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Stress-Strain Relation

Plasticity in a nutshell
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Formal Strong Formulation

Linear elasticity

− div σ = 0 in Ω× (0,T ),

σ = C∇su in Ω× (0,T ),

u = uD on ΓD × (0,T ),

σν = 0 on ΓN × (0,T ),

u(0) = u0, σ(0) = σ0 in Ω

with

� u : Ω→ Rd displacement, σ : Ω→ Rd×d
sym stress

� C linear and coercive elasticity tensor

� ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, ΓD 6= ∅, ν outward normal

� uD given Dirichlet boundary data, u0, σ0 initial data
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Formal Strong Formulation

Perfect plasticity

− div σ = 0 in Ω× (0,T ),

σ = C(∇su − z) in Ω× (0,T ),

∂tz ∈ ∂IK(σ) in Ω× (0,T ),

u = uD on ΓD × (0,T ),

σν = 0 on ΓN × (0,T ),

u(0) = u0, σ(0) = σ0 in Ω

with

� u : Ω→ Rd displacement, σ : Ω→ Rd×d
sym stress, z plastic strain

� C linear and coercive elasticity tensor

� ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, ΓD 6= ∅, ν outward normal

� uD given Dirichlet boundary data, u0, σ0 initial data

� K set of admissible stresses, closed and convex
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Challenges in Perfect Plasticity

� Displacement and plastic strain are in general not unique
� Lack of regularity:

• Time derivative of the displacement field only in L2
w (0,T ; BD(Ω))

• Space of bounded deformation, not Bochner measureable
• Plastic strain is only a regular Borel measure

� Existence only under a safe load condition:
Applied loads must admit an elastic solution not obeying the Dirichlet boundary
conditions such that the associated stress is in the interior of K

BUT, if the safe load condition is fulfilled, then ...

For every Dirichlet displacement uD there exists a unique stress field
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Notation and Standing Assumptions

Spaces
� Stress space: Hp := Lp(Ω;Rd×d

sym ), H := H2

� Test space for displacements:

Vp := W 1,p(Ω;Rd ), V := V2,

Vp
D := {ψ|Ω : ψ ∈ C∞0 (Rn), supp(ψ) ∩ ΓD = ∅}

W 1,p(Ω;Rn)
, VD := V2

D

Standing assumptions
� K ⊂ Rd×d

sym nonempty, closed, and convex

� C : Rd×d
sym → Rd×d

sym linear, symmetric, and coercive, A := C−1

� uD ∈ H1(0,T ;V), σ0 ∈ H with − div σ0 = 0, σ0 ∈ K a.e. in Ω

� ΓD relatively closed subset of ∂Ω with positive measure, Ω ∪ ΓN regular in the
sense of Gröger
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Reduction of the system

Definition (Reduction to the stress only, Johnson’76)

A function σ ∈ H1(0,T ;H) is called reduced solution (with respect to uD), if fa.a.
t ∈ (0,T ), it holds

Equilibrium condition: σ(t) ∈ E := {τ ∈ H : 〈τ,∇sϕ〉H = 0 ∀ϕ ∈ VD} (E)

Yield condition: σ(t) ∈ K := {τ ∈ H : τ(x) ∈ K f.a.a. x ∈ Ω} (Y)

Flow rule: 〈A∂tσ(t)−∇s∂tuD(t), τ − σ(t)〉H ≥ 0 ∀τ ∈ E ∩ K (F)

Initial condition: σ(0) = σ0 (0)
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Yosida Regularization

Yosida Regularization

− div σ = 0 in Ω× (0,T ),

σ = C(∇su − z) in Ω× (0,T ),

∂tz ∈ ∂IK(σ) in Ω× (0,T ),

u = uD on ΓD × (0,T ),

σν = 0 on ΓN × (0,T ),

u(0) = u0, σ(0) = σ0 in Ω

with
∂Iλ(τ) = 1

λ
(τ − πK (τ)) and πK (τ) = arg min

ς∈K
|ς − τ |2F
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Existence and Uniqueness

Proposition (Existence of a reduced solution)

There exists a unique reduced solution σ ∈ H1(0,T ;H).

Proof:

� Existence for the Yosida regularization by standard contraction arguments

� A priori bounds for σλ in H1(0,T ;H) ⇒ existence of a weak limit σ for λ↘ 0

� Passage to the limit in (E) & (F), feasibility σ(t) ∈ K by Yosida regularization

� Uniqueness of σ by coercivity of A �

Theorem (Continuity properties of reduced solutions)

Assume that un
D ⇀ uD in H1(0,T ;V), un

D → uD in L2(V), uD,n(T )→ uD(T ) in V.

