On the use of the damped Newton method to solve direct and controllability problems for parabolic PDEs

Arnaud Münch

Laboratoire de mathématiques Blaise Pascal - Clermont-Ferrand - France

RICAM- Linz - October 2019

ongoing works with Jérome Lemoine (Clermont-Ferrand) and Irene Gayte (Sevilla)

Introduction - Main motivation

The talk discusses the approximation of solution of a controllability problem for (nonlinear) PDEs through least-squares method.

For instance, for the Navier-Stokes system: Given $\Omega \in \mathbb{R}^{d}, T>0$, find a sequence $\left\{y_{k}, p_{k}, v_{k}\right\}_{k>0}$ converging (strongly) toward to a solution (y, p, v) of

$$
\left\{\begin{array}{lr}
y_{t}-\nu \Delta y+(y \cdot \nabla) y+\nabla p=0, & \nabla \cdot y=0 \tag{1}\\
y=v, & \Omega \times(0, T), \\
y(0)=y_{0}, & \Omega \Omega \times(0, T), \\
\Omega \times\{0\}
\end{array}\right.
$$

satisfying $y(T)=u_{d}$, a trajectory (control of flows).

- Largely open question in the context of nonlinear PDEs
- Not straightforward issue, mainly because the fixed point operator (used to prove controllability result) is not a contraction !

Outline

Part 1 - Direct Problem for Steady NS - find a sequence $\left(y_{k}, p_{k}\right)_{k>0}$ converging strongly to a pair (y, p) solution of

$$
\left\{\begin{array}{lr}
\alpha y-\nu \Delta y+(y \cdot \nabla) y+\nabla p=f+\alpha g, & \nabla \cdot y=0 \tag{2}\\
y=0, & \partial \Omega
\end{array}\right.
$$

(useful to solve Implicit time schemes for Unsteady NS)
Part 2- Direct problem for Unsteady NS - find a sequence (y_{k}, p_{k}) $k>0$ converging strongly to a pair (y, p) solution of

Part 3-Controllability problem for a sub-linear (controllable) heat equation: find a sequence $\left(y_{k}, v_{k}\right)_{k>0}$ converging strongly to a pair (y, v) solution of

Outline

Part 1 - Direct Problem for Steady NS - find a sequence $\left(y_{k}, p_{k}\right)_{k>0}$ converging strongly to a pair (y, p) solution of

$$
\left\{\begin{array}{lr}
\alpha y-\nu \Delta y+(y \cdot \nabla) y+\nabla p=f+\alpha g, & \nabla \cdot y=0 \tag{2}\\
y=0, & \Omega \Omega
\end{array}\right.
$$

(useful to solve Implicit time schemes for Unsteady NS)
Part 2- Direct problem for Unsteady NS - find a sequence $\left(y_{k}, p_{k}\right)_{k>0}$ converging strongly to a pair (y, p) solution of

$$
\left\{\begin{array}{lr}
y_{t}-\nu \Delta y+(y \cdot \nabla) y+\nabla p=f, \nabla \cdot y=0 & \Omega \times(0, T), \tag{3}\\
y=0, & \partial \Omega \times(0, T), \\
y(0)=y_{0}, & \Omega \times\{0\}
\end{array}\right.
$$

Part 3- Controllability problem for a sub-linear (controllable) heat equation: find a sequence $\left(y_{k}, v_{k}\right)_{k>0}$ converging strongly to a pair (y, v) solution of

Outline

Part 1 - Direct Problem for Steady NS - find a sequence $\left(y_{k}, p_{k}\right)_{k>0}$ converging strongly to a pair (y, p) solution of

$$
\left\{\begin{array}{lr}
\alpha y-\nu \Delta y+(y \cdot \nabla) y+\nabla p=f+\alpha g, & \nabla \cdot y=0 \tag{2}\\
y=0, & \Omega \Omega
\end{array}\right.
$$

(useful to solve Implicit time schemes for Unsteady NS)
Part 2- Direct problem for Unsteady NS - find a sequence $\left(y_{k}, p_{k}\right)_{k>0}$ converging strongly to a pair (y, p) solution of

$$
\left\{\begin{array}{lr}
y_{t}-\nu \Delta y+(y \cdot \nabla) y+\nabla p=f, \nabla \cdot y=0 & \Omega \times(0, T), \tag{3}\\
y=0, & \partial \Omega \times(0, T), \\
y(0)=y_{0}, & \Omega \times\{0\}
\end{array}\right.
$$

Part 3-Controllability problem for a sub-linear (controllable) heat equation: find a sequence $\left(y_{k}, v_{k}\right)_{k>0}$ converging strongly to a pair (y, v) solution of

$$
\left\{\begin{array}{lr}
y_{t}-\nu \Delta y+g(y)=v 1_{\omega}, & \Omega \times(0, T), \tag{4}\\
y=0, & \partial \Omega \times(0, T), \\
y(0)=y_{0}, & \Omega \times\{0\}
\end{array}\right.
$$

such that $y(\cdot, T)=0$.

Part 1 - Direct Problem for steady NS

Part 1 - Direct Problem for Steady NS -
Let $\Omega \subset \mathbb{R}^{d}, d \in\{2,3\}$ be a bounded connected open set with boundary $\partial \Omega$ Lipschitz. $\mathcal{V}=\left\{v \in \mathcal{D}(\Omega)^{d}, \nabla \cdot v=0\right\}, \boldsymbol{H}$ the closure of \mathcal{V} in $L^{2}(\Omega)^{d}$ and \boldsymbol{V} the closure of \mathcal{V} in $H^{1}(\Omega)^{d}$.

Find a sequence $\left(y_{k}, p_{k}\right)_{k>0}$ converging strongly to a pair (y, p) solution of

$$
\left\{\begin{array}{lr}
\alpha y-\nu \Delta y+(y \cdot \nabla) y+\nabla p=f+\alpha g, & \nabla \cdot y=0 \tag{5}\\
y=0, & \partial \Omega
\end{array}\right.
$$

$f \in H^{-1}(\Omega)^{d}, g \in L^{2}(\Omega)^{d}$ and $\alpha \in \mathbb{R}_{+}^{\star}$.

Part 1- Weak formulation

Let $f \in H^{-1}(\Omega)^{d}, g \in L^{2}(\Omega)^{d}$ and $\alpha \in \mathbb{R}_{+}^{\star}$. The weak formulation of (5) reads as follows: find $y \in \boldsymbol{V}$ solution of

$$
\begin{equation*}
\alpha \int_{\Omega} y \cdot w+\nu \int_{\Omega} \nabla y \cdot \nabla w+\int_{\Omega} y \cdot \nabla y \cdot w=<f, w>_{H^{-1}(\Omega)^{d} \times H_{0}^{1}(\Omega)^{d}}+\alpha \int_{\Omega} g \cdot w, \quad \forall w \in \boldsymbol{V} . \tag{6}
\end{equation*}
$$

Remark- If

Part 1- Weak formulation

Let $f \in H^{-1}(\Omega)^{d}, g \in L^{2}(\Omega)^{d}$ and $\alpha \in \mathbb{R}_{+}^{\star}$. The weak formulation of (5) reads as follows: find $y \in \boldsymbol{V}$ solution of

$$
\begin{equation*}
\alpha \int_{\Omega} y \cdot w+\nu \int_{\Omega} \nabla y \cdot \nabla w+\int_{\Omega} y \cdot \nabla y \cdot w=<f, w>_{H^{-1}(\Omega)^{d} \times H_{0}^{1}(\Omega)^{d}}+\alpha \int_{\Omega} g \cdot w, \quad \forall w \in \boldsymbol{V} . \tag{6}
\end{equation*}
$$

Proposition

Assume $\Omega \subset \mathbb{R}^{d}$ is bounded and Lipschitz. There exists a least one solution y of (6) satisfying

$$
\begin{equation*}
\alpha\|y\|_{2}^{2}+\nu\|\nabla y\|_{2}^{2} \leq \frac{c(\Omega)}{\nu}\|f\|_{H^{-1}(\Omega)^{d}}^{2}+\alpha\|g\|_{2}^{2} \tag{7}
\end{equation*}
$$

for some constant $c(\Omega)>0$. If moreover, Ω is C^{2} and $f \in L^{2}(\Omega)^{d}$, then $y \in H^{2}(\Omega)^{d} \cap \boldsymbol{V}$.

Remark- If

$$
Q(g, f, \alpha, \nu):= \begin{cases}\frac{1}{\nu^{2}}\left(\|g\|_{2}^{2}+\frac{1}{\alpha \nu}\|f\|_{H^{-1}(\Omega)^{d}}^{2}\right), & \text { if } \quad d=2 \\ \frac{\alpha^{1 / 2}}{\nu^{5 / 2}}\left(\|g\|_{2}^{2}+\frac{1}{\alpha \nu}\|f\|_{H^{-1}(\Omega)^{d}}^{2}\right), & \text { if } \quad d=3 .\end{cases}
$$

is small enough, then the solution of (6) is unique.

V^{\prime}-Least-squares method

- We introduce the least-squares problem with $E: V \rightarrow \mathbb{R}^{+}$as follows

$$
\begin{equation*}
i n f_{y \in v} E(y):=\frac{1}{2} \int_{\Omega}\left(\alpha|v|^{2}+|\nabla v|^{2}\right) \tag{8}
\end{equation*}
$$

where the corrector $v \in \boldsymbol{V}$ is the unique solution of

$$
\begin{align*}
\alpha \int_{\Omega} v \cdot w+\int_{\Omega} \nabla v \cdot \nabla w=-\alpha & \int_{\Omega} y \cdot w-\nu \int_{\Omega} \nabla y \cdot \nabla w-\int_{\Omega} y \cdot \nabla y \cdot w \\
& +<f, w>_{H^{-1}(\Omega)^{d} \times H_{0}^{1}(\Omega)^{d}}+\alpha \int_{\Omega} g \cdot w, \quad \forall w \in \boldsymbol{V} . \tag{9}
\end{align*}
$$

considered in ${ }^{1}$ with experiments but without mathematical justification !

[^0]- We introduce the least-squares problem with $E: V \rightarrow \mathbb{R}^{+}$as follows

$$
\begin{equation*}
i n f_{y \in v} E(y):=\frac{1}{2} \int_{\Omega}\left(\alpha|v|^{2}+|\nabla v|^{2}\right) \tag{8}
\end{equation*}
$$

where the corrector $v \in \boldsymbol{V}$ is the unique solution of

$$
\begin{align*}
\alpha \int_{\Omega} v \cdot w+\int_{\Omega} \nabla v \cdot \nabla w=-\alpha & \int_{\Omega} y \cdot w-\nu \int_{\Omega} \nabla y \cdot \nabla w-\int_{\Omega} y \cdot \nabla y \cdot w \\
& +<f, w>_{H^{-1}(\Omega)^{d} \times H_{0}^{1}(\Omega)^{d}}+\alpha \int_{\Omega} g \cdot w, \quad \forall w \in \boldsymbol{V} . \tag{9}
\end{align*}
$$

- $\inf _{y \in \boldsymbol{V}} E(y)=0$ reached by a solution of (6). In this sense, the functional E is a so-called error functional which measures, through the corrector variable v, the deviation of the pair y from being a solution of (6).
Remark-

$$
\begin{aligned}
& \mathrm{k}- \\
& \left(B_{1}(y), w\right):=(\nabla y, \nabla w)_{2}, \quad(B(y, z), w):=\int_{\Omega} y \nabla z \cdot w, \quad y, z, w \in \boldsymbol{V}
\end{aligned}
$$

considered in ${ }^{1}$ with experiments but without mathematical justification!

