Numerical Analysis of initial data identification of parabolic problems

Dmitriy Leykekhman

University of Connecticut

Joint work with Boris Vexler (TU München) and Daniel Walter, (RICAM)

New trends in PDE constrained optimization RICAM October 14-18, 2019

2 Finite element discretization in space and time

Finite element discretization in space and time

3 Main Results

Homogeneous Parabolic PDEs

$$\begin{array}{l} \partial_t u - \Delta u = 0 \quad \text{in } I \times \Omega, \\ u = 0 \quad \text{on } I \times \partial \Omega, \\ u(0) = u_0 \quad \text{in } \Omega. \end{array}$$

•
$$I = (0, T)$$

• $\Omega \subset \mathbb{R}^d$ (d=2,3) convex and polygonal/polyhedral

Homogeneous Parabolic PDEs

$$\begin{array}{l} \partial_t u - \Delta u = 0 \quad \text{in } I \times \Omega, \\ u = 0 \quad \text{on } I \times \partial \Omega, \\ u(0) = u_0 \quad \text{in } \Omega. \end{array}$$

•
$$I = (0, T)$$

• $\Omega \subset \mathbb{R}^d$ (d=2,3) convex and polygonal/polyhedral

Goal:

Recover initial data u_0 from the final time observation u(T)

Main difficulty: backward parabolic problem is exponentially ill-posed!

Main difficulty: backward parabolic problem is exponentially ill-posed!

Homogeneous Parabolic PDEs

Difficulty

Backward parabolic is exponentially ill-posed!

Easy to see, thus in 1D ($\Omega = (0,1)$) simple separation of variables u(x,t) = V(t)W(x) gives

$$u(x,t) = \sum_{n=1}^{\infty} c_n e^{-\pi^2 n^2 t} \sin{(\pi nx)},$$

where c_n has to be find out from final time condition

$$u(x,T) = \sum_{n=1}^{\infty} c_n e^{-\pi^2 n^2 T} \sin(\pi nx)$$

Homogeneous Parabolic PDEs

Difficulty

Backward parabolic is exponentially ill-posed!

Easy to see, thus in 1D ($\Omega=(0,1))$ simple separation of variables u(x,t)=V(t)W(x) gives

$$u(x,t) = \sum_{n=1}^{\infty} c_n e^{-\pi^2 n^2 t} \sin{(\pi nx)},$$

where c_n has to be find out from final time condition

$$u(x,T) = \sum_{n=1}^{\infty} c_n e^{-\pi^2 n^2 T} \sin(\pi n x)$$

Additional assumption

Let
$$u_0$$
 be sparse, i.e. $u_0 = \sum_{j=1}^M a_j \delta_{x_j}(x)$,

where
$$\delta_{x_j}(x)$$
 are delta functions, i.e. $\int_{\Omega} f(x) \delta_{x_j}(x) dx = f(x_j)$.

Optimal control problem

Minimize
$$J(q, u) = \frac{1}{2} \| u(T) - u_d \|_{L^2(\Omega)}^2 + \alpha \| q \|_X$$
, $q \in X$, $u \in V$

subject to the state equation

$$\partial_t u - \Delta u = 0 \text{ in } I \times \Omega,$$

 $u = 0 \text{ on } I \times \partial \Omega$
 $u(0) = q \text{ in } \Omega.$

• $I = (0,T), \ \Omega \subset \mathbb{R}^d \ (d=2,3)$ convex and polygonal/polyhedral • $u_d \in L^2(\Omega)$

Optimal control problem

Minimize
$$J(q, u) = \frac{1}{2} \|u(T) - u_d\|_{L^2(\Omega)}^2 + \alpha \|q\|_X, \quad q \in X, \ u \in V$$

subject to the state equation

$$\partial_t u - \Delta u = 0 \text{ in } I \times \Omega,$$

 $u = 0 \text{ on } I \times \partial \Omega$
 $u(0) = q \text{ in } \Omega.$

- $I = (0,T), \ \Omega \subset \mathbb{R}^d \ (d=2,3)$ convex and polygonal/polyhedral • $u_d \in L^2(\Omega)$
- Setting I $\rightarrow X = L^2(\Omega)$ We can not recover accurately q from u(T)

Optimal control problem

Minimize
$$J(q, u) = \frac{1}{2} \|u(T) - u_d\|_{L^2(\Omega)}^2 + \alpha \|q\|_X, \quad q \in X, \ u \in V$$

subject to the state equation

$$\partial_t u - \Delta u = 0 \text{ in } I \times \Omega,$$

 $u = 0 \text{ on } I \times \partial \Omega$
 $u(0) = q \text{ in } \Omega.$

- $I = (0,T), \ \Omega \subset \mathbb{R}^d \ (d=2,3)$ convex and polygonal/polyhedral • $u_d \in L^2(\Omega)$
- Setting I $\rightarrow X = L^2(\Omega)$ We can not recover accurately q from u(T)
- Setting II $\rightarrow X = \mathcal{M}(\Omega)$ q has a sparse structure and we can (hopefully) recover q from u(T)

Look for q in the space of regular Borel measures $\mathcal{M}(\Omega) = (C_0(\Omega))^*$

Optimal control problem

$$\min_{q \in \mathcal{M}(\Omega)} J(q, u) = \frac{1}{2} \| u(T) - u_d \|_{L^2(\Omega)}^2 + \alpha \| q \|_{\mathcal{M}},$$

subject to

$$\partial_t u - \Delta u = 0 \text{ in } I \times \Omega,$$

 $u(0) = q \text{ in } \Omega.$

Look for q in the space of regular Borel measures $\mathcal{M}(\Omega) = (C_0(\Omega))^*$

Optimal control problem

$$\min_{q \in \mathcal{M}(\Omega)} J(q, u) = \frac{1}{2} \| u(T) - u_d \|_{L^2(\Omega)}^2 + \alpha \| q \|_{\mathcal{M}},$$

subject to

$$\partial_t u - \Delta u = 0 \text{ in } I \times \Omega,$$

 $u(0) = q \text{ in } \Omega.$

Equivalent problem

$$\min_{q \in \mathcal{M}} J(q) = \|q\|_{\mathcal{M}},$$

subject to

$$\partial_t u - \Delta u = 0 \text{ in } I \times \Omega,$$

 $u(0) = q \text{ in } \Omega$

and

$$||u(T) - u_d||_{L^2(\Omega)} \le \varepsilon$$

• Measure valued control for elliptic equations:

