

Optimal Control of Perfect Plasticity

Christian Meyer

TU Dortmund, Faculty of Mathematics

joint work with Stephan Walther (TU Dortmund)

supported by DFG Priority Program SPP 1962

Special Semester on Optimization, RICAM, Linz, Oct., 14-18, 2019

<**₽** ►

Introduction to Perfect Plasticity

Stress Tracking Existence of Optimal Solutions and their Approximation Optimality System

Displacement Tracking Existence of Optimal Solutions Reverse Approximation

Conclusion and Outlook

< @ >

Introduction to Perfect Plasticity

Stress Tracking Existence of Optimal Solutions and their Approximation Optimality System

Displacement Tracking Existence of Optimal Solutions Reverse Approximation

Conclusion and Outlook

<₽>

< @ ►

Linear elasticity

$-\operatorname{div} \sigma = 0$		in $\Omega \times (0, T)$,
$\sigma = \mathbb{C}\nabla^{s}$	u	in $\Omega \times (0, T)$,
$u = u_D$		on $\Gamma_D \times (0, T)$,
$\sigma\nu=0$		on $\Gamma_N \times (0, T)$,
$u(0) = u_0,$	$\sigma(0) = \sigma_0$	in Ω

with

- $u: \Omega \to \mathbb{R}^d$ displacement, $\sigma: \Omega \to \mathbb{R}^{d \times d}_{sym}$ stress
- C linear and coercive elasticity tensor
- $\Gamma_D \cup \Gamma_N = \partial \Omega$, $\Gamma_D \cap \Gamma_N = \emptyset$, $\Gamma_D \neq \emptyset$, ν outward normal
- u_D given Dirichlet boundary data, u_0 , σ_0 initial data

< @ >

Perfect plasticity

$-\operatorname{div}\sigma=0$	in $\Omega \times (0, T)$,
$\sigma = \mathbb{C}(\nabla^{s} \mathit{U} - \mathit{Z})$	in $\Omega \times (0, T)$,
$\partial_t Z \in \partial I_\mathcal{K}(\sigma)$	in $\Omega \times (0, T)$,
$u = u_D$	on $\Gamma_D \times (0, T)$,
$\sigma \nu = 0$	on $\Gamma_N \times (0, T)$,
$u(0) = u_0, \sigma(0) = \sigma_0$	in Ω

with

- $u: \Omega \to \mathbb{R}^d$ displacement, $\sigma: \Omega \to \mathbb{R}^{d \times d}_{sym}$ stress, *z* plastic strain
- C linear and coercive elasticity tensor
- $\Gamma_D \cup \Gamma_N = \partial \Omega$, $\Gamma_D \cap \Gamma_N = \emptyset$, $\Gamma_D \neq \emptyset$, ν outward normal
- u_D given Dirichlet boundary data, u_0 , σ_0 initial data
- \mathcal{K} set of admissible stresses, closed and convex

< @ ►

- Displacement and plastic strain are in general not unique
- Lack of regularity:
 - Time derivative of the displacement field only in $L^2_w(0, T; BD(\Omega))$
 - Space of bounded deformation, not Bochner measureable
 - Plastic strain is only a regular Borel measure
- Existence only under a safe load condition:

Applied loads must admit an elastic solution not obeying the Dirichlet boundary conditions such that the associated stress is in the interior of ${\cal K}$

- Displacement and plastic strain are in general not unique
- Lack of regularity:
 - Time derivative of the displacement field only in $L^2_w(0, T; BD(\Omega))$
 - Space of bounded deformation, not Bochner measureable
 - Plastic strain is only a regular Borel measure
- Existence only under a safe load condition:

Applied loads must admit an elastic solution not obeying the Dirichlet boundary conditions such that the associated stress is in the interior of ${\cal K}$

BUT, if the safe load condition is fulfilled, then ...