[^1]
Analysis of the LS method (2)

Proposition

Let $\mathbb{B}_{c}=\left\{y \in \boldsymbol{V}: \frac{1}{\nu \alpha}\|\nabla y\|_{2}^{2(d-1)}<c\right\}, d \in\{2,3\}, c>0$ There exists a positive constant C such that

$$
\begin{equation*}
\sqrt{E(y)} \leq \frac{\nu^{-1}}{\sqrt{2}}\left\|E^{\prime}(y)\right\|_{v^{\prime}}, \quad \forall y \in \mathbb{B}_{C} \tag{10}
\end{equation*}
$$

Proof- For any $y \in \mathbb{B}_{c}$, there exists a unique element $Y_{1} \in V$ solution of

where $v \in V$ is the corrector associated to y.

- Y_{1} enjoys the following properties: There exists $c>0$ such that

$$
E^{\prime}(y) \cdot Y_{1}=2 E(y), \quad \text { and } \quad\left\|Y_{1}\right\| v \leq \sqrt{2} \nu^{-1} \sqrt{E(y)}, \quad \forall y \in \mathbb{B}_{0}
$$

Analysis of the LS method (2)

Proposition

Let $\mathbb{B}_{c}=\left\{y \in \boldsymbol{V}: \frac{1}{\nu \alpha}\|\nabla y\|_{2}^{2(d-1)}<c\right\}, d \in\{2,3\}, c>0$ There exists a positive constant C such that

$$
\begin{equation*}
\sqrt{E(y)} \leq \frac{\nu^{-1}}{\sqrt{2}}\left\|E^{\prime}(y)\right\|_{v^{\prime}}, \quad \forall y \in \mathbb{B}_{C} \tag{10}
\end{equation*}
$$

Proof- For any $y \in \mathbb{B}_{c}$, there exists a unique element $Y_{1} \in V$ solution of

where $v \in V$ is the corrector associated to y.

- Y_{1} enjoys the following properties: There exists $c>0$ such that

$$
E^{\prime}(y) \cdot Y_{1}=2 E(y), \quad \text { and } \quad\left\|Y_{1}\right\| v \leq \sqrt{2} \nu^{-1} \sqrt{E(y)}, \quad \forall y \in \mathbb{B}_{0}
$$

Analysis of the LS method (2)

Proposition

Let $\mathbb{B}_{c}=\left\{y \in \boldsymbol{V}: \frac{1}{\nu \alpha}\|\nabla y\|_{2}^{2(d-1)}<c\right\}, d \in\{2,3\}, c>0$ There exists a positive constant C such that

$$
\begin{equation*}
\sqrt{E(y)} \leq \frac{\nu^{-1}}{\sqrt{2}}\left\|E^{\prime}(y)\right\|_{v^{\prime}}, \quad \forall y \in \mathbb{B}_{C} \tag{10}
\end{equation*}
$$

Proof- • For any $y \in \mathbb{B}_{c}$, there exists a unique element $Y_{1} \in \boldsymbol{V}$ solution of
$\alpha \int_{\Omega} Y_{1} \cdot w+\nu \int_{\Omega} \nabla Y_{1} \cdot \nabla w+\int_{\Omega}\left(y \cdot \nabla Y_{1}+Y_{1} \cdot \nabla y\right) \cdot w=-\alpha \int_{\Omega} v \cdot w-\int_{\Omega} \nabla v \cdot \nabla w, \forall w \in \boldsymbol{V}$
where $v \in \boldsymbol{V}$ is the corrector associated to y.

- Y_{1} enjoys the following properties: There exists $c>0$ such that

$$
E^{\prime}(y) \cdot Y_{1}=2 E(y), \quad \text { and } \quad\left\|Y_{1}\right\|_{v} \leq \sqrt{2} \nu^{-1} \sqrt{E(y)}, \quad \forall y \in \mathbb{B}_{c}
$$

Use of the element Y_{1} as descent direction for E

$$
\left\{\begin{array}{l}
y_{0} \in \boldsymbol{V}, \tag{11}\\
y_{k+1}=y_{k}-\lambda_{k} Y_{1, k}, \quad k>0, \\
\lambda_{k}=\operatorname{argmin}_{\lambda \in \mathbb{R}^{+}} E\left(y_{k}-\lambda Y_{1, k}\right)
\end{array}\right.
$$

where $Y_{1, k}$ solves the formulation, for all $w \in \boldsymbol{V}$
$\alpha \int_{\Omega} Y_{1, k} \cdot w+\nu \int_{\Omega} \nabla Y_{1, k} \cdot \nabla w+\int_{\Omega}\left(y_{k} \cdot \nabla Y_{1, k}+Y_{1, k} \cdot \nabla y_{k}\right) \cdot w=-\alpha \int_{\Omega} v_{k} \cdot w-\int_{\Omega} \nabla v_{k} \cdot \nabla w$, leading to $E^{\prime}\left(y_{k}\right) \cdot Y_{1, k}=2 E\left(y_{k}\right)$.

Sketch of the proof $(d=2)$: We develop $E\left(y_{k}-\lambda Y_{1, k}\right)$ - polynomial of order 4 w.r.t. λ and find that

Use of the element Y_{1} as descent direction for E

$$
\left\{\begin{array}{l}
y_{0} \in \boldsymbol{V} \tag{11}\\
y_{k+1}=y_{k}-\lambda_{k} Y_{1, k}, \quad k>0 \\
\lambda_{k}=\operatorname{argmin}_{\lambda \in \mathbb{R}^{+}} E\left(y_{k}-\lambda Y_{1, k}\right)
\end{array}\right.
$$

where $Y_{1, k}$ solves the formulation, for all $w \in \boldsymbol{V}$
$\alpha \int_{\Omega} Y_{1, k} \cdot w+\nu \int_{\Omega} \nabla Y_{1, k} \cdot \nabla w+\int_{\Omega}\left(y_{k} \cdot \nabla Y_{1, k}+Y_{1, k} \cdot \nabla y_{k}\right) \cdot w=-\alpha \int_{\Omega} v_{k} \cdot w-\int_{\Omega} \nabla v_{k} \cdot \nabla w$,
leading to $E^{\prime}\left(y_{k}\right) \cdot Y_{1, k}=2 E\left(y_{k}\right)$.

Theorem

Assume that $y_{0} \in \boldsymbol{V}$ satisfies $E\left(y_{0}\right) \leq \mathcal{O}\left(\nu^{2}(\alpha \nu)^{1 /(d-1)}\right)$. Then, $y_{k} \rightarrow y$ strongly in \boldsymbol{V} as $k \rightarrow \infty$ where y is a solution of the $\alpha-N S$ equation.
The convergence is quadratic after a finite number of iterate.
Sketch of the proof $(d=2)$: We develop $E\left(y_{k}-\lambda Y_{1, k}\right)$ - polynomial of order 4 w.r.t. λ and find that

$$
\sqrt{E\left(y_{k}-\lambda Y_{1, k}\right)} \leq \underbrace{\left(|1-\lambda|+\lambda^{2} c_{\nu} \sqrt{E\left(y_{k}\right)}\right)}_{:=p(\lambda)} \sqrt{E\left(y_{k}\right)}, \quad c_{\nu}=c(\Omega) \frac{2}{\nu} \max \left(1, \frac{2}{\nu}\right)=\mathcal{O}\left(\nu^{-2}\right)
$$

Convergence of $E\left(y_{k}\right)$

$$
\sqrt{E\left(y_{k}-\lambda Y_{1, k}\right)} \leq \overbrace{\left(|1-\lambda|+\lambda^{2} c_{\nu} \sqrt{E\left(y_{k}\right)}\right)}^{:=p(\lambda)} \sqrt{E\left(y_{k}\right)}, \quad c_{\nu}=\mathcal{O}\left(\nu^{-2}\right)
$$

- If $c_{\nu} \sqrt{E\left(y_{k}\right)} \geq 1, p$ reaches a unique minimum for $\lambda_{k}=1 /\left(2 c_{\nu} \sqrt{E\left(y_{k}\right)}\right) \in(0,1 / 2)$ for which $p\left(\lambda_{k}\right)=1-\frac{\lambda_{k}}{2} \in(0,1)$ leading to

$$
c_{\nu} \sqrt{E\left(y_{k+1}\right)} \leq p\left(\lambda_{k}\right) c_{\nu} \sqrt{E\left(y_{k}\right)}=\underbrace{\left(1-\frac{1}{4 c_{\nu} \sqrt{E\left(y_{k}\right)}}\right)}_{\in(0,1)} c_{\nu} \sqrt{E\left(y_{k}\right)} .
$$

and then to

$$
c_{\nu} \sqrt{E\left(y_{k+p}\right)} \leq\left(1-\frac{1}{4 c_{\nu} \sqrt{E\left(y_{k}\right)}}\right)^{p} c_{\nu} \sqrt{E\left(y_{k}\right)} \rightarrow 0 \quad \text { as } \quad p \rightarrow \infty .
$$

- If $c_{\nu} \sqrt{E\left(y_{k}\right)}<1$ for some $k \geq m$. Then,

$$
\sqrt{E\left(y_{k+1}\right)} \leq p\left(\lambda_{k}\right) \sqrt{E\left(y_{k}\right)} \leq p(1) \sqrt{E\left(y_{k}\right)}=c_{\nu} E\left(y_{k}\right)
$$

so that

$$
c_{\nu} \sqrt{E\left(y_{k+1}\right)} \leq\left(c_{\nu} \sqrt{E\left(y_{k}\right)}\right)^{2}, \quad \forall k \geq m
$$

The sequence $\left\{c_{\nu} \sqrt{E\left(y_{m}\right)}\right\}_{(m>k)}$ decreases to zero with a quadratic rate. In

Convergence of $E\left(y_{k}\right)$

$$
\sqrt{E\left(y_{k}-\lambda Y_{1, k}\right)} \leq \overbrace{\left(|1-\lambda|+\lambda^{2} c_{\nu} \sqrt{E\left(y_{k}\right)}\right)}^{:=p(\lambda)} \sqrt{E\left(y_{k}\right)}, \quad c_{\nu}=\mathcal{O}\left(\nu^{-2}\right)
$$