- C. Clason and K. Kunisch, 2011
- E. Casas, C. Clason, and K. Kunisch, 2012
- K. Pieper and B. Vexler, 2013
- E. Casas and K. Kunisch, 2013

• Measure valued control for parabolic equations:

- E. Casas, and K. Kunisch, 2016
- E. Casas, C. Clason, and K. Kunisch, 2013
- K. Kunisch, K. Pieper, and B. Vexler, 2014
- Measure valued control for initial data identification:
 - E. Casas and E. Zuazua, 2013
 - E. Casas, B. Vexler, and E. Zuazua 2015

• Measure valued control for elliptic equations:

- C. Clason and K. Kunisch, 2011
- E. Casas, C. Clason, and K. Kunisch, 2012 with FEM analysis
- K. Pieper and B. Vexler, 2013 with FEM analysis
- E. Casas and K. Kunisch, 2013

• Measure valued control for parabolic equations:

- E. Casas, and K. Kunisch, 2016
- E. Casas, C. Clason, and K. Kunisch, 2013 with FEM analysis
- K. Kunisch, K. Pieper, and B. Vexler, 2014 with FEM analysis
- Measure valued control for initial data identification:
 - E. Casas and E. Zuazua, 2013
 - E. Casas, B. Vexler, and E. Zuazua 2015

Literature

- Measure valued control for elliptic equations:
 - C. Clason and K. Kunisch, 2011
 - E. Casas, C. Clason, and K. Kunisch, 2012 with FEM analysis
 - K. Pieper and B. Vexler, 2013 with FEM analysis
 - E. Casas and K. Kunisch, 2013
- Measure valued control for parabolic equations:
 - E. Casas, and K. Kunisch, 2016
 - E. Casas, C. Clason, and K. Kunisch, 2013 with FEM analysis
 - K. Kunisch, K. Pieper, and B. Vexler, 2014 with FEM analysis
- Measure valued control for initial data identification:
 - E. Casas and E. Zuazua, 2013
 - E. Casas, B. Vexler, and E. Zuazua 2015 with FEM analysis, no error estimates

Existence and uniqueness

Optimal control problem

$$\min_{q \in \mathcal{M}(\Omega)} J(q, u) = \frac{1}{2} \| u(T) - u_d \|_{L^2(\Omega)}^2 + \alpha \| q \|_{\mathcal{M}},$$

subject to

$$\begin{split} \partial_t u - \Delta u &= 0 \quad \text{in } I \times \Omega, \\ u &= 0 \quad \text{on } I \times \partial \Omega, \\ u(0) &= q \quad \text{in } \Omega. \end{split}$$

• $I = (0,T), \ \Omega \subset \mathbb{R}^d \ (d=2,3)$ convex and polygonal/polyhedral • $u_d \in L^2(\Omega)$

Existence and uniqueness

Optimal control problem

$$\min_{q \in \mathcal{M}(\Omega)} J(q, u) = \frac{1}{2} \| u(T) - u_d \|_{L^2(\Omega)}^2 + \alpha \| q \|_{\mathcal{M}},$$

subject to

$$\begin{split} \partial_t u - \Delta u &= 0 \quad \text{in } I \times \Omega, \\ u &= 0 \quad \text{on } I \times \partial \Omega, \\ u(0) &= q \quad \text{in } \Omega. \end{split}$$

• $I = (0,T), \ \Omega \subset \mathbb{R}^d \ (d=2,3)$ convex and polygonal/polyhedral • $u_d \in L^2(\Omega)$

 $\Rightarrow \text{ For each } q \in \mathcal{M}(\Omega) \text{ there is } u = S(q) \text{ with } u \in L^r(I; W^{1,p}(\Omega)) \text{ with } r, p \in [1;2) \text{ and } \frac{2}{r} + \frac{d}{p} > d+1 \text{ and } u(T) \in L^2(\Omega)$

Existence and uniqueness

Optimal control problem

$$\min_{q \in \mathcal{M}(\Omega)} J(q, u) = \frac{1}{2} \| u(T) - u_d \|_{L^2(\Omega)}^2 + \alpha \| q \|_{\mathcal{M}},$$

subject to

$$\partial_t u - \Delta u = 0 \text{ in } I \times \Omega,$$

 $u = 0 \text{ on } I \times \partial \Omega,$
 $u(0) = q \text{ in } \Omega.$

• $I = (0,T), \ \Omega \subset \mathbb{R}^d \ (d=2,3)$ convex and polygonal/polyhedral • $u_d \in L^2(\Omega)$

 $\Rightarrow \text{ For each } q \in \mathcal{M}(\Omega) \text{ there is } u = S(q) \text{ with } u \in L^r(I; W^{1,p}(\Omega)) \text{ with } r, p \in [1;2) \text{ and } \frac{2}{r} + \frac{d}{p} > d+1 \text{ and } u(T) \in L^2(\Omega)$

Theorem

The above optimal control problem has a unique solution $\bar{q} \in \mathcal{M}(\Omega)$ and $\bar{u} \in L^r(I; W^{1,p}(\Omega))$

Optimality system

$$\bar{u}(0) = q$$
 in Ω .

$$\begin{split} \partial_t \bar{u} - \Delta \bar{u} &= 0 \quad \text{in } I \times \Omega, \\ \bar{u} &= 0 \quad \text{on } I \times \partial \Omega, \\ \bar{u}(0) &= q \quad \text{in } \Omega. \end{split}$$

Adjoint equation:	$\bar{z}(0) \in H^2(\Omega) \cap H^1_0(\Omega) \hookrightarrow C_0(\Omega)$		
	$-\partial_t \bar{z} - \Delta \bar{z} = 0$	in $I \times \Omega$,	
	$\bar{z} = 0$	on $I imes \partial \Omega$,	
	$\bar{z}(T) = \bar{u}(T) - u_d$	in Ω .	