For every Dirichlet displacement u_D there exists a unique stress field

< 🗗 > 🖡

< @ >

Introduction to Perfect Plasticity

Stress Tracking Existence of Optimal Solutions and their Approximation Optimality System

Displacement Tracking Existence of Optimal Solutions Reverse Approximation

Conclusion and Outlook

Spaces

- Stress space: $\mathcal{H}^{p} := L^{p}(\Omega; \mathbb{R}^{d \times d}_{sym}), \mathcal{H} := \mathcal{H}^{2}$
- Test space for displacements:

$$\begin{split} \mathcal{V}^{\rho} &:= \mathcal{W}^{1,\rho}(\Omega;\mathbb{R}^{d}), \quad \mathcal{V} := \mathcal{V}^{2}, \\ \mathcal{V}^{\rho}_{D} &:= \overline{\{\psi|_{\Omega} : \psi \in C_{0}^{\infty}(\mathbb{R}^{n}), \; \text{supp}(\psi) \cap \Gamma_{D} = \emptyset\}}^{\mathcal{W}^{1,\rho}(\Omega;\mathbb{R}^{n})}, \quad \mathcal{V}_{D} := \mathcal{V}^{2}_{D} \end{split}$$

Standing assumptions

- $K \subset \mathbb{R}^{d \times d}_{sym}$ nonempty, closed, and convex
- $\mathbb{C}: \mathbb{R}^{d \times d}_{sym} \to \mathbb{R}^{d \times d}_{sym}$ linear, symmetric, and coercive, $\mathbb{A}:=\mathbb{C}^{-1}$
- $u_D \in H^1(0, T; \mathcal{V}), \sigma_0 \in \mathcal{H}$ with $-\operatorname{div} \sigma_0 = 0, \sigma_0 \in K$ a.e. in Ω
- $Γ_D$ relatively closed subset of ∂Ω with positive measure, $Ω ∪ Γ_N$ regular in the sense of Gröger

< #> >

< @ > [

Definition (Reduction to the stress only, Johnson'76)

A function $\sigma \in H^1(0, T; \mathcal{H})$ is called **reduced solution** (with respect to u_D), if fa.a. $t \in (0, T)$, it holds

Equilibrium condition:	$\sigma(t) \in \mathcal{E} := \{\tau \in \mathcal{H} : \langle \tau, \nabla^{\mathbf{s}} \varphi \rangle_{\mathcal{H}} = 0 \ \forall \varphi \in \mathcal{V}_{\mathcal{D}} \}$	(E)
Yield condition:	$\sigma(t) \in \mathcal{K} := \{ \tau \in \mathcal{H} : \tau(x) \in \mathcal{K} \text{ f.a.a. } x \in \Omega \}$	(Y)
Flow rule:	$\langle \mathbb{A} \partial_t \sigma(t) - abla^{s} \partial_t u_{\mathcal{D}}(t), au - \sigma(t) angle_{\mathcal{H}} \geq 0 \forall au \in \mathcal{E} \cap \mathcal{K}$	(F)
Initial condition:	$\sigma(0) = \sigma_0$	(0)

Image: Market and the second secon

Yosida Regularization

$$\begin{aligned} -\operatorname{div} \sigma &= 0 & \operatorname{in} \Omega \times (0, T), \\ \sigma &= \mathbb{C}(\nabla^{s} u - z) & \operatorname{in} \Omega \times (0, T), \\ \partial_{t} z &\in \partial I_{\mathcal{K}}(\sigma) & \operatorname{in} \Omega \times (0, T), \\ u &= u_{D} & \operatorname{on} \Gamma_{D} \times (0, T) \\ \sigma \nu &= 0 & \operatorname{on} \Gamma_{N} \times (0, T) \\ u(0) &= u_{0}, \quad \sigma(0) &= \sigma_{0} & \operatorname{in} \Omega \end{aligned}$$