- If $c_{\nu} \sqrt{E\left(y_{k}\right)} \geq 1, p$ reaches a unique minimum for $\lambda_{k}=1 /\left(2 c_{\nu} \sqrt{E\left(y_{k}\right)}\right) \in(0,1 / 2)$ for which $p\left(\lambda_{k}\right)=1-\frac{\lambda_{k}}{2} \in(0,1)$ leading to

$$
c_{\nu} \sqrt{E\left(y_{k+1}\right)} \leq p\left(\lambda_{k}\right) c_{\nu} \sqrt{E\left(y_{k}\right)}=\underbrace{\left(1-\frac{1}{4 c_{\nu} \sqrt{E\left(y_{k}\right)}}\right)}_{\in(0,1)} c_{\nu} \sqrt{E\left(y_{k}\right)} .
$$

and then to

$$
c_{\nu} \sqrt{E\left(y_{k+p}\right)} \leq\left(1-\frac{1}{4 c_{\nu} \sqrt{E\left(y_{k}\right)}}\right)^{p} c_{\nu} \sqrt{E\left(y_{k}\right)} \rightarrow 0 \quad \text { as } \quad p \rightarrow \infty .
$$

- If $c_{\nu} \sqrt{E\left(y_{k}\right)}<1$ for some $k \geq m$. Then,

$$
\sqrt{E\left(y_{k+1}\right)} \leq p\left(\lambda_{k}\right) \sqrt{E\left(y_{k}\right)} \leq p(1) \sqrt{E\left(y_{k}\right)}=c_{\nu} E\left(y_{k}\right)
$$

so that

$$
c_{\nu} \sqrt{E\left(y_{k+1}\right)} \leq\left(c_{\nu} \sqrt{E\left(y_{k}\right)}\right)^{2}, \quad \forall k \geq m
$$

The sequence $\left\{c_{\nu} \sqrt{E\left(y_{m}\right)}\right\}_{(m \geq k)}$ decreases to zero with a quadratic rate. In particular, if $c_{\nu} \sqrt{E\left(y_{0}\right)} \leq 1$ and if we fixe $\lambda_{k}=1$ for all $k \geq 0$.

Convergence of y_{k}

- We write that $y_{k+1}=y_{0}-\sum_{m=0}^{k} \lambda_{m} Y_{1, m}$; using that $\lambda_{m} \in(0,1)$ and $\left\|Y_{1, m}\right\|_{\boldsymbol{v}} \leq \nu^{-1} \sqrt{E\left(y_{m}\right)}$, we get

$$
\begin{aligned}
\sum_{m=1}^{k}\left|\lambda_{m}\right|\left\|Y_{1, m}\right\|_{v} & \leq \nu^{-1} \sum_{m=1}^{k} \sqrt{E\left(y_{m}\right)} \leq \nu^{-1} \sum_{m=1}^{k} p\left(\lambda_{m-1}\right) \sqrt{E\left(y_{m-1}\right)} \\
& \leq \nu^{-1} \sum_{m=1}^{k} p\left(\lambda_{0}\right) \sqrt{E\left(y_{m-1}\right)} \leq \nu^{-1} \sum_{m=1}^{k} p\left(\lambda_{0}\right)^{m} \sqrt{E\left(y_{0}\right)} \\
& \leq \frac{\nu^{-1}}{1-p\left(\lambda_{0}\right)} \sqrt{E\left(y_{0}\right)}
\end{aligned}
$$

This implies the strong convergence of y_{k} toward $y:=y_{0}-\sum_{m \geq 0} \lambda_{m} Y_{1, m}$.

- Using that $E\left(y_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$, the limit in the corrector eq. for v_{k},

implies that y solves the α-NS steady equation.

Convergence of y_{k}

- We write that $y_{k+1}=y_{0}-\sum_{m=0}^{k} \lambda_{m} Y_{1, m}$; using that $\lambda_{m} \in(0,1)$ and $\left\|Y_{1, m}\right\|_{\boldsymbol{v}} \leq \nu^{-1} \sqrt{E\left(y_{m}\right)}$, we get

$$
\begin{aligned}
\sum_{m=1}^{k}\left|\lambda_{m}\right|\left\|Y_{1, m}\right\|_{v} & \leq \nu^{-1} \sum_{m=1}^{k} \sqrt{E\left(y_{m}\right)} \leq \nu^{-1} \sum_{m=1}^{k} p\left(\lambda_{m-1}\right) \sqrt{E\left(y_{m-1}\right)} \\
& \leq \nu^{-1} \sum_{m=1}^{k} p\left(\lambda_{0}\right) \sqrt{E\left(y_{m-1}\right)} \leq \nu^{-1} \sum_{m=1}^{k} p\left(\lambda_{0}\right)^{m} \sqrt{E\left(y_{0}\right)} \\
& \leq \frac{\nu^{-1}}{1-p\left(\lambda_{0}\right)} \sqrt{E\left(y_{0}\right)}
\end{aligned}
$$

This implies the strong convergence of y_{k} toward $y:=y_{0}-\sum_{m \geq 0} \lambda_{m} Y_{1, m}$.

- Using that $E\left(y_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$, the limit in the corrector eq. for v_{k},

$$
\begin{align*}
\alpha \int_{\Omega} v_{k} \cdot w+\int_{\Omega} \nabla v_{k} \cdot \nabla w=-\alpha & \int_{\Omega} y_{k} \cdot w-\nu \int_{\Omega} \nabla y_{k} \cdot \nabla w-\int_{\Omega} y_{k} \cdot \nabla y_{k} \cdot w \\
& +<f, w>_{H^{-1}(\Omega)^{d} \times H_{0}^{1}(\Omega)^{d}}+\alpha \int_{\Omega} g \cdot w, \quad \forall w \in V \tag{12}
\end{align*}
$$

implies that y solves the α-NS steady equation.

- The quadratic convergence of the sequence $\left\{y_{k}\right\}_{k>0}$ after a finite number of iterations is due to the inequality

$$
\begin{aligned}
\left\|y-y_{k}\right\|_{v} & =\left\|\sum_{m \geq k+1} \lambda_{m} Y_{1, m}\right\|_{v} \\
& \leq \sum_{m \geq k+1}\left\|Y_{1, m}\right\|_{v} \leq \nu^{-1} \sum_{m \geq k+1} \sqrt{E\left(y_{m}\right)} \\
& \leq \nu^{-1} \sum_{m \geq k+1} p\left(\lambda_{m-1}\right) \sqrt{E\left(y_{m-1}\right)} \\
& \leq \nu^{-1} \sum_{m \geq k+1} p\left(\lambda_{k}\right) \sqrt{E\left(y_{m-1}\right)} \\
& \leq \nu^{-1} \sum_{m \geq k+1} p\left(\lambda_{k}\right)^{m-k} \sqrt{E\left(y_{k}\right)} \\
& \leq \nu^{-1} \frac{p\left(\lambda_{k}\right)}{1-p\left(\lambda_{k}\right)} \sqrt{E\left(y_{k}\right)} \leq \nu^{-1} \frac{p\left(\lambda_{0}\right)}{1-p\left(\lambda_{0}\right)} \sqrt{E\left(y_{k}\right)}, \quad \forall k>0
\end{aligned}
$$

Rk- The limit $y=y_{0}-\sum_{m \geq 0} \lambda_{m} Y_{1, m}$ is uniquely determined by the initial guess y_{0}.

The choice $\lambda_{k}=1$ converges under the condition that $\sqrt{E\left(y_{0}\right)} \leq \mathcal{O}\left(\nu^{2}\right)$ corresponds to the usual Newton method to solve the variational formulation : find $y \in \boldsymbol{V}$ solution of $F(y, z)=0, \forall z \in \boldsymbol{V}$,

$$
F(y, z):=\int_{\Omega} \alpha y \cdot z+\nu \nabla y \cdot \nabla z+y \cdot \nabla y \cdot z-<f, z>_{v^{\prime}, v}-\alpha \int_{\Omega} g \cdot z
$$

i.e.

$$
\left\{\begin{array}{l}
y_{0} \in \boldsymbol{V} \\
\partial_{y} F\left(y_{k}, z\right) \cdot\left(y_{k+1}-y_{k}\right)=-F\left(y_{k}, z\right), \quad \forall z \in \boldsymbol{V}, \quad \forall k \geq 0
\end{array}\right.
$$

Remark-

The optimization of the λ_{k} parameter leads to the so-called Damped Newton Method.

The choice $\lambda_{k}=1$ converges under the condition that $\sqrt{E\left(y_{0}\right)} \leq \mathcal{O}\left(\nu^{2}\right)$ corresponds to the usual Newton method to solve the variational formulation : find $y \in \boldsymbol{V}$ solution of $F(y, z)=0, \forall z \in \boldsymbol{V}$,

$$
F(y, z):=\int_{\Omega} \alpha y \cdot z+\nu \nabla y \cdot \nabla z+y \cdot \nabla y \cdot z-\langle f, z\rangle_{v^{\prime}, v}-\alpha \int_{\Omega} g \cdot z
$$

i.e.

$$
\left\{\begin{array}{l}
y_{0} \in \boldsymbol{V} \\
\partial_{y} F\left(y_{k}, z\right) \cdot\left(y_{k+1}-y_{k}\right)=-F\left(y_{k}, z\right), \quad \forall z \in \boldsymbol{V}, \quad \forall k \geq 0
\end{array}\right.
$$

Remark-

$$
E(y)=\frac{1}{2}\left(\sup _{z \in \boldsymbol{V}, z \neq 0} \frac{F(y, z)}{\|z\|_{V}}\right)^{2}, \forall y \in \boldsymbol{V}
$$

The optimization of the λ_{k} parameter leads to the so-called Damped Newton Method.

Application : resolution of Implicit time scheme for Unsteady NS

Given a discretization $\left\{t_{n}\right\}_{n=0 \ldots N}$ of $[0, T]$, the backward Euler scheme reads :

$$
\left\{\begin{array}{l}
\int_{\Omega} \frac{y^{n+1}-y^{n}}{\delta t} \cdot w+\nu \int_{\Omega} \nabla y^{n+1} \cdot \nabla w+\int_{\Omega} y^{n+1} \cdot \nabla y^{n+1} \cdot w=\left\langle f^{n}, w\right\rangle_{\boldsymbol{v}^{\prime} \times \boldsymbol{v}}, \forall n \geq 0, \forall w \in \tag{13}\\
y^{0}(\cdot, 0)=u_{0}, \quad \text { in } \Omega
\end{array}\right.
$$

with $f^{n}:=\frac{1}{\delta t} \int_{t_{n}}^{t_{n+1}} f(\cdot, s) d s$. The piecewise linear interpolation (in time) of $\left\{y^{n}\right\}_{n \in[0, N]}$ weakly converges in $L^{2}(0, T, \boldsymbol{V})$ toward a solution of Unsteady NS as $\delta t \rightarrow 0^{+}$.
The previous study applied to determine y^{n+1} from y^{n}, solution of (13) taking $\alpha=\frac{1}{\delta t}$ and $g=y^{n}$:

Corollary

Assume that $y_{0}^{n+1} \in \boldsymbol{V}$ satisfies $E\left(y_{0}^{n+1}\right) \leq \mathcal{O}\left(\nu^{2}\left(\nu \delta t^{-1}\right)^{1 /(d-1)}\right)$. Then, $y_{k}^{n+1} \rightarrow y^{n+1}$ strongly in V as $k \rightarrow \infty$ where y^{n+1} solves (13).