State Equation: $\bar{u} \in L^r(I; W^{1,p}(\Omega)) \Rightarrow \bar{u}(T) \in L^2(\Omega)$

$$\begin{split} \partial_t \bar{u} - \Delta \bar{u} &= 0 \quad \text{in } I \times \Omega, \\ \bar{u} &= 0 \quad \text{on } I \times \partial \Omega, \\ \bar{u}(0) &= q \quad \text{in } \Omega. \end{split}$$

Adjoint equation: $\bar{z}(0) \in H^2(\Omega) \cap H^1_0(\Omega) \hookrightarrow C_0(\Omega)$

$-\partial_t \bar{z} - \Delta \bar{z} = 0$	in $I \times \Omega$,
$\bar{z} = 0$	on $I \times \partial \Omega$,
$\bar{z}(T) = \bar{u}(T) - u_d$	in Ω .

Optimality condition

$$-\langle \bar{z}(0), q - \bar{q} \rangle \le \alpha \left(\|q\|_{\mathcal{M}} - \|\bar{q}\|_{\mathcal{M}} \right) \quad \forall q \in \mathcal{M}(\Omega).$$

From the optimality condition

$$-\langle \bar{z}(0), q - \bar{q} \rangle \le \alpha \left(\|q\|_{\mathcal{M}} - \|\bar{q}\|_{\mathcal{M}} \right) \quad \forall q \in \mathcal{M}(\Omega),$$

taking q=0 and $q=2\bar{q}$ we get

 $\langle \bar{z}(0), \bar{q} \rangle \leq -\alpha \|\bar{q}\|_{\mathcal{M}}, \quad \text{and} \quad \langle \bar{z}(0), \bar{q} \rangle \geq -\alpha \|\bar{q}\|_{\mathcal{M}}.$

From the optimality condition

$$-\langle \bar{z}(0), q - \bar{q} \rangle \le \alpha \left(\|q\|_{\mathcal{M}} - \|\bar{q}\|_{\mathcal{M}} \right) \quad \forall q \in \mathcal{M}(\Omega),$$

taking q=0 and $q=2\bar{q}$ we get

 $\langle \bar{z}(0), \bar{q} \rangle \leq -\alpha \|\bar{q}\|_{\mathcal{M}}, \text{ and } \langle \bar{z}(0), \bar{q} \rangle \geq -\alpha \|\bar{q}\|_{\mathcal{M}}.$

Thus

$$\langle \bar{z}(0), \bar{q} \rangle = -\alpha \|\bar{q}\|_{\mathcal{M}},$$

From the optimality condition

$$-\langle \bar{z}(0), q - \bar{q} \rangle \le \alpha \left(\|q\|_{\mathcal{M}} - \|\bar{q}\|_{\mathcal{M}} \right) \quad \forall q \in \mathcal{M}(\Omega),$$

taking q=0 and $q=2\bar{q}$ we get

 $\langle \bar{z}(0), \bar{q} \rangle \leq -\alpha \|\bar{q}\|_{\mathcal{M}}, \text{ and } \langle \bar{z}(0), \bar{q} \rangle \geq -\alpha \|\bar{q}\|_{\mathcal{M}}.$

Thus

$$\langle \bar{z}(0), \bar{q} \rangle = -\alpha \|\bar{q}\|_{\mathcal{M}},$$

and as a result

$$-\langle \bar{z}(0), q \rangle \le \alpha \|q\|_{\mathcal{M}}, \quad \forall q \in \mathcal{M}(\Omega),$$

From the optimality condition

$$-\langle \bar{z}(0), q - \bar{q} \rangle \le \alpha \left(\|q\|_{\mathcal{M}} - \|\bar{q}\|_{\mathcal{M}} \right) \quad \forall q \in \mathcal{M}(\Omega),$$

taking q=0 and $q=2\bar{q}$ we get

 $\langle \bar{z}(0), \bar{q} \rangle \leq -\alpha \|\bar{q}\|_{\mathcal{M}}, \quad \text{and} \quad \langle \bar{z}(0), \bar{q} \rangle \geq -\alpha \|\bar{q}\|_{\mathcal{M}}.$

Thus

$$\langle \bar{z}(0), \bar{q} \rangle = -\alpha \|\bar{q}\|_{\mathcal{M}},$$

and as a result

$$-\langle \bar{z}(0), q \rangle \le \alpha \|q\|_{\mathcal{M}}, \quad \forall q \in \mathcal{M}(\Omega),$$

Consequence for $\bar{z}(0)$

$$\|\bar{z}(0)\|_{C_0(\Omega)} \leq \alpha \quad \text{and} \quad \|\bar{z}(0)\|_{C_0(\Omega)} = \alpha \quad \text{if} \quad \bar{q} \neq 0.$$

Using Jordan decomposition $\bar{q}=\bar{q}^+-\bar{q}^-$

Consequence for \bar{q}

$$\operatorname{supp} \bar{q}^+ \subset \Omega^+ = \{ x \in \Omega \mid \bar{z}(0, x) = -\alpha \}$$
$$\operatorname{supp} \bar{q}^- \subset \Omega^- = \{ x \in \Omega \mid \bar{z}(0, x) = \alpha \}$$

Using Jordan decomposition $\bar{q}=\bar{q}^+-\bar{q}^-$

Consequence for \bar{q}

$$\operatorname{supp} \bar{q}^+ \subset \Omega^+ = \{ x \in \Omega \mid \bar{z}(0, x) = -\alpha \}$$
$$\operatorname{supp} \bar{q}^- \subset \Omega^- = \{ x \in \Omega \mid \bar{z}(0, x) = \alpha \}$$

Using that $\bar{z}(0,x) = 0$ on $\partial \Omega$

Consequence for support \bar{q}

 $\operatorname{supp} \bar{q} \subset \Omega_0 \subset \subset \Omega.$

Using Jordan decomposition $\bar{q}=\bar{q}^+-\bar{q}^-$

Consequence for \bar{q}

$$\operatorname{supp} \bar{q}^+ \subset \Omega^+ = \{ x \in \Omega \mid \bar{z}(0, x) = -\alpha \}$$
$$\operatorname{supp} \bar{q}^- \subset \Omega^- = \{ x \in \Omega \mid \bar{z}(0, x) = \alpha \}$$