Image: Market and the second secon

Yosida Regularization

$$\begin{aligned} -\operatorname{div} \sigma &= 0 & \text{in } \Omega \times (0, T), \\ \sigma &= \mathbb{C}(\nabla^{\mathsf{s}} u - z) & \text{in } \Omega \times (0, T), \\ \partial_t z &= \partial I_{\lambda}(\sigma) & \text{in } \Omega \times (0, T), \\ u &= u_D & \text{on } \Gamma_D \times (0, T), \\ \sigma \nu &= 0 & \text{on } \Gamma_N \times (0, T), \\ u(0) &= u_0, \quad \sigma(0) &= \sigma_0 & \text{in } \Omega \end{aligned}$$

with

$$\partial I_{\lambda}(\tau) = \frac{1}{\lambda}(\tau - \pi_{\mathcal{K}}(\tau)) \text{ and } \pi_{\mathcal{K}}(\tau) = \operatorname*{arg\,min}_{\varsigma \in \mathcal{K}} |\varsigma - \tau|_{\mathcal{F}}^2$$

< @ >

Proposition (Existence of a reduced solution)

There exists a unique reduced solution $\sigma \in H^1(0, T; \mathcal{H})$.

Proof:

- Existence for the Yosida regularization by standard contraction arguments
- A priori bounds for σ_{λ} in $H^1(0, T; \mathcal{H}) \Rightarrow$ existence of a weak limit σ for $\lambda \searrow 0$
- Passage to the limit in (E) & (F), feasibility $\sigma(t) \in \mathcal{K}$ by Yosida regularization
- Uniqueness of σ by coercivity of A

Theorem (Continuity properties of reduced solutions)

Assume that $u_D^n \to u_D$ in $H^1(0, T; \mathcal{V})$, $u_D^n \to u_D$ in $L^2(\mathcal{V})$, $u_{D,n}(T) \to u_D(T)$ in \mathcal{V} . Then $\sigma_n \to \sigma$ in $H^1(0, T; \mathcal{H})$ and, if $\lambda_n \searrow 0$, then $\sigma_{\lambda}^n \to \sigma$ in $H^1(0, T; \mathcal{H})$. Instead of Yosida regularization, one could also use hardening to prove existence:

$$\partial_t z \in \partial I_{\mathcal{K}}(\sigma - \varepsilon z) \quad \text{with } \varepsilon > 0$$

(and, of course, both, Yosida and hardening, together)

- If $u_D^n \to u_D$ in $H^1(0, T; \mathcal{V})$, then the convergence is strong, i.e., $\sigma_n \to \sigma$ and $\sigma_{\lambda}^n \to \sigma$ in $H^1(0, T; \mathcal{H})$
- C. Johnson, *Existence theorems for plasticity problems*, Journal de Matématiques Pures et Appliquées, 55 (1976), pp. 431–444.
- P.-M. Suquet, *Sur les équations de la plasticité: existence et régularité des solutions*, J. Mécanique, 20 (1981), pp. 3–39.
- S. Bartels, A. Mielke, and T. Roubček, Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation, SIAM Journal on Numerical Analysis, 50 (2012), pp. 951–976

< @ >

Optimal control of the stress

$$\begin{array}{ll} \min & \frac{1}{2} \| \sigma(T) - \sigma_{\sigma} \|_{\mathcal{H}}^{2} + \frac{\alpha}{2} \| \partial_{t} \ell \|_{L^{2}(0,T;\mathcal{X}_{c})} \\ \text{s.t.} & \sigma \text{ is a reduced solution associated with } u_{D} = G(\ell) + a \\ \text{and} & \ell(0) = \ell(T) = 0 \end{array}$$

 (P_{σ})

< @ >

α > 0

- **Control space**: $\mathcal{X}_c \hookrightarrow \mathcal{X}, \mathcal{X}_c$ Hilbert space, \mathcal{X} Banach space
- $G: \mathcal{X} \to \mathcal{V}$ linear and continuous, $a \in \mathcal{V}$ given offset, Example:
 - $\Lambda \subset \partial \Omega$, relatively closed, dist $(\Lambda, \Gamma_D) > 0$
 - $\mathcal{X} := H_{\Lambda}^{-1}(\Omega; \mathbb{R}^d), \, \mathcal{X}_c := L^2(\Omega; \mathbb{R}^d)$
 - G solution operator of linear elasticity with zero Dirichlet boundary conditions on Λ

< ⊕ >

Theorem

There exists at least one globally optimal control of (P_{σ}) .