Proposition

Assume that $\Omega \in C^{2}$, that $\left(f^{n}\right)_{n}$ is a sequence in $L^{2}(\Omega)^{d}$ satisfies
Then, the sequence $\left(y^{n}\right)_{n}$ satisfies

Application : resolution of Implicit time scheme for Unsteady NS

Given a discretization $\left\{t_{n}\right\}_{n=0 \ldots N}$ of $[0, T]$, the backward Euler scheme reads :

$$
\left\{\begin{array}{l}
\int_{\Omega} \frac{y^{n+1}-y^{n}}{\delta t} \cdot w+\nu \int_{\Omega} \nabla y^{n+1} \cdot \nabla w+\int_{\Omega} y^{n+1} \cdot \nabla y^{n+1} \cdot w=\left\langle f^{n}, w\right\rangle_{\boldsymbol{v}^{\prime} \times \boldsymbol{v}}, \forall n \geq 0, \forall w \in \tag{13}\\
y^{0}(\cdot, 0)=u_{0}, \quad \text { in } \Omega
\end{array}\right.
$$

with $f^{n}:=\frac{1}{\delta t} \int_{t_{n}}^{t_{n+1}} f(\cdot, s) d s$. The piecewise linear interpolation (in time) of $\left\{y^{n}\right\}_{n \in[0, N]}$ weakly converges in $L^{2}(0, T, \boldsymbol{V})$ toward a solution of Unsteady NS as $\delta t \rightarrow 0^{+}$.
The previous study applied to determine y^{n+1} from y^{n}, solution of (13) taking $\alpha=\frac{1}{\delta t}$ and $g=y^{n}$:

Corollary

Assume that $y_{0}^{n+1} \in V$ satisfies $E\left(y_{0}^{n+1}\right) \leq \mathcal{O}\left(\nu^{2}\left(\nu \delta t^{-1}\right)^{1 /(d-1)}\right)$. Then, $y_{k}^{n+1} \rightarrow y^{n+1}$ strongly in V as $k \rightarrow \infty$ where y^{n+1} solves (13).

Proposition

Assume that $\Omega \in C^{2}$, that $\left(f^{n}\right)_{n}$ is a sequence in $L^{2}(\Omega)^{d}$ satisfies $\alpha^{-1} \sum_{k=0}^{+\infty}\left\|f^{k}\right\|_{2}<+\infty$, that $\nabla y^{0} \in L^{2}(\Omega)^{d}$. Then, the sequence $\left(y^{n}\right)_{n}$ satisfies

$$
\left\|y^{n+1}-y^{n}\right\|_{2}=\mathcal{O}\left(\delta t^{1 / 2} \nu^{-3 / 4}\right), \quad \forall n \geq 0
$$

Part 2 - Direct Problem for unsteady NS - case $d=2$ - Space-time LS method

Part 2-1 Direct Problem for unsteady NS -
The weak formulation reads as follows : $f \in L^{2}\left(0, T, \boldsymbol{V}^{\prime}\right)$ and $u_{0} \in \boldsymbol{H}$, find a weak solution $y \in L^{2}(0, T ; \boldsymbol{V}), \partial_{t} y \in L^{2}\left(0, T ; \boldsymbol{V}^{\prime}\right)$ of the system

$$
\left\{\begin{array}{l}
\frac{d}{d t} \int_{\Omega} y \cdot w+\nu \int_{\Omega} \nabla y \cdot \nabla w+\int_{\Omega} y \cdot \nabla y \cdot w=\langle f, w\rangle_{V^{\prime} \times \boldsymbol{V}}, \quad \forall w \in \boldsymbol{V} \tag{14}\\
y(\cdot, 0)=u_{0}, \quad \text { in } \Omega
\end{array}\right.
$$

Let $\mathcal{A}=\left\{y \in L^{2}(0, T ; \boldsymbol{V}) \cap H^{1}\left(0, T ; \boldsymbol{V}^{\prime}\right), y(0)=u_{0}\right\}$.

Proposition

There exists a unique $\bar{y} \in \mathcal{A}$ solution in $\mathcal{D}^{\prime}(0, T)$ of (14). This solution satisfies the following estimates :

$$
\begin{gathered}
\|\bar{y}\|_{L^{\infty}(0, T ; \boldsymbol{H})}^{2}+\nu\|\bar{y}\|_{L^{2}(0, T ; \boldsymbol{V})}^{2} \leq\left\|u_{0}\right\|_{\boldsymbol{H}}^{2}+\frac{1}{\nu}\|f\|_{L^{2}\left(0, T ; \boldsymbol{V}^{\prime}\right)}^{2}, \\
\left\|\partial_{t} \bar{y}\right\|_{L^{2}\left(0, T ; \boldsymbol{V}^{\prime}\right)} \leq \sqrt{\nu}\left\|u_{0}\right\|_{\boldsymbol{H}}+2\|f\|_{L^{2}\left(0, T ; \boldsymbol{V}^{\prime}\right)}+\frac{c}{\nu^{\frac{3}{2}}}\left(\nu\left\|u_{0}\right\|_{\boldsymbol{H}}^{2}+\|f\|_{L^{2}\left(0, T ; \boldsymbol{V}^{\prime}\right)}^{2}\right) .
\end{gathered}
$$

The least-squares problem

We introduce the LS functional $E: H^{1}\left(0, T, V^{\prime}\right) \cap L^{2}(0, T, \boldsymbol{V}) \rightarrow \mathbb{R}^{+}$by putting

$$
E(y)=\frac{1}{2} \int_{0}^{T}\|v\|_{V}^{2}+\frac{1}{2} \int_{0}^{T}\left\|\partial_{t} v\right\|_{V^{\prime}}^{2}
$$

where the corrector $v \in \mathcal{A}_{0}=\left\{y \in L^{2}(0, T ; \boldsymbol{V}) \cap H^{1}\left(0, T ; \boldsymbol{V}^{\prime}\right), y(0)=0\right\}$ is the unique solution in $\mathcal{D}^{\prime}(0, T)$ of

$$
\left\{\begin{array}{l}
\frac{d}{d t} \int_{\Omega} v \cdot w+\int_{\Omega} \nabla v \cdot \nabla w+\frac{d}{d t} \int_{\Omega} y \cdot w+\nu \int_{\Omega} \nabla y \cdot \nabla w \\
\quad+\int_{\Omega} y \cdot \nabla y \cdot w=<f, w>v^{\prime} \times v, \quad \forall w \in V \tag{15}\\
v(0)=0 .
\end{array}\right.
$$

Remark- For all $y \in L^{2}(0, T, V) \cap H^{1}\left(0, T ; V^{\prime}\right)$,

$$
E(y) \approx\left\|y_{t}+\nu B_{1}(y)+B(y, y)-f\right\|_{L^{2}\left(0, T_{i} V^{\prime}\right)}^{2}
$$

where $\forall u \in L^{\infty}(0, T ; H), v \in L^{2}(0, T ; \boldsymbol{V})$,
$\langle B(u(t), v(t)), w\rangle=\int u(t) \cdot \nabla v(t) \cdot w \quad \forall w \in V$, a.e in $t \in[0, T]$
and $\forall u \in L^{2}(0, T ; V)$,

The least-squares problem

We introduce the LS functional $E: H^{1}\left(0, T, V^{\prime}\right) \cap L^{2}(0, T, \boldsymbol{V}) \rightarrow \mathbb{R}^{+}$by putting

$$
E(y)=\frac{1}{2} \int_{0}^{T}\|v\|_{V}^{2}+\frac{1}{2} \int_{0}^{T}\left\|\partial_{t} v\right\|_{V^{\prime}}^{2}
$$

where the corrector $v \in \mathcal{A}_{0}=\left\{y \in L^{2}(0, T ; \boldsymbol{V}) \cap H^{1}\left(0, T ; \boldsymbol{V}^{\prime}\right), y(0)=0\right\}$ is the unique solution in $\mathcal{D}^{\prime}(0, T)$ of

$$
\left\{\begin{array}{l}
\frac{d}{d t} \int_{\Omega} v \cdot w+\int_{\Omega} \nabla v \cdot \nabla w+\frac{d}{d t} \int_{\Omega} y \cdot w+\nu \int_{\Omega} \nabla y \cdot \nabla w \tag{15}\\
\quad+\int_{\Omega} y \cdot \nabla y \cdot w=<f, w>_{V^{\prime} \times v}, \quad \forall w \in V \\
v(0)=0 .
\end{array}\right.
$$

Remark- For all $y \in L^{2}(0, T, V) \cap H^{1}\left(0, T ; V^{\prime}\right)$,

$$
E(y) \approx\left\|y_{t}+\nu B_{1}(y)+B(y, y)-f\right\|_{L^{2}\left(0, T ; V^{\prime}\right)}^{2}
$$

where $\forall u \in L^{\infty}(0, T ; \boldsymbol{H}), v \in L^{2}(0, T ; \boldsymbol{V})$,

$$
\langle B(u(t), v(t)), w\rangle=\int_{\Omega} u(t) \cdot \nabla v(t) \cdot w \quad \forall w \in V, \text { a.e in } t \in[0, T]
$$

and $\forall u \in L^{2}(0, T ; V)$,

$$
\left\langle B_{1}(u(t)), w\right\rangle=\int_{\Omega} \nabla u(t) \cdot \nabla w \quad \forall w \in \boldsymbol{V}, \text { a.e in } t \in[0, T]
$$

Uniform coercivity type property for E

Proposition

Let $\bar{y} \in \mathcal{A}$ be the solution of (14), $M \in \mathbb{R}$ such that $\left\|\partial_{t} \bar{y}\right\|_{L^{2}\left(0, T, V^{\prime}\right)} \leq M$ and
$\sqrt{\nu}\|\nabla \bar{y}\|_{L^{2}\left(Q_{T}\right)^{4}} \leq M$ and let $y \in \mathcal{A}$.
If $\left\|\partial_{t} y\right\|_{L^{2}\left(0, T, \boldsymbol{V}^{\prime}\right)} \leq M$ and $\sqrt{\nu}\|\nabla y\|_{L^{2}\left(Q_{T}\right)^{4}} \leq M$, then there exists a constant $c(M)$ such that

$$
\|y-\bar{y}\|_{L^{\infty}(0, T ; \boldsymbol{H})}+\sqrt{\nu}\|y-\bar{y}\|_{L^{2}(0, T ; \boldsymbol{V})}+\left\|\partial_{t} y-\partial_{t} \bar{y}\right\|_{L^{2}\left(0, T, \boldsymbol{V}^{\prime}\right)} \leq c(M) \sqrt{E(y)}
$$

Construction of a convergent sequence $y_{k} \in \mathcal{A}$

Let $m \geq 1$.

$$
\left\{\begin{array}{l}
y_{0} \in \mathcal{A} \tag{16}\\
y_{k+1}=y_{k}-\lambda_{k} Y_{1, k}, \quad k \geq 0 \\
E\left(y_{k}-\lambda_{k} Y_{1, k}\right)=\min _{\lambda \in[0, m]} E\left(y_{k}-\lambda Y_{1, k}\right)
\end{array}\right.
$$

with $Y_{1, k} \in \mathcal{A}_{0}$ the solution of the formulation

$$
\left\{\begin{array}{l}
\frac{d}{d t} \int_{\Omega} Y_{1, k} \cdot w+\nu \int_{\Omega} \nabla Y_{1, k} \cdot \nabla w+\int_{\Omega} y_{k} \cdot \nabla Y_{1, k} \cdot w \\
\\
\quad+\int_{\Omega} Y_{1, k} \cdot \nabla y_{k} \cdot w=-\frac{d}{d t} \int_{\Omega} v_{k} \cdot w-\int_{\Omega} \nabla v_{k} \cdot \nabla w, \quad \forall w \in \boldsymbol{V} \\
Y_{1, k}(0)=0,
\end{array}\right.
$$

where $v_{k} \in \mathcal{A}_{0}$ is the corrector (associated to y_{k}) solution of (15) leading to $E^{\prime}\left(y_{k}\right) \cdot Y_{1, k}=2 E\left(y_{k}\right)$.