Using that $\bar{z}(0,x) = 0$ on $\partial \Omega$

Consequence for support \bar{q}

 $\operatorname{supp} \bar{q} \subset \Omega_0 \subset \subset \Omega.$

Using Jordan decomposition $\bar{q}=\bar{q}^+-\bar{q}^-$

Consequence for \bar{q}

$$\operatorname{supp} \bar{q}^+ \subset \Omega^+ = \{ x \in \Omega \mid \bar{z}(0, x) = -\alpha \}$$
$$\operatorname{supp} \bar{q}^- \subset \Omega^- = \{ x \in \Omega \mid \bar{z}(0, x) = \alpha \}$$

Using that $\bar{z}(0,x) = 0$ on $\partial \Omega$

Consequence for support \bar{q}

$$\operatorname{supp} \bar{q} \subset \Omega_0 \subset \subset \Omega.$$

Sparsity

Since $\bar{z}(0)$ is analytic in Ω_0 we have $|\Omega^+| = |\Omega^-| = 0$

In 1D, we have that $|\Omega^+|$ and $|\Omega^-|$ consist of finite number of points.

2 Finite element discretization in space and time

3 Main Results

Spatial FEM

 ${\mathcal T}$ be a quasi-uniform triangulation of Ω with a mesh size h, i.e.,

diam
$$(\tau) \le h \le C |\tau|^{\frac{1}{N}}, \quad \forall \tau \in \mathcal{T}.$$

$$V_h = \{ \chi \in H^1_0(\Omega) : \ \chi \mid_{\tau} \in \mathcal{P}_1 \},\$$

where \mathcal{P}_1 is the set of piecewise linear polynomials. (V_h is the usual space of Lagrangian finite elements of degree 1).

Spatial FEM

 ${\mathcal T}$ be a quasi-uniform triangulation of Ω with a mesh size h, i.e.,

diam
$$(\tau) \le h \le C |\tau|^{\frac{1}{N}}, \quad \forall \tau \in \mathcal{T}.$$

$$V_h = \{ \chi \in H_0^1(\Omega) : \ \chi \mid_{\tau} \in \mathcal{P}_1 \},\$$

where \mathcal{P}_1 is the set of piecewise linear polynomials. (V_h is the usual space of Lagrangian finite elements of degree 1).

We will also need discrete Laplacian $\Delta_h: V_h \to V_h$

$$(-\Delta_h v_h, \chi) = (\nabla v_h, \nabla \chi), \quad \forall \chi \in V_h$$

and Ritz projection $R_h: H^1 \to V_h$

$$(\nabla R_h v, \nabla \chi) = (\nabla v, \nabla \chi), \quad \forall \chi \in V_h.$$

Discontinuous Galerkin discretization in time.

Partition I = [0, T] into subintervals $I_m = (t_{m-1}, t_m]$ of length $k_m = t_m - t_{m-1}$, where $0 = t_0 < t_1 < \cdots < t_{M-1} < t_M = T$.

Assumptions:

(i) There are constants $c, \beta > 0$ independent on k such that

 $k_{\min} \ge ck^{\beta}.$

(ii) There is a constant $\kappa>0$ independent on k such that for all $m=1,2,\ldots,M-1$

$$\kappa^{-1} \le \frac{k_m}{k_{m+1}} \le \kappa.$$

Discontinuous Galerkin discretization in time.

Partition I = [0, T] into subintervals $I_m = (t_{m-1}, t_m]$ of length $k_m = t_m - t_{m-1}$, where $0 = t_0 < t_1 < \cdots < t_{M-1} < t_M = T$.

Assumptions:

(i) There are constants $c, \beta > 0$ independent on k such that

 $k_{\min} \ge ck^{\beta}.$

(ii) There is a constant $\kappa>0$ independent on k such that for all $m=1,2,\ldots,M-1$

$$\kappa^{-1} \le \frac{k_m}{k_{m+1}} \le \kappa.$$

The semidiscrete space X_k^q of piecewise polynomial functions in time is defined by

$$X_k^q = \{ u_k \in L^2(I; H_0^1(\Omega)) : u_k |_{I_m} \in \mathcal{P}_q(H_0^1(\Omega)), \ m = 1, 2, \dots, M \},\$$

where $\mathcal{P}_q(V)$ is the space of polynomial functions of degree q in time with values in a Banach space V.
$$B(u,\varphi) = \sum_{m=1}^{M} \langle u_t,\varphi \rangle_{I_m \times \Omega} + (\nabla u, \nabla \varphi)_{I \times \Omega} + \sum_{m=2}^{M} ([u]_{m-1}, \varphi_{m-1}^+)_{\Omega} + (u_0^+, \varphi_0^+)_{\Omega},$$

where

$$u_m^+ = \lim_{\varepsilon \to 0^+} u(t_m + \varepsilon), \quad u_m^- = \lim_{\varepsilon \to 0^+} u(t_m - \varepsilon), \quad [u]_m = u_m^+ - u_m^-.$$

$$B(u,\varphi) = \sum_{m=1}^{M} \langle u_t,\varphi \rangle_{I_m \times \Omega} + (\nabla u, \nabla \varphi)_{I \times \Omega} + \sum_{m=2}^{M} ([u]_{m-1}, \varphi_{m-1}^+)_{\Omega} + (u_0^+, \varphi_0^+)_{\Omega},$$

where

$$u_m^+ = \lim_{\varepsilon \to 0^+} u(t_m + \varepsilon), \quad u_m^- = \lim_{\varepsilon \to 0^+} u(t_m - \varepsilon), \quad [u]_m = u_m^+ - u_m^-.$$

dG(p) semidiscrete (in time) approximation

Find $u_k \in X_k^p$ such that

$$B(u_k,\varphi_k) = \langle q,\varphi_{k,0}^+ \rangle_{\Omega} \quad \text{for all} \ \varphi_k \in X_k^p.$$

$$B(u,\varphi) = \sum_{m=1}^{M} \langle u_t,\varphi \rangle_{I_m \times \Omega} + (\nabla u, \nabla \varphi)_{I \times \Omega} + \sum_{m=2}^{M} ([u]_{m-1}, \varphi_{m-1}^+)_{\Omega} + (u_0^+, \varphi_0^+)_{\Omega},$$

where

$$u_m^+ = \lim_{\varepsilon \to 0^+} u(t_m + \varepsilon), \quad u_m^- = \lim_{\varepsilon \to 0^+} u(t_m - \varepsilon), \quad [u]_m = u_m^+ - u_m^-.$$

dG(p) semidiscrete (in time) approximation

Find $u_k \in X_k^p$ such that

$$B(u_k, \varphi_k) = \langle q, \varphi_{k,0}^+ \rangle_{\Omega} \text{ for all } \varphi_k \in X_k^p.$$

Galerkin orthogonality

$$B(u-u_k,\varphi_k)=0$$
 for all $\varphi_k\in X_k^p$.