Then σn ⇀ σ in H1(0,T ;H) and, if λn ↘ 0, then σn
λ ⇀ σ in H1(0,T ;H).
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Regularization – Extension and Remarks

� Instead of Yosida regularization, one could also use hardening to prove
existence:

∂tz ∈ ∂IK(σ−ε z) with ε > 0

(and, of course, both, Yosida and hardening, together)

� If un
D → uD in H1(0,T ;V), then the convergence is strong, i.e., σn → σ and

σn
λ → σ in H1(0,T ;H)

C. Johnson, Existence theorems for plasticity problems, Journal de Matématiques Pures et Appliquées,
55 (1976), pp. 431–444.

P.-M. Suquet, Sur les équations de la plasticité: existence et régularité des solutions, J. Mécanique, 20
(1981), pp. 3–39.

S. Bartels, A. Mielke, and T. Roubček, Quasi-static small-strain plasticity in the limit of vanishing
hardening and its numerical approximation, SIAM Journal on Numerical Analysis, 50 (2012), pp. 951–976
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Stress Tracking via Dirichlet Controls

Optimal control of the stress

min 1
2 ‖σ(T )− σd‖2

H + α
2 ‖∂t`‖L2(0,T ;Xc )

s.t. σ is a reduced solution associated with uD = G(`) + a

and `(0) = `(T ) = 0

 (Pσ)

with

� α > 0

� Control space: Xc ↪−↪→ X , Xc Hilbert space, X Banach space
� G : X → V linear and continuous, a ∈ V given offset, Example:

• Λ ⊂ ∂Ω, relatively closed, dist(Λ, ΓD) > 0
• X := H−1

Λ (Ω;Rd ), Xc := L2(Ω;Rd )
• G solution operator of linear elasticity with zero Dirichlet boundary

conditions on Λ
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Existence of Optimal Controls

Theorem
There exists at least one globally optimal control of (Pσ).

Proof: based on the continuity results by standard direct method �

Possible extensions:

� More general objectives (weakly lower semicontinuous functionals)

� Directly use uD as control (boundary controls in H1/2)
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Approximation of Optimal Solutions

� Regularized solution operator:

Sλ : H1(0,T ;X ) 3 ` 7→ uD = G(`) + a 7→ σλ ∈ H1(0,T ;H)

� Regularized optimal control problem:

min 1
2 ‖Sλ(`)(T )− σd‖2

H + α
2 ‖∂t`‖L2(0,T ;Xc )

s.t. `(0) = `(T ) = 0

}
(Pλσ)

Based on the previous convergence results:

Theorem
Let λ↘ 0 and {`λ} be a sequence of optimal solutions of (Pλσ). Every weak
accumulation point of {`λ} is a strong accumulation point and a minimizer of (Pσ).
There is at least one accumulation point.

(Extension to isolated local minimizers possible by standard arguments)

Christian Meyer (TU Dortmund) · Optimal Control of Perfect Plasticity · RICAM Special Semester 2019



Smoothing

� Yosida regularization of ∂IK is still not Gâteaux-differentiable

⇒ Further smoothing necessary: Let

K := {τ ∈ Rd×d
sym : τD| ≤ γ} with τD := τ − 1

d
tr(τ) (deviator)

(von Mises yield condition). Then replace ∂Iλ by

Aδ : τ 7→ 1
λ

maxδ
(

1− γ

|τD|F

)
τD with maxδ : r 7→

{
max{0, r}, |r | ≥ δ
1

4δ (r + δ)2, |r | < δ

� Under a suitable coupling of λ and δ, the above convergence results also hold
with Aδ instead of ∂Iλ (δ ∼ o(λ2 exp(−λ−1)) is sufficient, but probably not optimal)

� Smoothed equation: Sδ : H1(0,T ;X ) 3 ` 7→ σ ∈ H1(0,T ;H) solution operator of:

− div σ = 0, σ = C(∇su − z), ∂tz = Aδ(σ) in Ω× (0,T ),

u = G(`) + a on ΓD × (0,T ), σν = 0 on ΓN × (0,T ),

u(0) = u0, σ(0) = σ0 in Ω
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Differentiability of the Regularized Solution Map

Assumption: Let G be continuous from Xc to Vp for some p > 2
(Fulfilled in case of linear elasticity)

Proposition

Under the above assumption, the smooth solution operator Sδ is Fréchet-differentiable
from H1(0,T ;Xc) to H1(0,T ;H). For `, h ∈ H1(0,T ;Xc), τ := S′δ(`)h solves

− div τ = 0, τ = C(∇sv − η), ∂tη = A′δ(σ)τ in Ω× (0,T ),

v = G h on ΓD × (0,T ), τν = 0 on ΓN × (0,T ),

v(0) = 0, τ(0) = 0 in Ω

Proof: Direct consequence of differentiability of Aδ from Hp to H for p > 2 (norm gap
required) in combination with W 1,p-regularity results for linear elasticity �

R. Herzog, C. Meyer, G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear
elasticity with mixed boundary conditions, Journal of Mathematical Analysis and Applications, 382
(2011), pp. 802–813.
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Karush Kuhn Tucker Conditions

Theorem (Necessary optimality conditions for the smoothed problems)

Let ¯̀be locally optimal for the smoothed optimal control problem with associated state
(σ̄, ū, z̄) ∈ H1(H× V ×H). Then there exists an adjoint state
(w , ϕ) ∈ H1(0,T ;VD)× H1(0,T ;H) and wT ∈ VD such that

− divC∇sw = − divCA′δ(σ̄)ϕ in Ω× (0,T ),

w = 0 on ΓD × (0,T ), (C∇sw)ν = 0 on ΓN × (0,T ),

∂tϕ = CA′δ(σ̄)ϕ− C∇sw in Ω× (0,T ),

ϕ(T ) = C(σ̄(T )− σd −∇swT ) in Ω,

− divC∇swT = − divC(σ̄(T )− σd ) in Ω,

wT = 0 on ΓD, (C∇swT )ν = 0 on ΓD

α∂2
tt

¯̀+ G∗
(
div(C∇sw − A′δ(σ̄)ϕ)

)
= 0 in Ω× (0,T ),

¯̀(0) = ¯̀(T ) = 0.
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Comments on KKT-Conditions

� Analogous results for optimal control of plasticity systems with hardening:

G. Wachsmuth, Optimal control of quasistatic plasticity, Ph.D. thesis, Dr. Hut, 2011.

H. Meinlschmidt, C. Meyer, S. Walther, Optimal Control of an Abstract Evolution Variational
Inequality with Application to Homogenized Plasticity, SPP 1962, Preprint 123, 2019.

� Limit analysis for vanishing regularization/smoothing:
• Adjoint variables lack boundedness in “nice” spaces (even in case with

hardening)
• Only weak stationarity conditions are obtained in the limit without any sign

condition on the dual variables

� Similar smoothing of shape optimization problems in (static) perfect plasticity:

A. Maury, G. Allaire, F. Jouve, Elasto-plastic shape optimization using the level set method, SICON,
56:556–581, 2018.

� Gradient-based optimization algorithms Preliminary numerical results
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Displacements in the Space of Bounded Deformations

Definition (inspired by Suquet’81)

A tuple (u, σ) ∈ H1(0,T ;V)×H1(0,T ;H) is called H1-solution of the perfect plasticity
equation (w.r.t. uD), if f.a.a. t ∈ (0,T )

Equilibrium condition and yield condition: σ(t) ∈ E ∩ K
Flow rule: 〈A∂tσ(t)−∇s∂tuD(t), τ − σ(t)〉H

+ (∂tu(t)− ∂tuD(t), div τ)L2(Ω;Rd ) ≥ 0 ∀τ ∈ N ∩ K
Initial condition: u(0) = u0, σ(0) = σ0

with N := {τ ∈ H : div τ ∈ Ld (Ω;Rd ), (τ,∇sv)H + (div τ, v)L2 = 0 ∀ v ∈ VD}.

(If u satisfies in addition u = uD a.e. on ΓD × (0,T ), then (u, σ) is a strong solution)

In general an H1-solution does not exist

Time derivative of the displacement in general only in L2
w (0,T ; BD(Ω)), which is not

enough to prove the approximation of optimal solutions, therefore ...
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Displacement Tracking via Dirichlet Controls

Optimal control of the displacement

min J(u, uD) := 1
2 ‖u − ud‖2

H1(0,T ;H) + α
2 ‖uD‖2

H1(0,T ;U)

s.t. (u, σ) is a H1-solution associated with uD

and uD(0) = u0 on ΓD

 (Pu)

� To ease notation, we assume that we can directly control uD

� Control space U ↪−↪→ V, α > 0

Tracking type objective implies boundedness
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Existence of an Optimal Solution

Theorem
There exists a globally optimal solution of (Pu).

Proof:

� Admissible set is not empty: (σ, u, uD) ≡ (σ0, u0, u0) is an H1-solution

� Continuity properties of H1-solutions:
If un

D ⇀ uD in H1(0,T ;V), un
D → uD in L2(0,T ;V), un

D(T )→ uD(T ) in V and, if
H1-solutions (σn, un) associated with un

D exists and {un} is bounded in
H1(0,T ;V), then (for a subsequence)

(σn, un) ⇀ (σ, u) in H1(0,T ;H× V)

and (σ, u) is an H1-solution associated with uD .