Construction of a convergent sequence $y_{k} \in \mathcal{A}$

Theorem

Let $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ the sequence of \mathcal{A} defined by (29). Then $y_{k} \rightarrow \bar{y}$ in $H^{1}\left(0, T ; \boldsymbol{V}^{\prime}\right) \cap L^{2}(0, T ; \boldsymbol{V})$ where $\bar{y} \in \mathcal{A}$ is the unique solution of (14). Moreover, there exists a $k_{0} \in \mathbb{N}$ such that the sequence $\left\{\left\|y_{k}-\bar{y}\right\|_{\mathcal{A}}\right\}_{\left(k \geq k_{0}\right)}$ decays quadratically.

The key lemma is

Lemma

Let $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ the sequence of \mathcal{A} defined by (29). Then

where $C_{1}=\frac{c}{\nu \sqrt{\nu}} \exp$

Proof -

$$
E\left(y_{k}-\lambda Y_{1, k}\right) \leq E\left(y_{k}\right)\left(|1-\lambda|+\lambda^{2} \frac{c}{\nu \sqrt{\nu}} \sqrt{E\left(y_{k}\right)} \exp \left(\frac{c}{\nu} \int_{0}^{T}\left\|y_{k}\right\|_{V}^{2}\right)\right)^{2} .
$$

Construction of a convergent sequence $y_{k} \in \mathcal{A}$

Theorem

Let $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ the sequence of \mathcal{A} defined by (29). Then $y_{k} \rightarrow \bar{y}$ in
$H^{1}\left(0, T ; \boldsymbol{V}^{\prime}\right) \cap L^{2}(0, T ; \boldsymbol{V})$ where $\bar{y} \in \mathcal{A}$ is the unique solution of (14). Moreover, there exists a $k_{0} \in \mathbb{N}$ such that the sequence $\left\{\left\|y_{k}-\bar{y}\right\|_{\mathcal{A}}\right\}_{\left(k \geq k_{0}\right)}$ decays quadratically.

The key lemma is

Lemma

Let $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ the sequence of \mathcal{A} defined by (29). Then

$$
\begin{equation*}
\sqrt{E\left(y_{k+1}\right)} \leq \sqrt{E\left(y_{k}\right)}\left(|1-\lambda|+\lambda^{2} C_{1} \sqrt{E\left(y_{k}\right)}\right), \quad \forall \lambda \in[0, m] . \tag{17}
\end{equation*}
$$

where $C_{1}=\frac{c}{\nu \sqrt{\nu}} \exp \left(\frac{c}{\nu^{2}}\left\|u_{0}\right\|_{\boldsymbol{H}}^{2}+\frac{c}{\nu^{3}}\|f\|_{L^{2}\left(0, T ; V^{\prime}\right)}^{2}+\frac{c}{\nu^{3}} E\left(y_{0}\right)\right)$ does not depend on y_{k}.
Proof -

$$
E\left(y_{k}-\lambda Y_{1, k}\right) \leq E\left(y_{k}\right)\left(|1-\lambda|+\lambda^{2} \frac{c}{\nu \sqrt{\nu}} \sqrt{E\left(y_{k}\right)} \exp \left(\frac{c}{\nu} \int_{0}^{T}\left\|y_{k}\right\|_{V}^{2}\right)\right)^{2} .
$$

Experiment : The driven semi-disk

Case considered by Glowinski [2006] ${ }^{2}$ for which a Hopf bifurcation phenomenon occurs: for $R e=\nu^{-1} \geq 6650$, the unsteady solution does not converge toward the steady solution.

Semi-disk geometry: $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, x_{1}^{2}+x_{2}^{2} \leq 1 / 4, x_{2} \leq 0\right\}$
For $\alpha=0$ (Pure steady NS) Initialized with the solution of the corresponding Stokes problem,

- Newton algorithm $\left(\lambda_{k}=1\right)$ converges up to $R e \approx 500$.
- Damped Newton algorithm converges up to Re ≈ 910.

Continuation technic w.r.t. ν is used for $\operatorname{Re}>910$.
${ }^{2}$ Glowinski, R. and Guidoboni, G. and Pan, T.-W., Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity, J. Comput. Phys., 2006

Experiment : The driven semi-disk

Case considered by Glowinski [2006] ${ }^{2}$ for which a Hopf bifurcation phenomenon occurs: for $R e=\nu^{-1} \geq 6650$, the unsteady solution does not converge toward the steady solution.

Semi-disk geometry: $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, x_{1}^{2}+x_{2}^{2} \leq 1 / 4, x_{2} \leq 0\right\}$
For $\alpha=0$ (Pure steady NS) Initialized with the solution of the corresponding Stokes problem,

- Newton algorithm $\left(\lambda_{k}=1\right)$ converges up to $R e \approx 500$.
- Damped Newton algorithm converges up to $R e \approx 910$.

Continuation technic w.r.t. ν is used for $R e>910$.
${ }^{2}$ Glowinski, R. and Guidoboni, G. and Pan, T.-W., Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity, J. Comput. Phys., 2006

Experiment : The driven semi-disk

Streamlines of the steady state solution for $R e=500,1000,2000,3000,4000,5000,6000,7000$ and $R e=8000$.

Experiment: Damped Newton Method vs. Newton method; $T=10$

Initialization y_{0} (independent of ν) with the Stokes solutions associated to $\nu=1$.

\#iterate k	$\frac{\left\\|y_{k}-y_{k-1}\right\\| L^{2}(\boldsymbol{V})}{\left\\|y_{k-1}\right\\| L^{2}(\boldsymbol{V})}$	$\sqrt{2 E\left(y_{k}\right)}$	λ_{k}	$\frac{\left\\|y_{k}-y_{k-1}\right\\| L^{2}(\boldsymbol{V})}{\left\\|y_{k-1}\right\\| L^{2}(\boldsymbol{V})}\left(\lambda_{k}=1\right)$	$\sqrt{2 E\left(y_{k}\right)}\left(\lambda_{k}=1\right)$
0	-	2.690×10^{-2}	0.8112	-	2.690×10^{-2}
1	4.540×10^{-1}	1.077×10^{-2}	0.7758	5.597×10^{-1}	1.254×10^{-2}
2	1.836×10^{-1}	3.653×10^{-3}	0.8749	2.236×10^{-1}	5.174×10^{-3}
3	7.503×10^{-2}	7.794×10^{-4}	0.9919	7.830×10^{-2}	6.133×10^{-4}
4	1.437×10^{-2}	2.564×10^{-5}	1.0006	9.403×10^{-3}	1.253×10^{-5}
5	4.296×10^{-4}	3.180×10^{-8}	1.	1.681×10^{-4}	4.424×10^{-9}
6	5.630×10^{-7}	6.384×10^{-11}	-	-	-

\#iterate k	$\frac{\left\\|y_{k}-y_{k-1}\right\\|_{L^{2}(V)}^{\left\\|y_{k-1}\right\\|_{L^{2}(\boldsymbol{V})}}}{}$	$\sqrt{2 E\left(y_{k}\right)}$	λ_{k}	$\frac{\left\\|y_{k}-y_{k-1}\right\\|_{L^{2}(\boldsymbol{V})}^{\left\\|y_{k-1}\right\\|_{L^{2}(\boldsymbol{V})}}\left(\lambda_{k}=1\right)}{} \sqrt{2 E\left(y_{k}\right)}\left(\lambda_{k}=1\right)$	
0	-	2.690×10^{-2}	0.6344	-	2.690×10^{-2}
1	5.138×10^{-1}	1.493×10^{-2}	0.5803	8.101×10^{-1}	2.234×10^{-2}
2	2.534×10^{-1}	7.608×10^{-3}	0.3496	4.451×10^{-1}	2.918×10^{-2}
3	1.345×10^{-1}	5.477×10^{-3}	0.4025	5.717×10^{-1}	5.684×10^{-2}
4	1.105×10^{-1}	3.814×10^{-3}	0.5614	3.683×10^{-1}	2.625×10^{-2}
5	8.951×10^{-2}	2.295×10^{-3}	0.8680	2.864×10^{-1}	1.828×10^{-2}
6	6.394×10^{-2}	8.679×10^{-4}	1.0366	1.423×10^{-1}	4.307×10^{-3}
7	1.788×10^{-2}	4.153×10^{-5}	0.9994	6.059×10^{-2}	9.600×10^{-4}
8	7.982×10^{-4}	9.931×10^{-8}	0.9999	1.484×10^{-2}	5.669×10^{-5}
9	2.256×10^{-6}	4.000×10^{-11}	-	9.741×10^{-4}	3.020×10^{-7}
10	-	-	-	4.267×10^{-6}	3.846×10^{-11}

$$
R e=\nu^{-1}=1000
$$

Experiments

Streamlines of the unsteady state solution for $R e=1000$ at time $t=i, i=0, \cdots, 7 \mathrm{~s}$.