- For homogeneous autonomous problems, dG schemes are just subdiagonal Padé schemes.
- **2** dG schemes are strongly A-stable.

- For homogeneous autonomous problems, dG schemes are just subdiagonal Padé schemes.
- **2** dG schemes are strongly A-stable.
- Optimal order with respect to regularity.

- For homogeneous autonomous problems, dG schemes are just subdiagonal Padé schemes.
- **2** dG schemes are strongly A-stable.
- Optimal order with respect to regularity.
- Sefficient and easy implementation that avoids complex coefficients.

- For homogeneous autonomous problems, dG schemes are just subdiagonal Padé schemes.
- IdG schemes are strongly A-stable.
- Optimal order with respect to regularity.
- Sefficient and easy implementation that avoids complex coefficients.
- For optimal control problems, optimize-then-discretize and discretize-then-optimize approaches commute.

- For homogeneous autonomous problems, dG schemes are just subdiagonal Padé schemes.
- IdG schemes are strongly A-stable.
- Optimal order with respect to regularity.
- Sefficient and easy implementation that avoids complex coefficients.
- For optimal control problems, optimize-then-discretize and discretize-then-optimize approaches commute.
- O Different spatial discretizations on each time step can be naturally incorporated.

$$B(u,\varphi) = \sum_{m=1}^{M} \langle u_t,\varphi \rangle_{I_m \times \Omega} + (\nabla u, \nabla \varphi)_{I \times \Omega} + \sum_{m=2}^{M} ([u]_{m-1}, \varphi_{m-1}^+)_{\Omega} + (u_0^+, \varphi_0^+)_{\Omega},$$

where

$$u_m^+ = \lim_{\varepsilon \to 0^+} u(t_m + \varepsilon), \quad u_m^- = \lim_{\varepsilon \to 0^+} u(t_m - \varepsilon), \quad [u]_m = u_m^+ - u_m^-.$$

$$B(u,\varphi) = \sum_{m=1}^{M} \langle u_t,\varphi \rangle_{I_m \times \Omega} + (\nabla u, \nabla \varphi)_{I \times \Omega} + \sum_{m=2}^{M} ([u]_{m-1}, \varphi_{m-1}^+)_{\Omega} + (u_0^+, \varphi_0^+)_{\Omega},$$

where

$$u_m^+ = \lim_{\varepsilon \to 0^+} u(t_m + \varepsilon), \quad u_m^- = \lim_{\varepsilon \to 0^+} u(t_m - \varepsilon), \quad [u]_m = u_m^+ - u_m^-.$$

dG(p)cG(r) fully discrete approximation

Find $u_{kh} \in X_{k,h}^{p,r}$ such that

$$B(u_{kh},\varphi_{kh}) = \langle q,\varphi_{kh,0}^+ \rangle_{\Omega} \quad \text{for all} \ \varphi_{kh} \in X_{k,h}^{p,r}.$$

$$B(u,\varphi) = \sum_{m=1}^{M} \langle u_t,\varphi \rangle_{I_m \times \Omega} + (\nabla u, \nabla \varphi)_{I \times \Omega} + \sum_{m=2}^{M} ([u]_{m-1}, \varphi_{m-1}^+)_{\Omega} + (u_0^+, \varphi_0^+)_{\Omega},$$

where

$$u_m^+ = \lim_{\varepsilon \to 0^+} u(t_m + \varepsilon), \quad u_m^- = \lim_{\varepsilon \to 0^+} u(t_m - \varepsilon), \quad [u]_m = u_m^+ - u_m^-.$$

dG(p)cG(r) fully discrete approximation

Find $u_{kh} \in X_{k,h}^{p,r}$ such that

$$B(u_{kh},\varphi_{kh}) = \langle q,\varphi_{kh,0}^+ \rangle_{\Omega} \quad \text{for all} \ \varphi_{kh} \in X_{k,h}^{p,r}.$$

Galerkin orthogonality

$$B(u - u_{kh}, \varphi_{kh}) = 0 \quad \text{for all} \ \varphi_{kh} \in X_{k,h}^{p,r}.$$

Discretization

- conformal P_1 elements in space, quasi-uniform mesh
- $\bullet\ dG(q)$ in time, non-uniform time steps
- maximal time step k, maximal spacial mesh size h, no coupling.

Optimization problem

Minimize
$$J(q_{kh}, u_{kh}) = \frac{1}{2} \|u_{kh}(T) - u_d\|_{L^2(\Omega)}^2 + \alpha \|q_{kh}\|_{\mathcal{M}},$$

subject to $q_{kh} \in M_h$ and $u_{kh} \in X_{k,h}^{p,1}$ with

$$B(u_{kh},\varphi_{kh}) = \langle q_{kh},\varphi_{kh,0}^+ \rangle_{\Omega} \quad \text{for all} \ \varphi_{kh} \in X_{k,h}^{p,1},$$

where

$$M_h = \{\mu_h \in \mathcal{M}(\Omega) : \quad \mu_h = \sum_i \beta_i \delta_{x_i}, \quad \beta_i \in \mathbb{R}\} \subset \mathcal{M}(\Omega)$$

Discrete optimality system

State equation

$$\bar{u}_{kh} \in X_{k,h}^{p,1}: \quad B(\bar{u}_{kh},\varphi_{kh}) = (\bar{q}_{kh},\varphi_{kh}(0)), \quad \forall \varphi_{kh} \in X_{k,h}^{p,1}$$