Proof: based on the continuity results by standard direct method

Possible extensions:

- More general objectives (weakly lower semicontinuous functionals)
- Directly use u_D as control (boundary controls in H^{1/2})

Regularized solution operator:

$$S_{\lambda}: H^{1}(0, T; \mathcal{X}) \ni \ell \mapsto u_{D} = G(\ell) + a \mapsto \sigma_{\lambda} \in H^{1}(0, T; \mathcal{H})$$

Regularized optimal control problem:

$$\min \left\{ \frac{1}{2} \| S_{\lambda}(\ell)(T) - \sigma_{d} \|_{\mathcal{H}}^{2} + \frac{\alpha}{2} \| \partial_{t} \ell \|_{L^{2}(0,T;\mathcal{X}_{c})} \\ \text{s.t.} \quad \ell(0) = \ell(T) = 0 \right\}$$

$$(\mathsf{P}_{\sigma}^{\lambda})$$

<**∂** >

Based on the previous convergence results:

Theorem

Let $\lambda \searrow 0$ and $\{\ell_{\lambda}\}$ be a sequence of optimal solutions of $(\mathsf{P}_{\sigma}^{\lambda})$. Every weak accumulation point of $\{\ell_{\lambda}\}$ is a strong accumulation point and a minimizer of (P_{σ}) . There is at least one accumulation point.

(Extension to isolated local minimizers possible by standard arguments)

Smoothing

< @ ►

- Yosida regularization of $\partial I_{\mathcal{K}}$ is still **not** Gâteaux-differentiable
- ⇒ Further smoothing necessary: Let

$$\mathcal{K} := \{ \tau \in \mathbb{R}^{d imes d}_{\mathsf{sym}} : \tau^{\mathcal{D}} | \le \gamma \}$$
 with $\tau^{\mathcal{D}} := \tau - \frac{1}{d} \operatorname{tr}(\tau)$ (deviator)

(von Mises yield condition). Then replace ∂I_{λ} by

$$egin{aligned} \mathcal{A}_{\delta}: au \mapsto rac{1}{\lambda} \max_{\delta} \Big(1 - rac{\gamma}{| au^{\mathcal{D}}|_{\mathcal{F}}} \Big) au^{\mathcal{D}} & ext{with} \quad \max_{\delta}: r \mapsto egin{cases} \max\{0, r\}, & |r| \geq \delta \ rac{1}{4\delta}(r+\delta)^2, & |r| < \delta \end{aligned}$$

• Under a suitable coupling of λ and δ , the above convergence results also hold with A_{δ} instead of ∂I_{λ} ($\delta \sim o(\lambda^2 \exp(-\lambda^{-1}))$) is sufficient, but probably not optimal)

Smoothed equation: S_{δ} : $H^1(0, T; \mathcal{X}) \ni \ell \mapsto \sigma \in H^1(0, T; \mathcal{H})$ solution operator of:

$$\begin{aligned} -\operatorname{div} \sigma &= 0, \quad \sigma = \mathbb{C}(\nabla^{\mathsf{s}} u - z), \quad \partial_t z = \boldsymbol{A}_{\delta}(\sigma) \quad \text{in } \Omega \times (0, T), \\ u &= \boldsymbol{G}(\ell) + \boldsymbol{a} \quad \text{on } \Gamma_D \times (0, T), \quad \sigma \nu = 0 \quad \text{on } \Gamma_N \times (0, T), \\ u(0) &= u_0, \quad \sigma(0) = \sigma_0 \quad \text{in } \Omega \end{aligned}$$

Differentiability of the Regularized Solution Map

tυ

Assumption: Let *G* be continuous from \mathcal{X}_c to \mathcal{V}^p for some p > 2 (Fulfilled in case of linear elasticity)