Experiments: divergence of the Newton method

\sharp iterate k	$\frac{\left\\|y_{k}-y_{k-1}\right\\|_{L^{2}(\boldsymbol{V})}}{\left\\|y_{k-1}\right\\|_{L^{2}(\boldsymbol{V})}}$	$\sqrt{2 E\left(y_{k}\right)}$	λ_{k}	$\frac{\left\\|y_{k}-y_{k-1}\right\\|_{L^{2}(\boldsymbol{V})}^{\left\\|y_{k-1}\right\\|_{L^{2}(\boldsymbol{V})}}\left(\lambda_{k}=1\right)}{\sqrt{2 E\left(y_{k}\right)}\left(\lambda_{k}=1\right)}$	
0	-	2.691×10^{-2}	0.6145	-	2.691×10^{-2}
1	5.241×10^{-1}	1.530×10^{-2}	0.5666	8.528×10^{-1}	2.385×10^{-2}
2	2.644×10^{-1}	8.025×10^{-3}	0.3233	4.893×10^{-1}	3.555×10^{-2}
3	1.380×10^{-1}	5.982×10^{-3}	0.3302	7.171×10^{-1}	8.706×10^{-2}
4	1.115×10^{-1}	4.543×10^{-3}	0.4204	4.849×10^{-1}	3.531×10^{-2}
5	9.429×10^{-2}	3.221×10^{-3}	0.5875	1.125×10^{0}	3.905×10^{-1}
6	7.664×10^{-2}	1.944×10^{-3}	0.9720	-	1.337×10^{4}
7	5.688×10^{-2}	5.937×10^{-4}	1.022	-	8.091×10^{27}
8	1.009×10^{-2}	1.081×10^{-5}	0.9998	-	-
9	2.830×10^{-4}	1.332×10^{-8}	1.	-	-
10	2.893×10^{-7}	4.611×10^{-11}	-	-	-

Table: $R e=1100$: Damped Newton method vs. Newton method.

Experiments: driven semi-disk; $\nu=1 / 2000$

$R e=3000: 39$ iterations ; $R e=4000: 75$ iterations.

Part 2-2 The 3d case - Regular solution

Part $2-2$ Direct Problem for unsteady NS -
Let $\Omega \subset \mathbb{R}^{3}$ be a bounded connected open set whose boundary $\partial \Omega$ is \mathcal{C}^{2}
For $f \in L^{2}\left(Q_{T}\right)^{3}$ and $u_{0} \in \boldsymbol{V}$, there exists $T^{*}=T^{*}\left(\Omega, \nu, u_{0}, f\right)>0$ and a unique solution $\bar{y} \in L^{\infty}\left(0, T^{*} ; \boldsymbol{V}\right) \cap L^{2}\left(0, T^{*} ; H^{2}(\Omega)^{3}\right), \partial_{t} \bar{y} \in L^{2}\left(0, T^{*} ; \boldsymbol{H}\right)$ of the equation

$$
\left\{\begin{array}{l}
\frac{d}{d t} \int_{\Omega} y \cdot w+\nu \int_{\Omega} \nabla y \cdot \nabla w+\int_{\Omega} y \cdot \nabla y \cdot w=\int_{\Omega} f \cdot w, \quad \forall w \in \boldsymbol{V} \tag{18}\\
y(\cdot, 0)=u_{0}, \quad \text { in } \Omega
\end{array}\right.
$$

For any $t>0$, let

$$
\mathcal{A}(t)=\left\{y \in L^{2}\left(0, t ; H^{2}(\Omega)^{3} \cap \boldsymbol{V}\right) \cap H^{1}(0, t ; \boldsymbol{H}), y(0)=u_{0}\right\}
$$

and

$$
\mathcal{A}_{0}(t)=\left\{y \in L^{2}\left(0, t ; H^{2}(\Omega)^{3} \cap \boldsymbol{V}\right) \cap H^{1}(0, t ; \boldsymbol{H}), y(0)=0\right\} .
$$

Endowed with the scalar product $\langle y, z\rangle_{\mathcal{A}_{0}(t)}=\int_{0}^{t}\langle P(\Delta y), P(\Delta z)\rangle_{\boldsymbol{H}}+\left\langle\partial_{t} y, \partial_{t} z\right\rangle_{\boldsymbol{H}}$ and the norm $\|y\|_{\mathcal{A}_{0}(t)}=<y, y>_{\mathcal{A}_{0}(t)}$ is a Hilbert space.
P is the orthogonal projector in $L^{2}(\Omega)^{3}$ onto \boldsymbol{H}

Part 2-2 The 3d case - Regular solution

We introduce our least-squares functional $E: \mathcal{A}\left(T^{*}\right) \rightarrow \mathbb{R}^{+}$by putting

$$
\begin{equation*}
E(y)=\frac{1}{2} \int_{0}^{T^{*}}\|P(\Delta v)\|_{H}^{2}+\frac{1}{2} \int_{0}^{T^{*}}\left\|\partial_{t} v\right\|_{\boldsymbol{H}}^{2}=\frac{1}{2}\|v\|_{\mathcal{A}_{0}\left(T^{*}\right)}^{2} \tag{19}
\end{equation*}
$$

Proposition

Let $\bar{y} \in \mathcal{A}\left(T^{*}\right)$ be the solution of (18), $M \in \mathbb{R}$ such that $\left\|\partial_{t} \bar{y}\right\|_{L^{2}\left(Q_{T^{*}}\right)^{3}} \leq M$ and
$\sqrt{\nu}\|P(\Delta \bar{y})\|_{L^{2}\left(Q_{T^{*}}\right)^{3}} \leq M$ and let $y \in \mathcal{A}\left(T^{*}\right)$. If $\left\|\partial_{t} y\right\|_{L^{2}\left(Q_{T^{*}}\right)^{3}} \leq M$ and
$\sqrt{\nu}\|P(\Delta y)\|_{L^{2}\left(Q_{T^{*}}\right)^{3}} \leq M$, then there exists a constant $c(M)$ such that
$\|y-\bar{y}\|_{L^{\infty}\left(0, T^{*} ; V\right)}+\sqrt{\nu}\|P(\Delta y)-P(\Delta \bar{y})\|_{L^{2}\left(Q_{\left.T^{*}\right)^{3}}\right)}+\left\|\partial_{t} y-\partial_{t} \bar{y}\right\|_{\left.L^{2}\left(Q_{T^{*}}\right)^{3}\right)} \leq c(M) \sqrt{E(y)}$.

Part 2-2 Direct Problem for unsteady NS - The 3d case.

Therefore, we can define, for any $m \geq 1$, a minimizing sequence y_{k} as follows:

$$
\left\{\begin{array}{l}
y_{0} \in \mathcal{A}\left(T^{*}\right), \tag{20}\\
y_{k+1}=y_{k}-\lambda_{k} Y_{1, k}, \quad k \geq 0, \\
E\left(y_{k}-\lambda_{k} Y_{1, k}\right)=\min _{\lambda \in[0, m]} E\left(y_{k}-\lambda Y_{1, k}\right)
\end{array}\right.
$$

where $Y_{1, k}$ in $\mathcal{A}_{0}\left(T^{*}\right)$ solves the formulation

$$
\left\{\begin{array}{l}
\frac{d}{d t} \int_{\Omega} Y_{1, k} \cdot w+\nu \int_{\Omega} \nabla Y_{1, k} \cdot \nabla w+\int_{\Omega} y_{k} \cdot \nabla Y_{1, k} \cdot w \\
\\
\quad+\int_{\Omega} Y_{1, k} \cdot \nabla y_{k} \cdot w=-\frac{d}{d t} \int_{\Omega} v_{k} \cdot w-\int_{\Omega} \nabla v_{k} \cdot \nabla w, \quad \forall w \in \boldsymbol{V} \\
Y_{1, k}(0)=0,
\end{array}\right.
$$

and v_{k} in $\mathcal{A}_{0}\left(T^{*}\right)$ is the corrector (associated to y_{k}) leading to $E^{\prime}\left(y_{k}\right) \cdot Y_{1, k}=2 E\left(y_{k}\right)$.

Part 2 - Direct Problem for unsteady NS - case $d=3$ - Space-time

least-squares method

Proposition

Let $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ the sequence of $\mathcal{A}\left(T^{*}\right)$ defined by (20). Then $y_{k} \rightarrow \bar{y}$ in $H^{1}\left(0, T^{*} ; \boldsymbol{H}\right) \cap L^{2}\left(0, T^{*} ; H^{2}(\Omega)^{3} \cap \boldsymbol{V}\right)$ where $\bar{y} \in \mathcal{A}\left(T^{*}\right)$ is the unique solution of (14).
based on the estimate

$$
\sqrt{E\left(y_{k+1}\right)} \leq \sqrt{E\left(y_{k}\right)}\left(|1-\lambda|+\lambda^{2} C_{1} \sqrt{E\left(y_{k}\right)}\right), \quad \forall \lambda \in \mathbb{R}_{+}
$$

where

$$
\left\{\begin{array}{l}
C_{1}=\frac{c}{\nu^{5 / 4}} \exp \left(c\left(\frac{C_{2}}{\nu^{2}}+\left(\frac{C_{2}}{\nu^{2}}\right)^{2}\right)\right) \tag{21}\\
C_{2}=\left\|u_{0}\right\|_{V}^{2}+\frac{8}{\nu}\|f\|_{L^{2}\left(Q_{\left.T^{*}\right)^{3}}^{2}\right.}^{2}+\frac{16}{\nu} E\left(y_{0}\right)
\end{array}\right.
$$

does not depend on $y_{k}, k \in \mathbb{N}^{*}$.

Part 3: Approximation of controls for the a sub-linear heat equation

Part 3-Controllability problem for a sub-linear (controllable) heat equation: find a sequence $\left(y_{k}, v_{k}\right)_{k>0}$ converging strongly to a pair (y, v) solution of

$$
\left\{\begin{array}{l}
y_{t}-\nu \Delta y+g(y)=f 1_{\omega} \quad \text { in } Q_{T}, \tag{22}\\
y=0 \text { on } \Sigma_{T}, \quad y(\cdot, 0)=u_{0} \text { in } \Omega,
\end{array}\right.
$$

such that $y(\cdot, T)=0$.

- $u_{0} \in L^{2}(\Omega), f \in L^{\infty}\left(q_{T}\right)$ is a control function.
- $g: \mathbb{R} \mapsto \mathbb{R}$ is locally Lipschitz-continuous and satisfies

$$
\begin{equation*}
\left|g^{\prime}(s)\right| \leq C\left(1+|s|^{m}\right) \quad \text { a.e., with } 1 \leq m \leq 1+4 / d \tag{23}
\end{equation*}
$$

so that (22) possesses exactly one local in time solution.

Part 3: Main known controllability result for the sub-linear heat equation

If g is "not too super-linear" at infinity, then the control can compensate the blow-up phenomena occurring in $\Omega \backslash \bar{\omega}$.