Adjoint equation

$$\bar{z}_{kh} \in X_{k,h}^{p,1}$$
: $B(\varphi_{kh}, \bar{z}_{kh}) = (\bar{u}_{kh}(T) - u_d, \psi_{kh}(T)) \quad \forall \psi_{kh} \in X_{k,h}^{p,1}$

Optimality condition

$$\bar{q}_{kh} \in M_h: -\langle \bar{z}_{kh}(0), q - \bar{q}_{kh} \rangle \le \alpha \left(\|q\|_{\mathcal{M}} - \|\bar{q}_{kh}\|_{\mathcal{M}} \right) \quad \forall q \in \mathcal{M}(\Omega).$$

Discrete optimality system

State equation

$$\bar{u}_{kh} \in X_{k,h}^{p,1}: \quad B(\bar{u}_{kh},\varphi_{kh}) = (\bar{q}_{kh},\varphi_{kh}(0)), \quad \forall \varphi_{kh} \in X_{k,h}^{p,1}$$

Adjoint equation

$$\bar{z}_{kh} \in X_{k,h}^{p,1}$$
: $B(\varphi_{kh}, \bar{z}_{kh}) = (\bar{u}_{kh}(T) - u_d, \psi_{kh}(T)) \quad \forall \psi_{kh} \in X_{k,h}^{p,1}$

Optimality condition

$$\bar{q}_{kh} \in M_h: -\langle \bar{z}_{kh}(0), q - \bar{q}_{kh} \rangle \le \alpha \left(\|q\|_{\mathcal{M}} - \|\bar{q}_{kh}\|_{\mathcal{M}} \right) \quad \forall q \in \mathcal{M}(\Omega).$$

Consequences:

$$\|\bar{z}_{kh}(0)\|_{C_0(\Omega)} \le \alpha$$

 $\operatorname{supp} \bar{q}_{kh} \subset \{x \in \Omega: \ |\bar{z}_{kh}(0,x)| = \alpha\} \subset \Omega_0 \subset \subset \Omega.$

2 Finite element discretization in space and time

Theorem (Convergence rates for the state)

There exists a constant C independent of k and h such that

$$\|(\bar{u} - \bar{u}_{kh})(T)\|_{L^2(\Omega)} \le C(T)\ell_{kh}\left(k^{p+1/2} + h\right).$$

Idea of the proof

- From optimality systems: $\langle \bar{q}_{kh} \bar{q}, \bar{z}(0) \bar{z}_{kh}(0) \rangle \geq 0$
- Using state and adjoint equations and $\operatorname{supp} \bar{q}, \bar{q}_{kh} \subset \Omega_0$

$$\begin{aligned} \|(\bar{u}-\bar{u}_{kh})(T)\|_{L^{2}(\Omega)}^{2} &\leq \langle \bar{q}_{kh}-\bar{q}, \bar{z}(0)-\hat{z}_{kh}(0)\rangle + \frac{1}{2} \|(\bar{u}-\hat{u}_{kh})(T)\|_{L^{2}(\Omega)}^{2} \\ &\leq C \|\bar{z}(0)-\hat{z}_{kh}(0)\|_{L^{\infty}(\Omega_{0})} + \frac{1}{2} \|(\bar{u}-\hat{u}_{kh})(T)\|_{L^{2}(\Omega)}^{2}. \end{aligned}$$

Homogeneous equation

$$\begin{array}{l} \partial_t v - \Delta v = 0 \quad \text{in } I \times \Omega, \\ v = 0 \quad \text{on } I \times \partial \Omega \\ v(0) = v_0 \quad \text{in } \Omega. \end{array}$$

Parabolic Smoothing

$$\|\Delta v(t)\|_{L^p(\Omega)} \leq \frac{C}{t} \|v_0\|_{L^p(\Omega)} \quad t>0, \quad 1\leq p\leq\infty.$$

Homogeneous equation

$$\begin{array}{l} \partial_t v - \Delta v = 0 \quad \text{in } I \times \Omega, \\ v = 0 \quad \text{on } I \times \partial \Omega \\ v(0) = v_0 \quad \text{in } \Omega. \end{array}$$

Parabolic Smoothing

$$\|\Delta v(t)\|_{L^p(\Omega)} \le \frac{C}{t} \|v_0\|_{L^p(\Omega)} \quad t > 0, \quad 1 \le p \le \infty.$$

Theorem (Semidiscrete Smoothing)

Let v_k be the dG(q) solution of the homogenous parabolic problem. Then there exists a constant C independent of k such that

$$\|\partial_t v_k\|_{L^{\infty}(I_m;L^p(\Omega))} + \|\Delta v_k\|_{L^{\infty}(I_m;L^p(\Omega))} + \left\|\frac{[v_k]_{m-1}}{k_m}\right\|_{L^p(\Omega)} \le \frac{C}{t_m}\|v_0\|_{L^p(\Omega)},$$

for
$$m = 1, \ldots, M$$
 and $1 \le p \le \infty$.

Homogeneous equation

 $\begin{array}{l} \partial_t v - \Delta v = 0 \quad \text{in } I \times \Omega, \\ v = 0 \quad \text{on } I \times \partial \Omega \\ v(0) = v_0 \quad \text{in } \Omega. \end{array}$

Parabolic Smoothing

$$\|\Delta v(t)\|_{L^p(\Omega)} \le \frac{C}{t} \|v_0\|_{L^p(\Omega)} \quad t > 0.$$

Theorem (Fully discrete Smoothing)

Let v_{kh} be the dG(q)cG(r) solution of the homogenous parabolic problem. Then there exists a constant C independent of k and h such that

$$\|\partial_t v_{kh}\|_{L^{\infty}(I_m;L^p(\Omega))} + \|\Delta_h v_{kh}\|_{L^{\infty}(I_m;L^p(\Omega))} + \left\|\frac{[v_{kh}]_{m-1}}{k_m}\right\|_{L^p(\Omega)} \le \frac{C}{t_m} \|v_0\|_{L^p(\Omega)},$$

for
$$m = 1, \ldots, M$$
 and $1 \le p \le \infty$.