Proposition

Under the above assumption, the smooth solution operator S_{δ} is Fréchet-differentiable from $H^1(0, T; \mathcal{X}_c)$ to $H^1(0, T; \mathcal{H})$. For $\ell, h \in H^1(0, T; \mathcal{X}_c)$, $\tau := S'_{\delta}(\ell)h$ solves

$$\begin{aligned} -\operatorname{div} \tau &= 0, \quad \tau = \mathbb{C}(\nabla^{\mathsf{s}} v - \eta), \quad \partial_t \eta = \mathsf{A}_{\delta}'(\sigma) \tau \quad \text{in } \Omega \times (0, T) \\ v &= \mathsf{G} h \quad \text{on } \Gamma_D \times (0, T), \quad \tau \nu = 0 \quad \text{on } \Gamma_N \times (0, T), \\ v(0) &= 0, \quad \tau(0) = 0 \quad \text{in } \Omega \end{aligned}$$

Proof: Direct consequence of differentiability of A_{δ} from \mathcal{H}^{p} to \mathcal{H} for p > 2 (norm gap required) in combination with $W^{1,p}$ -regularity results for linear elasticity

R. Herzog, C. Meyer, G. Wachsmuth, *Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions*, Journal of Mathematical Analysis and Applications, 382 (2011), pp. 802–813.

tυ

Theorem (Necessary optimality conditions for the smoothed problems)

Let $\overline{\ell}$ be locally optimal for the smoothed optimal control problem with associated state $(\overline{\sigma}, \overline{u}, \overline{z}) \in H^1(\mathcal{H} \times \mathcal{V} \times \mathcal{H})$. Then there exists an adjoint state $(w, \varphi) \in H^1(0, T; \mathcal{V}_D) \times H^1(0, T; \mathcal{H})$ and $w_T \in \mathcal{V}_D$ such that

$$\begin{aligned} -\operatorname{div} \mathbb{C}\nabla^{s} w &= -\operatorname{div} \mathbb{C}A'_{\delta}(\bar{\sigma})\varphi \quad \text{in }\Omega\times(0,T), \\ w &= 0 \quad \text{on }\Gamma_{D}\times(0,T), \quad (\mathbb{C}\nabla^{s}w)\nu = 0 \quad \text{on }\Gamma_{N}\times(0,T), \\ \partial_{t}\varphi &= \mathbb{C}A'_{\delta}(\bar{\sigma})\varphi - \mathbb{C}\nabla^{s}w \quad \text{in }\Omega\times(0,T), \\ \varphi(T) &= \mathbb{C}(\bar{\sigma}(T) - \sigma_{d} - \nabla^{s}w_{T}) \quad \text{in }\Omega, \\ -\operatorname{div} \mathbb{C}\nabla^{s}w_{T} &= -\operatorname{div} \mathbb{C}(\bar{\sigma}(T) - \sigma_{d}) \quad \text{in }\Omega, \\ w_{T} &= 0 \quad \text{on }\Gamma_{D}, \quad (\mathbb{C}\nabla^{s}w_{T})\nu = 0 \quad \text{on }\Gamma_{D} \\ \alpha\partial_{tt}^{2}\bar{\ell} + G^{*}\left(\operatorname{div}(\mathbb{C}\nabla^{s}w - A'_{\delta}(\bar{\sigma})\varphi)\right) = 0 \quad \text{in }\Omega\times(0,T), \\ \bar{\ell}(0) &= \bar{\ell}(T) = 0. \end{aligned}$$

< @ ►

- Analogous results for optimal control of plasticity systems with *hardening*:
 - G. Wachsmuth, Optimal control of quasistatic plasticity, Ph.D. thesis, Dr. Hut, 2011.
 - H. Meinlschmidt, C. Meyer, S. Walther, *Optimal Control of an Abstract Evolution Variational Inequality with Application to Homogenized Plasticity*, SPP 1962, Preprint 123, 2019.
- Limit analysis for vanishing regularization/smoothing:
 - Adjoint variables lack boundedness in "nice" spaces (even in case with hardening)
 - Only weak stationarity conditions are obtained in the limit without any sign condition on the dual variables
- Similar smoothing of shape optimization problems in (static) perfect plasticity:
 - A. Maury, G. Allaire, F. Jouve, *Elasto-plastic shape optimization using the level set method*, SICON, 56:556–581, 2018.
- Gradient-based optimization algorithms