Theorem (Fernandez-Cara,Zuazua (2000), Barbu (2000))

Let $T>0$ be given. Assume that $g(0)=0$ and that $g: \mathbb{R} \mapsto \mathbb{R}$ is locally Lipschitz-continuous and satisfies (23) and

$$
\begin{equation*}
\frac{g(s)}{|s| \log ^{3 / 2}(1+|s|)} \rightarrow 0 \quad \text { as } \quad|s| \rightarrow \infty \tag{24}
\end{equation*}
$$

Then (22) is null-controllable at time T.
The proof is based on a fixed point method. Precisely, it is shown that the operator $\Lambda: L^{2}\left(Q_{T}\right) \rightarrow L^{2}\left(Q_{T}\right)$, where $y_{z}:=\Lambda z$ is a null controlled solution of the linear boundary value problem

$$
\left\{\begin{array}{l}
y_{z, t}-\nu \Delta y_{z}+y_{z} \tilde{g}(z)=f_{z} 1_{\omega}, \quad \text { in } \quad Q_{T} \\
y_{z}=0 \text { on } \Sigma_{T}, \quad y_{z}(\cdot, 0)=u_{0} \quad \text { in } \quad \Omega
\end{array}, \quad \tilde{g}(s):= \begin{cases}g(s) / s & s \neq 0 \\
g^{\prime}(0) & s=0\end{cases}\right.
$$

maps the closed ball $B(0, M) \subset L^{2}\left(Q_{T}\right)$ into itself, for some $M>0$. The Kakutani's theorem provides the existence of at least one fixed point for Λ, which is also a controlled solution for (22).

Part 3: a least-square approach

We define the convex space

$$
\begin{aligned}
\mathcal{A}=\left\{(y, f): \rho y \in L^{2}\left(Q_{T}\right),\right. & \rho_{1} \nabla y \in L^{2}\left(Q_{T}\right), \rho_{0} f \in L^{2}\left(q_{T}\right) \\
& \left.\rho_{0}\left(y_{t}-\Delta y\right) \in L^{2}\left(0, T ; H^{-1}(\Omega)\right), y(\cdot, 0)=0 \text { in } \Omega, y=y_{0} \text { on } \Sigma_{T}\right\} .
\end{aligned}
$$

where ρ, ρ_{1} and ρ_{0} defines Carleman type weights, continuous, $\geq \rho_{*}>0$ in Q_{T} and blowing up as $t \rightarrow T^{-} . \rho_{i} \approx \exp (\beta(x) /(T-t))$ then the least-squares problem, with $E: \mathcal{A} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\inf _{(y, f) \in \mathcal{A}} E(y, f)=\frac{1}{2}\left\|\rho_{0}\left(y_{t}-\nu \Delta y+g(y)-f 1_{\omega}\right)\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right.}^{2} \tag{25}
\end{equation*}
$$

Actually, for any $(\bar{y}, 0) \in \mathcal{A}$, we consider the extremal problem $\inf _{(y, f) \in \mathcal{A}_{0}} E(\bar{y}+y, f)$ where \mathcal{A}_{0} is the Hilbert space

Part 3: a least-square approach

We define the convex space

$$
\begin{aligned}
\mathcal{A}=\left\{(y, f): \rho y \in L^{2}\left(Q_{T}\right),\right. & \rho_{1} \nabla y \in L^{2}\left(Q_{T}\right), \rho_{0} f \in L^{2}\left(q_{T}\right) \\
& \left.\rho_{0}\left(y_{t}-\Delta y\right) \in L^{2}\left(0, T ; H^{-1}(\Omega)\right), y(\cdot, 0)=0 \text { in } \Omega, y=y_{0} \text { on } \Sigma_{T}\right\} .
\end{aligned}
$$

where ρ, ρ_{1} and ρ_{0} defines Carleman type weights, continuous, $\geq \rho_{*}>0$ in Q_{T} and blowing up as $t \rightarrow T^{-} . \rho_{i} \approx \exp (\beta(x) /(T-t))$ then the least-squares problem, with $E: \mathcal{A} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\inf _{(y, f) \in \mathcal{A}} E(y, f)=\frac{1}{2}\left\|\rho_{0}\left(y_{t}-\nu \Delta y+g(y)-f 1_{\omega}\right)\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right.}^{2} \tag{25}
\end{equation*}
$$

Actually, for any $(\bar{y}, 0) \in \mathcal{A}$, we consider the extremal problem $\inf _{(y, f) \in \mathcal{A}_{0}} E(\bar{y}+y, f)$ where \mathcal{A}_{0} is the Hilbert space

$$
\begin{aligned}
\mathcal{A}_{0}=\left\{(y, f): \rho y \in L^{2}\left(Q_{T}\right),\right. & \rho_{1} \nabla y \in L^{2}\left(Q_{T}\right), \rho_{0} f \in L^{2}\left(q_{T}\right), \\
& \left.\rho_{0}\left(y_{t}-\Delta y\right) \in L^{2}\left(0, T ; H^{-1}(\Omega)\right), y(\cdot, 0)=0 \text { in } \Omega, y=0 \text { on } \Sigma_{T}\right\} .
\end{aligned}
$$

Part 3: a least-square approach

For any $(y, f) \in \mathcal{A}$, we now look for a pair $\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ solution of

$$
\left\{\begin{array}{l}
Y_{t}^{1}-\Delta Y^{1}+g^{\prime}(y) \cdot Y^{1}=F^{1} 1_{\omega}+\left(y_{t}-\Delta y+g(y)-f 1_{\omega}\right), \quad \text { in } \quad Q_{T} \tag{26}\\
Y^{1}=0 \text { on } \Sigma_{T}, \quad Y^{1}(\cdot, 0)=0 \text { in } \Omega .
\end{array}\right.
$$

$\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ so that F^{1} is a null control for Y^{1}.

Proposition

Assume that g is differentiable. Then, $E((\bar{y}, \bar{f})+\cdot)$ is differentiable over \mathcal{A}_{0}. Let $(y, f) \in \mathcal{A}$ and let $\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ be a solution of (26). Then the derivative of E at the point $(y, f) \in \mathcal{A}$ along the direction $\left(Y^{1}, F^{1}\right)$ satisfies

$$
E^{\prime}(y, f) \cdot\left(Y^{1}, F^{1}\right)=2 E(y, f)
$$

Part 3: a least-square approach

For any $(y, f) \in \mathcal{A}$, we now look for a pair $\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ solution of

$$
\left\{\begin{array}{l}
Y_{t}^{1}-\Delta Y^{1}+g^{\prime}(y) \cdot Y^{1}=F^{1} 1_{\omega}+\left(y_{t}-\Delta y+g(y)-f 1_{\omega}\right), \quad \text { in } \quad Q_{T} \tag{27}\\
Y^{1}=0 \text { on } \Sigma_{T}, \quad Y^{1}(\cdot, 0)=0 \text { in } \Omega .
\end{array}\right.
$$

Part 3: a least-square approach

For any $(y, f) \in \mathcal{A}$, we now look for a pair $\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ solution of

$$
\left\{\begin{array}{l}
Y_{t}^{1}-\Delta Y^{1}+g^{\prime}(y) \cdot Y^{1}=F^{1} 1_{\omega}+\left(y_{t}-\Delta y+g(y)-f 1_{\omega}\right), \quad \text { in } \quad Q_{T} \tag{27}\\
Y^{1}=0 \text { on } \Sigma_{T}, \quad Y^{1}(\cdot, 0)=0 \text { in } \Omega .
\end{array}\right.
$$

Proposition

Assume that $g \in W^{1, \infty}(\mathbb{R})$. For any $(y, f) \in \mathcal{A}$, we define the unique pair $\left(Y^{1}, F^{1}\right)$ solution of (27), which minimizes the functional $J: L^{2}\left(\rho_{0}, q_{T}\right) \times L^{2}\left(\rho, Q_{T}\right) \rightarrow \mathbb{R}^{+}$ defined by

$$
J(u, z):=\left\|\rho_{0} u\right\|_{L^{2}\left(q_{T}\right)}^{2}+\|\rho z\|_{L^{2}\left(Q_{T}\right)}^{2} .
$$

$\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ satisfies
for some $C=C\left(T, \Omega,\left\|g^{\prime}(y)\right\|_{L \infty\left(Q_{T}\right)}\right)>0$ of the form

Part 3: a least-square approach

For any $(y, f) \in \mathcal{A}$, we now look for a pair $\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ solution of

$$
\left\{\begin{array}{l}
Y_{t}^{1}-\Delta Y^{1}+g^{\prime}(y) \cdot Y^{1}=F^{1} 1_{\omega}+\left(y_{t}-\Delta y+g(y)-f 1_{\omega}\right), \quad \text { in } \quad Q_{T} \tag{27}\\
Y^{1}=0 \text { on } \Sigma_{T}, \quad Y^{1}(\cdot, 0)=0 \text { in } \Omega .
\end{array}\right.
$$

Proposition

Assume that $g \in W^{1, \infty}(\mathbb{R})$. For any $(y, f) \in \mathcal{A}$, we define the unique pair $\left(Y^{1}, F^{1}\right)$ solution of (27), which minimizes the functional $J: L^{2}\left(\rho_{0}, q_{T}\right) \times L^{2}\left(\rho, Q_{T}\right) \rightarrow \mathbb{R}^{+}$ defined by

$$
J(u, z):=\left\|\rho_{0} u\right\|_{L^{2}\left(q_{T}\right)}^{2}+\|\rho z\|_{L^{2}\left(Q_{T}\right)}^{2} .
$$

$\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ satisfies
for some $C=C\left(T, \Omega,\left\|g^{\prime}(y)\right\|_{L \infty\left(Q_{T}\right)}\right)>0$ of the form

Part 3: a least-square approach

For any $(y, f) \in \mathcal{A}$, we now look for a pair $\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ solution of

$$
\left\{\begin{array}{l}
Y_{t}^{1}-\Delta Y^{1}+g^{\prime}(y) \cdot Y^{1}=F^{1} 1_{\omega}+\left(y_{t}-\Delta y+g(y)-f 1_{\omega}\right), \quad \text { in } \quad Q_{T} \tag{27}\\
Y^{1}=0 \text { on } \Sigma_{T}, \quad Y^{1}(\cdot, 0)=0 \text { in } \Omega .
\end{array}\right.
$$

Proposition

Assume that $g \in W^{1, \infty}(\mathbb{R})$. For any $(y, f) \in \mathcal{A}$, we define the unique pair $\left(Y^{1}, F^{1}\right)$ solution of (27), which minimizes the functional $J: L^{2}\left(\rho_{0}, q_{T}\right) \times L^{2}\left(\rho, Q_{T}\right) \rightarrow \mathbb{R}^{+}$ defined by

$$
J(u, z):=\left\|\rho_{0} u\right\|_{L^{2}\left(q_{T}\right)}^{2}+\|\rho z\|_{L^{2}\left(Q_{T}\right)}^{2}
$$

$\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ satisfies

$$
\begin{equation*}
\left\|\rho(T-t) \nabla Y^{1}\right\|_{L^{2}\left(q_{T}\right)}+\left\|\rho_{0} F^{1}\right\|_{L^{2}\left(q_{T}\right)}+\left\|\rho Y^{1}\right\|_{L^{2}\left(Q_{T}\right)} \leq C \sqrt{E(y, f)} \tag{28}
\end{equation*}
$$

for some $C=C\left(T, \Omega,\left\|g^{\prime}(y)\right\|_{L \infty\left(Q_{T}\right)}\right)>0$ of the form

$$
C=e^{c(\Omega)\left(1+T^{-1}+T+\left(T^{1 / 2}+T\right)\left\|g^{\prime}(y)\right\|_{L \infty}\left(Q_{T}\right)+\left\|g^{\prime}(y)\right\|_{L \infty\left(Q_{T}\right)}^{2 / 3}\right)} .
$$