Theorem (Pointwise smoothing)

Let v be the solution to the homogeneous heat equation and v_{kh} be its dG(p)cG(1) approximation. Then there exists a constant C independent of k such that

 $|(v - v_{kh})(T, x_0)| \le C(T)\ell_{kh} \left(k^{2p+1} + h^2\right) \|v_0\|_{L^2(\Omega)},$

Theorem (Pointwise smoothing)

Let v be the solution to the homogeneous heat equation and v_{kh} be its dG(p)cG(1) approximation. Then there exists a constant C independent of k such that

$$(v - v_{kh})(T, x_0) \leq C(T)\ell_{kh} \left(k^{2p+1} + h^2\right) \|v_0\|_{L^2(\Omega)}$$

Idea of the proof:

$$|(v-v_{kh})(T,x_0)| \le ||(v-v_k)(T)||_{L^{\infty}(\Omega)} + |(v_k-R_hv_k)(T,x_0)| + ||(R_hv_k-v_{kh})(T)||_{L^{\infty}(\Omega)} + ||(v-v_k)(T,x_0)| \le ||(v-v_k)(T)||_{L^{\infty}(\Omega)} + ||(v-v_k)(T,x_0)| \le ||(v-v_k)(T)||_{L^{\infty}(\Omega)} + ||(v-v_k)(T,x_0)| \le ||(v-v_k)(T)||_{L^{\infty}(\Omega)} + ||(v-v_k)(T,x_0)| \le ||(v-v_k)($$

where $R_h \colon H^1_0(\Omega) \to V_h$ is the Ritz projection:

Definition (Ritz projection)

$$(\nabla R_h v, \nabla \chi)_{\Omega} = (\nabla v, \nabla \chi)_{\Omega} \quad \forall \chi \in V_h.$$

First estimate

$$||(v - v_k)(T)||_{L^{\infty}(\Omega)} \le C \frac{k^{2p+1}}{T^{2p+1+\frac{N}{4}}} ||v_0||_{L^2(\Omega)}.$$

First estimate

$$||(v - v_k)(T)||_{L^{\infty}(\Omega)} \le C \frac{k^{2p+1}}{T^{2p+1+\frac{N}{4}}} ||v_0||_{L^2(\Omega)}.$$

Second estimate

$$\|(R_h v_k - v_{kh})(T)\|_{L^{\infty}(\Omega)} \le C |\ln k| \frac{h^2}{T^{1+\frac{N}{4}}} \|v_0\|_{L^2(\Omega)}.$$

First estimate

$$||(v - v_k)(T)||_{L^{\infty}(\Omega)} \le C \frac{k^{2p+1}}{T^{2p+1+\frac{N}{4}}} ||v_0||_{L^2(\Omega)}.$$

Second estimate

$$\|(R_h v_k - v_{kh})(T)\|_{L^{\infty}(\Omega)} \le C |\ln k| \frac{h^2}{T^{1+\frac{N}{4}}} \|v_0\|_{L^2(\Omega)}.$$

By elliptic interior pointwise error estimates

Third estimate

$$|(v_k - R_h v_k)(T, x_0)| \le C \left(|\ln h| \| (v_k - I_h v_k)(T) \|_{L^{\infty}(B_d)} + \| (v_k - R_h v_k)(T) \|_{L^2(\Omega)} \right)$$

Idea of the proof

Supplementary function

$$B(\varphi_{kh}, \hat{z}_{kh}) = (\varphi_{kh}(T), \bar{u}(T) - u_d) \quad \forall \varphi_{kh} \in X_{k,h}^{p,1}.$$

Supplementary function

$$B(\varphi_{kh}, \hat{z}_{kh}) = (\varphi_{kh}(T), \bar{u}(T) - u_d) \quad \forall \varphi_{kh} \in X_{k,h}^{p,1}.$$

Initial Error Estimate

 $\|(\bar{u}-\bar{u}_{kh})(T)\|_{L^{2}(\Omega)}^{2} \leq 2\left(\|\bar{q}_{kh}\|_{M} + \|\bar{q}\|_{M}\right)\|\bar{z}(0) - \hat{z}_{kh}(0)\|_{L^{\infty}(\Omega_{0})} + \|(\bar{u}-\hat{u}_{kh})(T)\|_{L^{2}}^{2}$

Supplementary function

$$B(\varphi_{kh}, \hat{z}_{kh}) = (\varphi_{kh}(T), \bar{u}(T) - u_d) \quad \forall \varphi_{kh} \in X_{k,h}^{p,1}.$$

Initial Error Estimate

 $\|(\bar{u}-\bar{u}_{kh})(T)\|_{L^{2}(\Omega)}^{2} \leq 2\left(\|\bar{q}_{kh}\|_{M} + \|\bar{q}\|_{M}\right)\|\bar{z}(0) - \hat{z}_{kh}(0)\|_{L^{\infty}(\Omega_{0})} + \|(\bar{u}-\hat{u}_{kh})(T)\|_{L^{2}}^{2}$

Using Pointwise Smoothing theorem

 $\|\bar{z}(0) - \hat{z}_{kh}(0)\|_{L^{\infty}(\Omega_0)} \le C(T)(k^{2p+1} + h^2)\|\bar{u}(T) - u_d\|_{L^2(\Omega)}$

Supplementary function

$$B(\varphi_{kh}, \hat{z}_{kh}) = (\varphi_{kh}(T), \bar{u}(T) - u_d) \quad \forall \varphi_{kh} \in X_{k,h}^{p,1}.$$

Initial Error Estimate

 $\|(\bar{u}-\bar{u}_{kh})(T)\|_{L^{2}(\Omega)}^{2} \leq 2\left(\|\bar{q}_{kh}\|_{M} + \|\bar{q}\|_{M}\right)\|\bar{z}(0) - \hat{z}_{kh}(0)\|_{L^{\infty}(\Omega_{0})} + \|(\bar{u}-\hat{u}_{kh})(T)\|_{L^{2}}^{2}$

Using Pointwise Smoothing theorem

 $\|\bar{z}(0) - \hat{z}_{kh}(0)\|_{L^{\infty}(\Omega_0)} \le C(T)(k^{2p+1} + h^2)\|\bar{u}(T) - u_d\|_{L^2(\Omega)}$

Additional result

$$\|(\bar{u} - \hat{u}_{kh})(T)\|_{L^2(\Omega)} \le C(T)\ell_{kh} \left(k^{2p+1} + h^2\right) \|\bar{q}\|_{\mathcal{M}}.$$

Theorem (Casas, Vexler, ZuaZua, 2015)

$$\bar{q}_{kh} \stackrel{*}{\rightharpoonup} \bar{q}$$
 and $\|\bar{q}\|_{\mathcal{M}} - \|\bar{q}_{kh}\|_{\mathcal{M}} \to 0$ as $(k,h) \to (0,0)$.