Preliminary numerical results

< @ >

Introduction to Perfect Plasticity

Stress Tracking Existence of Optimal Solutions and their Approximation Optimality System

Displacement Tracking Existence of Optimal Solutions Reverse Approximation

Conclusion and Outlook

Definition (inspired by Suquet'81)

A tuple $(u, \sigma) \in H^1(0, T; \mathcal{V}) \times H^1(0, T; \mathcal{H})$ is called H^1 -solution of the perfect plasticity equation (w.r.t. u_D), if f.a.a. $t \in (0, T)$

Equilibrium condition and yield condition: $\sigma(t) \in \mathcal{E} \cap \mathcal{K}$ Flow rule: $\langle \mathbb{A} \partial_t \sigma(t) - \nabla^s \partial_t u_D(t), \tau - \sigma(t) \rangle_{\mathcal{H}}$ $+ (\partial_t u(t) - \partial_t u_D(t), \operatorname{div} \tau)_{L^2(\Omega; \mathbb{R}^d)} \ge 0 \quad \forall \tau \in \mathcal{N} \cap \mathcal{K}$ Initial condition: $u(0) = u_0, \quad \sigma(0) = \sigma_0$

with $\mathcal{N} := \{ \tau \in \mathcal{H} : \operatorname{div} \tau \in L^d(\Omega; \mathbb{R}^d), \ (\tau, \nabla^{\mathsf{s}} v)_{\mathcal{H}} + (\operatorname{div} \tau, v)_{L^2} = \mathbf{0} \ \forall \ v \in \mathcal{V}_D \}.$

(If *u* satisfies in addition $u = u_D$ a.e. on $\Gamma_D \times (0, T)$, then (u, σ) is a strong solution)

< @ >

Definition (inspired by Suquet'81)

A tuple $(u, \sigma) \in H^1(0, T; \mathcal{V}) \times H^1(0, T; \mathcal{H})$ is called H^1 -solution of the perfect plasticity equation (w.r.t. u_D), if f.a.a. $t \in (0, T)$

Equilibrium condition and yield condition: $\sigma(t) \in \mathcal{E} \cap \mathcal{K}$ Flow rule: $\langle \mathbb{A} \partial_t \sigma(t) - \nabla^{\mathsf{s}} \partial_t u_D(t), \tau - \sigma(t) \rangle_{\mathcal{H}}$ $+ (\partial_t u(t) - \partial_t u_D(t), \operatorname{div} \tau)_{L^2(\Omega; \mathbb{R}^d)} \ge 0$ $\forall \tau \in \mathcal{N} \cap \mathcal{K}$ Initial condition: $u(0) = u_0$ $\sigma(0) = \sigma_0$

with $\mathcal{N} := \{ \tau \in \mathcal{H} : \operatorname{div} \tau \in L^d(\Omega; \mathbb{R}^d), \ (\tau, \nabla^{\mathsf{s}} v)_{\mathcal{H}} + (\operatorname{div} \tau, v)_{L^2} = 0 \ \forall \ v \in \mathcal{V}_D \}.$

(If *u* satisfies in addition $u = u_D$ a.e. on $\Gamma_D \times (0, T)$, then (u, σ) is a strong solution)

In general an H^1 -solution does **not** exist

Time derivative of the displacement in general only in $L^2_w(0, T; BD(\Omega))$, which is not enough to prove the approximation of optimal solutions, therefore ...

Optimal control of the displacement

min
$$J(u, u_D) := \frac{1}{2} \|u - u_d\|^2_{H^1(0, T; \mathcal{H})} + \frac{\alpha}{2} \|u_D\|^2_{H^1(0, T; \mathcal{H})}$$

s.t. (u, σ) is a H^1 -solution associated with u_D
and $u_D(0) = u_0$ on Γ_D

(P_{*u*})

<∄>

To ease notation, we assume that we can directly control u_D
 Control space U ↔ V, α > 0

Tracking type objective implies boundedness

Theorem

There exists a globally optimal solution of (P_u) .