Part 3: a least-square approach - Minimizing sequence

Therefore, we can define a minimizing sequence $\left\{y_{k}, f_{k}\right\}_{k>0}$ as follows:

$$
\left\{\begin{array}{l}
\left(y_{0}, f_{0}\right) \in \mathcal{A}, \tag{29}\\
\left(y_{k+1}, f_{k+1}\right)=\left(y_{k}, f_{k}\right)-\lambda_{k}\left(Y_{k}^{1}, F_{k}^{1}\right), \quad k>0, \\
\lambda_{k}=\operatorname{argmin}_{\lambda \in \mathbb{R}^{+}} E\left(\left(y_{k}, f_{k}\right)-\lambda\left(Y_{k}^{1}, F_{k}^{1}\right)\right)
\end{array}\right.
$$

where $\left(Y_{k}^{1}, F_{k}^{1}\right) \in \mathcal{A}_{0}$ is such that F_{k}^{1} is a null control for Y_{k}^{1}, solution of

$$
\left\{\begin{array}{l}
Y_{k, t}^{1}-\Delta Y_{k}^{1}+g^{\prime}\left(y_{k}\right) \cdot Y_{k}^{1}=F_{k}^{1} 1_{\omega}-\left(y_{k, t}-\Delta y_{k}+g\left(y_{k}\right)-f_{k} 1_{\omega}\right), \quad \text { in } \quad Q_{T} \\
Y_{k}^{1}=0 \text { on } \Sigma_{T}, \quad Y_{k}^{1}(\cdot, 0)=0 \text { in } \Omega,
\end{array}\right.
$$

and minimizes the functional J.

Theorem

Assume that $g \in W^{2, \infty}(\mathbb{R})$. Then, for any $\left(y_{0}, f_{0}\right) \in \mathcal{A}$, the sequence $\left\{y_{k}, f_{k}\right\}_{k>0}$ strongly converges to $\{y, f\} \in \mathcal{A}$ as $k \rightarrow \infty$.

Theorem

Assume that $g \in W_{l o c}^{2, \infty}(\mathbb{R})$ and that $e^{\| g^{\prime}}\left(y_{0}\right) \| L \infty \sqrt{E\left(y_{0}, f_{0}\right)}<e^{1 / 2}$. Then, the sequence $\left\{y_{k}, f_{k}\right\}_{k>0}$ strongly converges to $\{y, f\} \in \mathcal{A}$ as $k \rightarrow \infty$.

Part 3: a least-square approach - Minimizing sequence

Therefore, we can define a minimizing sequence $\left\{y_{k}, f_{k}\right\}_{k>0}$ as follows:

$$
\left\{\begin{array}{l}
\left(y_{0}, f_{0}\right) \in \mathcal{A}, \tag{29}\\
\left(y_{k+1}, f_{k+1}\right)=\left(y_{k}, f_{k}\right)-\lambda_{k}\left(Y_{k}^{1}, F_{k}^{1}\right), \quad k>0, \\
\lambda_{k}=\operatorname{argmin}_{\lambda \in \mathbb{R}^{+}} E\left(\left(y_{k}, f_{k}\right)-\lambda\left(Y_{k}^{1}, F_{k}^{1}\right)\right)
\end{array}\right.
$$

where $\left(Y_{k}^{1}, F_{k}^{1}\right) \in \mathcal{A}_{0}$ is such that F_{k}^{1} is a null control for Y_{k}^{1}, solution of

$$
\left\{\begin{array}{l}
Y_{k, t}^{1}-\Delta Y_{k}^{1}+g^{\prime}\left(y_{k}\right) \cdot Y_{k}^{1}=F_{k}^{1} 1_{\omega}-\left(y_{k, t}-\Delta y_{k}+g\left(y_{k}\right)-f_{k} 1_{\omega}\right), \quad \text { in } \quad Q_{T} \\
Y_{k}^{1}=0 \text { on } \Sigma_{T}, \quad Y_{k}^{1}(\cdot, 0)=0 \text { in } \Omega,
\end{array}\right.
$$

and minimizes the functional J.

Theorem

Assume that $g \in W^{2, \infty}(\mathbb{R})$. Then, for any $\left(y_{0}, f_{0}\right) \in \mathcal{A}$, the sequence $\left\{y_{k}, f_{k}\right\}_{k>0}$ strongly converges to $\{y, f\} \in \mathcal{A}$ as $k \rightarrow \infty$.

Theorem

Assume that $g \in W_{l o c}^{2, \infty}(\mathbb{R})$ and that $e^{\| g^{\prime}}\left(y_{0}\right) \| L \infty \sqrt{E\left(y_{0}, f_{0}\right)}<e^{1 / 2}$. Then, the sequence $\left\{y_{k}, f_{k}\right\}_{k>0}$ strongly converges to $\{y, f\} \in \mathcal{A}$ as $k \rightarrow \infty$.

One experiment

Take $g(s)=-5 s \log ^{1.4}(1+|s|) ; g^{\prime} \notin L^{\infty}(\mathbb{R})$ but $g^{\prime \prime} \in L^{\infty}(\mathbb{R})!$

$$
\left\{\begin{array}{lr}
y_{t}-0.1 y_{x x}-5 y \log ^{1.4}(1+|y|)=f 1_{(0.2,0.6)}, & (x, t) \in(0,1) \times(0,1 / 2), \tag{30}\\
y(\cdot, 0)=40 \sin (\pi x), & x \in(0,1), \\
y(0, t)=y(1, t)=0, & t \in(0,1 / 2)
\end{array}\right.
$$

The uncontrolled solution blows up at $t_{c} \approx 0.339 .{ }^{3}$

At each iterates k, the pair $\left(Y_{k}^{1}, F_{k}^{1}\right)$, minimizer of J is computed through a mixed space-time variational formulation, well-suited for mesh adaptivity.

Conformal approximation in time and space leads to strong convergent approximation $\left(Y_{k}^{1}, F_{k}^{1}\right)_{h}$ of $\left(Y_{k}^{1}, F_{k}^{1}\right),{ }^{4}$

[^2]
Table

$\sharp i t e r a t e ~$										
k	$\frac{\left\\|y_{k}-y_{k-1}\right\\|_{L^{2}\left(Q_{T}\right)}^{\left\\|y_{k-1}\right\\|_{L^{2}\left(Q_{T}\right)}}}{} \quad \sqrt{2 E\left(y_{k}, f_{k}\right)}$	λ_{k}	$\left\\|Y_{k}^{1}, F_{k}^{1}\right\\|_{\mathcal{A}_{0}}$							
0	3.767	46.17	0.3192	1252.5						
1	1.442	38.96	0.4512	854.6						
2	7.034×10^{-1}	16.61	0.2120	449.60						
3	2.292×10^{-1}	7.229	0.3100	178.01						
4	7.987×10^{-2}	3.107	0.6040	67.56						
5	3.162×10^{-2}	1.240	0.3801	26.00						
6	5.427×10^{-3}	4.547×10^{-1}	0.5321	4.080						
7	2.458×10^{-3}	1.489×10^{-1}	0.5823	1.684						
8	1.177×10^{-3}	4.515×10^{-2}	0.6203	0.720						
9	5.939×10^{-4}	1.380×10^{-2}	0.7831	0.3214						
10	3.134×10^{-4}	4.629×10^{-3}	0.6932	0.1512						
11	1.727×10^{-4}	1.861×10^{-3}	0.6512	0.07616						
12	9.950×10^{-5}	9.659×10^{-4}	0.7921	0.04182						
13	6.018×10^{-5}	4.840×10^{-4}	0.8945	0.02553						
14	3.845×10^{-5}	3.933×10^{-4}	0.9230	0.01741						
15	2.607×10^{-5}	3.268×10^{-4}	0.9412	0.01306						
16	1.876×10^{-5}	2.725×10^{-4}	0.9582	0.01047						
17	1.426×10^{-5}	2.262×10^{-4}	0.9356	0.00877						
18	1.134×10^{-5}	1.862×10^{-4}	0.9844	0.0075						
19	9.339×10^{-6}	9.515×10^{-5}	-	\square						
20										

Experiments

Iso-values of the controlled solution in $(0,1) \times(0,0.5)$ and space-time adapted mesh.

Conclusion - Perspective

- Analysis of weak LS method/ damped Newton method for NS leading to globally convergent approximation
- Theoretical justification of the H^{-1}-LS introduced by Glowinski in 79 .
- Can be efficient to solve exact controllability problems.
- Possibly useful at the numerical analysis since (coercivity type) inequality like

$$
\left\|y_{k, h}-\bar{y}\right\|_{V} \leq C \sqrt{E\left(y_{k, h}\right)}, \quad \forall y_{k, h} \in V_{h} \subset \boldsymbol{V}
$$

remains true.

- The analysis can be extended to other "reasonable" nonlinearity (visco-elastic NS, nonlinear hyperbolic PDEs, ...).
- Damped Newton method is possibly useful to solve (nonlinear) inverse problems.

The end

Details and experiments are available here:

Analysis of V^{\prime}-Least-squares pb. (interior and exterior case) based on the gradient (Conjugate gradient / Barzilai Borwein)

- J. Lemoine, A.Münch, P. Pedregal, Analysis of continuous H^{-1}-least-squares methods for the steady Navier-Stokes system Applied. Math. Optimization 2020

Analysis of \boldsymbol{V}^{\prime} and $L^{2}\left(\boldsymbol{V}^{\prime}\right)$-Least-squares pb. based on the Newton-direction

- J. Lemoine, A.Münch, Resolution of the Implicit Euler scheme for the Navier-Stokes equation through a least-squares method. hal-01996429
- J. Lemoine, A. Münch, A fully space-time least-squares method for the unsteady Navier-Stokes system arxiv.org/abs/1909.05034
- J. Lemoine, I. Marin-Gayte, A. Münch, Stong convergent approximation of null controls for sublinear heat equation using a least-squares approach. arxiv.org/abs/1910.0018.

Thank you for your attention

[^0]: M. O. Bristeau, O. Pironneau, R. Glowinski, J. Periaux, and P. Perrier, On the numerical solution of nonlinear

[^1]: ${ }^{1}$ M. O. Bristeau, O. Pironneau, R. Glowinski, J. Periaux, and P. Perrier, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. CMAME (1979)

[^2]: ${ }^{3}$ E. Fernandez-Cara, A. Munch, Numerical null controllability of semi-linear 1D heat equations: fixed point, least squares and Newton methods, Mathematical Control and Related Fields (2012).
 ${ }^{4}$ E. Fernandez-Cara, A. Munch, Strong convergent approximations of null controls for the heat equation, SEMA, 2013