Theorem (Casas, Vexler, ZuaZua, 2015)

$$\bar{q}_{kh} \stackrel{*}{\rightharpoonup} \bar{q}$$
 and $\|\bar{q}\|_{\mathcal{M}} - \|\bar{q}_{kh}\|_{\mathcal{M}} \to 0$ as $(k,h) \to (0,0)$.

No convergence in the norm

We can not expect

$$\|\bar{q}-\bar{q}_{kh}\|_{\mathcal{M}} \to 0$$
 as $(k,h) \to (0,0)$.

Theorem (Casas, Vexler, ZuaZua, 2015)

$$\bar{q}_{kh} \stackrel{*}{\rightharpoonup} \bar{q}$$
 and $\|\bar{q}\|_{\mathcal{M}} - \|\bar{q}_{kh}\|_{\mathcal{M}} \to 0$ as $(k,h) \to (0,0)$.

No convergence in the norm

We can not expect

$$\|\bar{q}-\bar{q}_{kh}\|_{\mathcal{M}}\to 0 \quad \text{as} \quad (k,h)\to (0,0).$$

Simple example:

$$\bar{q} = \delta_{x_0}, \quad \bar{q}_{kh} = \delta_{x_{0,kh}}$$

wiht

$$x_{0,kh} \to x_0 \quad \text{as} \quad (k,h) \to (0,0),$$

but

$$\|\bar{q}-\bar{q}_{kh}\|_{\mathcal{M}}=2,$$

as long as $x_{0,kh} \neq x_0$.

Error estimates for control

Structure of control

$$\operatorname{supp} \bar{q} \subset \{ x \in \Omega : \quad |\bar{z}(0, x)| = \alpha \}$$

Error estimates for control

Structure of control

$$\operatorname{supp} \bar{q} \subset \{ x \in \Omega : \quad |\bar{z}(0,x)| = \alpha \}$$

Structural assumption (cf. Merino, Neitzel, Tröltzsch 2011)

supp
$$\bar{q} = \{x \in \Omega : |\bar{z}(0,x)| = \alpha\} = \{x_1, x_2, \dots, x_N\}$$

3 For
$$x_i$$
 with $\bar{z}(0, x_i) = -\alpha$, $\nabla_x^2 \bar{z}(0, x_i) > 0$ (positive definite)

 $\textbf{ Sor } x_i \text{ with } \bar{z}(0,x_i) = \alpha, \quad \nabla_x^2 \bar{z}(0,x_i) < 0 \quad (\text{negative definite})$

Error estimates for control

Structure of control

$$\operatorname{supp} \bar{q} \subset \{ x \in \Omega : \quad |\bar{z}(0, x)| = \alpha \}$$

Structural assumption (cf. Merino, Neitzel, Tröltzsch 2011)

supp
$$\bar{q} = \{x \in \Omega : |\bar{z}(0,x)| = \alpha\} = \{x_1, x_2, \dots, x_N\}$$

2 For
$$x_i$$
 with $\bar{z}(0, x_i) = -\alpha$, $\nabla_x^2 \bar{z}(0, x_i) > 0$ (positive definite)

③ For
$$x_i$$
 with $ar{z}(0,x_i)=lpha$, $abla_x^2ar{z}(0,x_i)<0$ (negative definite)

Direct consequence

$$\bar{q} = \sum_{i} \beta_i \delta_{x_i}$$

with

$$\beta_i > 0 \quad \text{for} \quad \bar{z}(0,x_i) = -\alpha \quad \text{ and } \quad \beta_i < 0 \quad \text{for} \quad \bar{z}(0,x_i) = \alpha$$

Theorem

1.

2

There are $\varepsilon > 0$, $k_0, h_0 > 0$ such that for all $k < k_0$ and $h < h_0$

supp
$$\bar{q}_{kh} \cap B_{\varepsilon}(x_i) \neq \emptyset \quad i = 1, 2, \dots, N$$

supp $\bar{q}_{kh} \subset \bigcup_i B_{\varepsilon}(x_i)$

Theorem (Error estimates for the control)

$$\|\bar{u}(T) - \bar{u}_{kh}(T)\|_{L^2(\Omega)} \le C(T) \left(k^{2p+1} + \ell_{kh}h\right)$$

Theorem (Error estimates for the control)

$$\|\bar{u}(T) - \bar{u}_{kh}(T)\|_{L^2(\Omega)} \le C(T) \left(k^{2p+1} + \ell_{kh}h\right)$$

Theorem (Error estimates for locations and coefficients)

For

2

$$x_{i,kh} \in \bar{q}_{kh} \cap B_{\varepsilon}(x_i)$$

there holds

$\max_{i} |x_i - x_{i,kh}| \le C(T) \left(k^{2p+1} + \ell_{kh} h \right)$

$$\max_{i} |\beta_i - \sum_{j=1}^{n_i} \beta_{kh,ij}| \le C(T) \left(k^{2p+1} + \ell_{kh}h \right)$$

2) Finite element discretization in space and time

3 Main Results

Numerical examples I

Reference initial state q^{\dagger} and final u_d^{\dagger}

Computed initial state \bar{q}_{kh} without and with noise on u_d

Convergence for $\|\bar{u}(T) - \bar{u}_{kh}(T)\|_{L^2(\Omega)}$

Numerical examples: Convergence plots

- Motivation: Identification of sparse initial conditions
- \bullet Formulation with control from $\mathcal{M}(\Omega)$
- FEM discretization and error analysis with precise smoothing type error estimates
- Under a structural assumption: Convergence of support points

THANK YOU

