β∗

is the only solution.

F. Caubet, T. Deheuvels, Y. Privat, Optimal location of resources for biased movement of species : the 1D case, SIAM J.

Applied Math 77 (2017), no. 6, 1876–1903.
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Biased movement of species

Similar problem when adding a drift term

Theorem (Mazari, Nadin, YP (2019))

Assume that Ω ⊂ Rn with n ≥ 2 is bounded and connected.

If the problem
inf

m∈Mm0,κ
λα(m)

has a solution m∗, then necessarily, m∗ is bang-bang (i.e. ∃E∗ ⊂ Ω s.t. m∗ = κ1E∗)

In that case, if moreover ∂E∗ is a C 2 hypersurface, then Ω is necessarily a ball.

If Ω is a ball, if α is small enough and if n = 2, 3, the centered ball is the unique
minimizer of E 7→ λα(1E ) among radial domains E with prescribed volume c|Ω|.

Open problem : case where Ω is a ball.

Existence and characterization of optimal radial domains in any dimension ?

I. Mazari, G. Nadin, Y. Privat, Shape optimization of a two-phase weighted Dirichlet eigenvalue, Preprint (2019).
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Conclusion and open problems
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Conclusion and open problems

Conclusion and open questions

On the problem inf
{
λ(E) := λ(κ1E − 1Ω\E ), |E | = c|Ω|

}
(P)

Consider the more general boundary condition

∂nu + βu = 0 on ∂Ω× R+ (partially inhospitable boundary region)

If Ω is a ball, is E a concentric ball ?

; Solved if N = 1 : yes if β is large enough, no else.
; Yes if β =∞, No if β = 0 and N ∈ {2, 3, 4}

Can ∂E ∩ Ω be a piece of sphere ?

; No if β = 0 and Ω is a square/cube

Find sufficient conditions so that ∂E ∩ ∂Ω 6= ∅,

; Expected to be true if β = 0
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Conclusion and open problems

Conclusion and open questions

Can a Faber-Krahn type inequality be expected in the Dirichlet case (β → +∞) ?

On the total population size problem sup

{∫
Ω

u∗, |E | = c|Ω|
}

(P)

Existence of bang-bang controls for small diffusivities µ ?

If the answer is yes, the minimizers are fragmented. Can we provide an estimate of
the number of connected components wrt µ ?

(a) β = 1 (b) β = 5 (c) β = 50 (d) β = 1000

Figure – Optimal domains w.r.t. β in the case α = 0 (no drift term)
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Conclusion and open problems

Thank you for your attention
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