� Tracking type objective yields necessary bounds

� Based on continuity properties, proof relies on standard direct method �
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Why is the reverse approximation so crucial?

� Even if we restrict to solutions in H1(0,T ;V) (in contrast to displacements with
bounded deformation only), the solutions of the perfect plasticity system are in
general not unique.

� Yosida-regularized plasticity problems however are uniquely solvable
⇒ There is no hope that a solution of perfect plasticity can be approximated via

Yosida regularization no matter how regular these solutions are!

BUT: in addition to the state variables, we can also vary the controls

Unfortunately, Dirichlet controls are not sufficient for this. We need more ...
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Yosida-Regularized Optimal Control Problems

For the reverse approximation, we need loads as additional control functions in the
regularized problems:

Regularized control problem

min Jλ(u, uD, `) := 1
2 ‖u − ud‖2

H1(0,T ;H) + α
2 ‖uD‖2

H1(0,T ;U)

+ λ−1/2‖`‖2
L2(0,T ;H−1(Ω;Rd ))

+ ‖`‖2
L2(0,T ;H−1/2−ε(Ω;Rd )) + ‖∂t`‖2

L2(0,T ;H−1(Ω;Rd ))

s.t. (σ,∇sv)H = 〈`, v〉 ∀ v ∈ VD,

∇s∂tu − A∂tσ = ∂IK(σ) in Ω× (0,T ),

u = uD on ΓD × (0,T ),

u(0) = u0, σ(0) = σ0 in Ω

and uD(0) = u0 on ΓD, `(0) = 0



(Pλu )
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A Crucial Regularity and Convergence Result

Lemma
Let λ > 0, E ∈ L2(0,T ; H1(Ω;Rd×d

sym )), and σ denote the solution of

E − A∂tσ = ∂Iλ(σ), σ(0) = σ0. (∗)

Then there is a constant C > 0, independent of λ, such that ‖σ‖C([0,T ];H1(Ω;Rd×d
sym ))

≤ C.

Proof: Time discretization and discrete Gronwall lemma �

Lemma
Let σλ be the solution of (∗) and σ ∈ H1(0,T ;H) denote the solution of

E − A∂tσ = ∂IK(σ), σ(0) = σ0.

Then σλ → σ in H1(0,T ;H) and σλ ⇀∗ σ in L∞(0,T ; H1(Ω;Rd×d
sym )) as λ↘ 0.

Moreover, ‖σλ − σ‖C([0,T ];H) .
√
λ.
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Recovery Sequence

Proposition (Reverse approximation property)

Let (ū, σ̄, ūD) be an H1-solution that fulfills

∇s∂t ū ∈ C([0,T ];V) and ū = ūD a.e. on ΓD × (0,T ).

Define σλ as solution of

∇s∂t ū − A∂tσλ = ∂Iλ(σλ), σλ(0) = σ0.

and define `λ ∈ H1(0,T ; H−1(Ω;Rd )) by 〈`λ(t), v〉 := (σλ(t),∇sv)H for all v ∈ VD .
Then (ū, σλ, ūD, `λ) is feasible for (Pλu ) and

Jλ(ū, ūD, `λ)→ J(ū, ūD) as λ↘ 0.

Proof: Above convergence result with E = ∇s∂t ū �
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Approximation of Optimal Solutions

Theorem
Assume that there is a global minimizer (ū, σ̄, ūD) of (Pu) satisfying

∇s∂t ū ∈ C([0,T ];V) and ū = ūD a.e. on ΓD × (0,T ).

Then every sequence {(ū, σ̄, ūD, ¯̀
λ)} of global minimizers of (Pλu ) has a weak

accumulation point. Each weak accumulation point is actually a strong one and has
the form (ũ, σ̃, ũD, 0), where (ũ, σ̃, ũD) is a global minimizer of (Pu).

Proof:

� Existence of a weak accumulation by norms in the objective

� Feasibility of the weak accumulation point by similar arguments as continuity
properties of H1-solutions

� Optimality of the weak limit by reverse approximation property

� Norm convergence + weak convergence = strong convergence �
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Conclusion and Outlook

� Stress tracking
Non-smooth optimal control problem that can be treated by standard
regularization techniques (e.g. Yosida regularization + smoothing) mainly due to
the uniqueness of the stress

� Displacement tracking
• Displacement is in general not unique

⇒ For fixed data there is no hope to approximate displacements by
regularization

• But: in optimal control we can also vary the controls (∼ data) and, if the
control space is rich enough, then optimal solutions can be approximated
(at least under additional smoothness assumptions)

To do:
� Numerical solution of the regularized problems + path following

� Weaker regularity assumptions for the displacement tracking
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Thank you for your attention!
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