Proof:

- Admissible set is not empty: $(\sigma, u, u_D) \equiv (\sigma_0, u_0, u_0)$ is an H^1 -solution
- Continuity properties of H^1 -solutions: If $u_D^n \rightarrow u_D$ in $H^1(0, T; \mathcal{V})$, $u_D^n \rightarrow u_D$ in $L^2(0, T; \mathcal{V})$, $u_D^n(T) \rightarrow u_D(T)$ in \mathcal{V} and, if H^1 -solutions (σ_n, u_n) associated with u_D^n exists and { u_n } is bounded in $H^1(0, T; \mathcal{V})$, then (for a subsequence)

$$(\sigma_n, u_n)
ightarrow (\sigma, u)$$
 in $H^1(0, T; \mathcal{H} \times \mathcal{V})$

and (σ, u) is an H^1 -solution associated with u_D .

- Tracking type objective yields necessary bounds
- Based on continuity properties, proof relies on standard direct method

- Even if we restrict to solutions in H¹(0, T; V) (in contrast to displacements with bounded deformation only), the solutions of the perfect plasticity system are in general not unique.
- Yosida-regularized plasticity problems however are uniquely solvable
- ⇒ There is no hope that a solution of perfect plasticity can be approximated via Yosida regularization no matter how regular these solutions are!

BUT: in addition to the state variables, we can also vary the controls

< @ >

Unfortunately, Dirichlet controls are not sufficient for this. We need more ...

For the reverse approximation, we need **loads as additional control functions** in the regularized problems:

Regularized control problem

$$\begin{array}{l} \min \quad J_{\lambda}(u, u_{D}, \ell) := \frac{1}{2} \| u - u_{d} \|_{H^{1}(0,T;\mathcal{H})}^{2} + \frac{\alpha}{2} \| u_{D} \|_{H^{1}(0,T;U)}^{2} \\ & + \lambda^{-1/2} \| \ell \|_{L^{2}(0,T;H^{-1}(\Omega;\mathbb{R}^{d}))}^{2} \\ & + \| \ell \|_{L^{2}(0,T;H^{-1}/2^{-\varepsilon}(\Omega;\mathbb{R}^{d}))}^{2} + \| \partial_{t} \ell \|_{L^{2}(0,T;H^{-1}(\Omega;\mathbb{R}^{d}))}^{2} \\ \text{s.t.} \quad (\sigma, \nabla^{s} v)_{\mathcal{H}} = \langle \ell, v \rangle \qquad \forall v \in \mathcal{V}_{D}, \\ \nabla^{s} \partial_{t} u - \mathbb{A} \partial_{t} \sigma = \partial I_{\mathcal{K}}(\sigma) \qquad \text{in } \Omega \times (0, T), \\ & u = u_{D} \qquad \text{on } \Gamma_{D} \times (0, T), \\ & u(0) = u_{0}, \quad \sigma(0) = \sigma_{0} \qquad \text{in } \Omega \\ \text{and} \quad u_{D}(0) = u_{0} \text{ on } \Gamma_{D}, \quad \ell(0) = 0 \end{array} \right\}$$

Lemma

Let $\lambda > 0$, $E \in L^2(0, T; H^1(\Omega; \mathbb{R}^{d \times d}_{sym}))$, and σ denote the solution of

$$E - \mathbb{A}\partial_t \sigma = \partial I_\lambda(\sigma), \quad \sigma(\mathbf{0}) = \sigma_0.$$
 (*)

< @ > C

Then there is a constant C > 0, independent of λ , such that $\|\sigma\|_{C([0,T];H^1(\Omega;\mathbb{R}^{d\times d}_{sum}))} \leq C$.

Proof: Time discretization and discrete Gronwall lemma

Lemma

Let σ_{λ} be the solution of (*) and $\sigma \in H^{1}(0, T; \mathcal{H})$ denote the solution of

$$E - \mathbb{A}\partial_t \sigma = \partial I_{\mathcal{K}}(\sigma), \quad \sigma(\mathbf{0}) = \sigma_0.$$

Then $\sigma_{\lambda} \to \sigma$ in $H^{1}(0, T; \mathcal{H})$ and $\sigma_{\lambda} \rightharpoonup^{*} \sigma$ in $L^{\infty}(0, T; H^{1}(\Omega; \mathbb{R}^{d \times d}_{sym}))$ as $\lambda \searrow 0$. Moreover, $\|\sigma_{\lambda} - \sigma\|_{C([0, T]; \mathcal{H})} \lesssim \sqrt{\lambda}$.

< @ ►

Proposition (Reverse approximation property)

Let $(\bar{u}, \bar{\sigma}, \bar{u}_D)$ be an H^1 -solution that fulfills

 $\nabla^{s} \partial_{t} \bar{u} \in C([0, T]; \mathcal{V})$ and $\bar{u} = \bar{u}_{D}$ a.e. on $\Gamma_{D} \times (0, T)$.

Define σ_{λ} as solution of

$$\nabla^{\mathsf{s}} \partial_t \bar{u} - \mathbb{A} \partial_t \sigma_\lambda = \partial I_\lambda(\sigma_\lambda), \quad \sigma_\lambda(\mathbf{0}) = \sigma_0.$$

and define $\ell_{\lambda} \in H^{1}(0, T; H^{-1}(\Omega; \mathbb{R}^{d}))$ by $\langle \ell_{\lambda}(t), v \rangle := (\sigma_{\lambda}(t), \nabla^{s}v)_{\mathcal{H}}$ for all $v \in \mathcal{V}_{D}$. Then $(\bar{u}, \sigma_{\lambda}, \bar{u}_{D}, \ell_{\lambda})$ is feasible for $(\mathsf{P}_{u}^{\lambda})$ and

$$J_{\lambda}(\bar{u}, \bar{u}_D, \ell_{\lambda}) \rightarrow J(\bar{u}, \bar{u}_D) \quad as \ \lambda \searrow 0.$$

Proof: Above convergence result with $E = \nabla^{s} \partial_{t} \bar{u}$

tυ

< @ ►

Theorem

Assume that there is a global minimizer $(\bar{u}, \bar{\sigma}, \bar{u}_D)$ of (P_u) satisfying

 $\nabla^{s} \partial_{t} \bar{u} \in C([0, T]; \mathcal{V})$ and $\bar{u} = \bar{u}_{D}$ a.e. on $\Gamma_{D} \times (0, T)$.

Then every sequence $\{(\bar{u}, \bar{\sigma}, \bar{u}_D, \bar{\ell}_\lambda)\}$ of global minimizers of (P_u^λ) has a weak accumulation point. Each weak accumulation point is actually a strong one and has the form $(\tilde{u}, \tilde{\sigma}, \tilde{u}_D, 0)$, where $(\tilde{u}, \tilde{\sigma}, \tilde{u}_D)$ is a global minimizer of (P_u) .

Proof:

- Existence of a weak accumulation by norms in the objective
- Feasibility of the weak accumulation point by similar arguments as continuity properties of H¹-solutions
- Optimality of the weak limit by reverse approximation property
- Norm convergence + weak convergence = strong convergence

< @ >

Introduction to Perfect Plasticity

Stress Tracking Existence of Optimal Solutions and their Approximation Optimality System

Displacement Tracking Existence of Optimal Solutions Reverse Approximation

Conclusion and Outlook

Stress tracking

Non-smooth optimal control problem that can be treated by standard regularization techniques (e.g. Yosida regularization + smoothing) mainly due to the *uniqueness* of the stress

Displacement tracking

- Displacement is in general not unique
- ⇒ For fixed data there is no hope to approximate displacements by regularization
 - But: in optimal control we can also vary the controls (~ data) and, if the control space is rich enough, then optimal solutions can be approximated (at least under additional smoothness assumptions)

<∄≻

To do:

- Numerical solution of the regularized problems + path following
- Weaker regularity assumptions for the displacement tracking

Thank you for your attention!

