Sorbonne Université, Laboratoire Jacques-Louis Lions

Turnpike in shape design

Gontran Lance, Emmanuel Trélat, Enrique Zuazua

Workshop 1 - Special semester in Optimization - Ricam Linz October 17th, 2019

Content

Problem and relaxation

Results

Numerical examples

Future prospects

Turnpike phenomenon

Optimal control problem

$$
\begin{gathered}
\min _{u \in \mathcal{U}_{a d}} \int_{0}^{T} f^{0}(x(t), u(t)) d t \\
\dot{x}(t)=f(x(t), u(t)) \\
R(x(0), x(T))=0
\end{gathered}
$$

Static problem

$$
\begin{gathered}
\min _{\substack{u \in \mathcal{U}_{a d} \\
\\
f(x, u)}} f^{0}(x, u) \\
\hline
\end{gathered}
$$

Figure: Turnpike property

Shape design Problem

$$
\frac{1}{2 T} \int_{0}^{T}\left\|y(t)-y_{d}\right\|_{L^{2}(\Omega)}^{2} d t+\frac{1}{2}\left\|y(T)-y_{d}\right\|_{L^{2}(\Omega)}^{2} \rightarrow \min
$$

Shape design Problem

- $\Omega \subset \mathbf{R}^{N}$ bounded, $\quad y_{0}, y_{d} \in L^{2}(\Omega), \quad 0<L<1$ and $T>0$
- Set of admissible shapes: $\mathcal{U}_{L}=\{\omega \subset \Omega$ measurable $| | \omega|\leq L| \Omega \mid\}$

Optimal shape design problem $\left(O S D_{T}\right)$

$$
\begin{gathered}
\min _{\omega:(0, T) \rightarrow \mathcal{U}_{L}} \frac{\gamma_{1}}{2 T} \int_{0}^{T}\left\|y(t)-y_{d}\right\|_{L^{2}(\Omega)}^{2} d t+\frac{\gamma_{2}}{2}\left\|y(T)-y_{d}\right\|_{L^{2}(\Omega)}^{2} \\
\partial_{t} y-\Delta y=\chi_{\omega(\cdot)}, \quad y_{\mid \partial \Omega}=0, \quad y(0)=y_{0}
\end{gathered}
$$

Static shape design problem (SSD)

$$
\begin{aligned}
& \min _{\omega \in \mathcal{U}_{L}} \frac{\gamma_{1}}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2} \\
& -\triangle y=\chi_{\omega}, \quad y_{\mid \partial \Omega}=0
\end{aligned}
$$

Shape design Problem \rightarrow Relaxed problem

Set of admissible shapes: $\mathcal{U}_{L}=\{\omega \subset \Omega$ measurable $| | \omega|\leq L| \Omega \mid\}$
Convexified set: $\overline{\mathcal{U}_{L}}=\left\{a \in L^{\infty}(\Omega ;[0,1])\left|\int_{\Omega} a(x) d x \leq L\right| \Omega \mid\right\}$

Optimal control problem $\left(O C P_{T}\right)$

$$
\begin{gathered}
\min _{a:(0, T) \rightarrow \overline{\mathcal{U}}_{L}} \frac{\gamma_{1}}{2 T} \int_{0}^{T}\left\|y(t)-y_{d}\right\|_{L^{2}(\Omega)}^{2} d t+\frac{\gamma_{2}}{2}\left\|y(T)-y_{d}\right\|_{L^{2}(\Omega)}^{2} \\
\partial_{t} y-\Delta y=a, \quad y_{\mid \partial \Omega}=0, \quad y(0)=y_{0}
\end{gathered}
$$

Mayer Case - Final cost

$$
\min _{\omega:(0, T) \rightarrow \mathcal{U}_{L}} \frac{1}{2}\left\|y(T)-y_{d}\right\|_{L^{2}(\Omega)}^{2}, \quad \partial_{t} y-\Delta y=\chi_{\omega(\cdot)}, \quad y_{\mid \partial \Omega}=0, \quad y(0)=y_{0}
$$

Theorem (Lance Trélat Zuazua)

- Static and time problems : existence and uniqueness of solution $\left(y_{T}, p_{T}, \omega_{T}\right)$ and $(\bar{y}, \bar{p}, \bar{\omega})$
- Exponential turnpike:

$$
\forall T>0, \quad d_{\mathcal{H}}\left(\omega_{T}(t), \bar{\omega}\right) \leq C e^{-\mu(T-t)}
$$

Keyword's proof :

- Existence : Pontryagin Maximum principle (Lions - 1971) and Bathtub principle (Lieb \& Loss - 2001)
- Turnpike: Adjoint equation, Weyl's law, Hopf lemma

Lagrange Case - Integral cost

4

$$
\min _{\omega:(0, T) \rightarrow \mathcal{L}_{L}} \frac{1}{2 T} \int_{0}^{T}\left\|y(t)-y_{d}\right\|_{L^{2}(\Omega)}^{2} d t, \quad \partial_{t} y-\Delta y=\chi_{\omega(\cdot)}, \quad y_{\mid \partial \Omega}=0, y(0)=y_{0}
$$

Theorem (Lance Trélat Zuazua, ongoing)

- Existence and uniqueness of solution $\left(y_{T}, p_{T}, a_{T}\right)$ and $(\bar{y}, \bar{p}, \bar{a})$ and :

$$
\begin{aligned}
& -y_{d}<y_{0} \text { or } y_{d}>y_{1} \Longrightarrow \bar{a}=\chi_{\bar{\omega}} \text { and } a_{T}=\chi_{\omega_{T}} \\
& -y_{d} \text { convex } \Longrightarrow \bar{a}=\chi_{\bar{\omega}}
\end{aligned}
$$

- Integral turnpike :

$$
\forall T>0, \quad \int_{0}^{T}\left(\left\|y_{T}(t)-\bar{y}\right\|_{L^{2}(\Omega)}^{2}+\left\|p_{T}(t)-\bar{p}\right\|_{L^{2}(\Omega)}^{2}\right) d t<M
$$

- Keyword's proof of Turnpike : Strict dissipativity (Faulwasser - 2017, Grüne - 2016, Trélat Zhang - 2018) or (Porretta Zuazua 2013,2016)

Numerical examples

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=\mathrm{Cst}=0.1 \text { and } y_{0}=0
$$

Time shape

$t \rightarrow\left\|y_{T^{(}}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|\chi_{\omega_{T}(t)}-\chi \bar{\omega}\right\|$
Static shape

Numerical examples

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=\mathrm{Cst}=0.1 \text { and } y_{0}=0
$$

Time shape

$$
t=0
$$

$t=0.5$

$$
t=5
$$

Numerical examples

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=\mathrm{Cst}=0.1 \text { and } y_{0}=0
$$

Time shape

$$
t=0
$$

$t=0.5$

$$
t=5
$$

Numerical examples

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=\mathrm{Cst}=0.1 \text { and } y_{0}=0
$$

Time shape

$$
t \rightarrow\left\|y_{T}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|\chi_{\omega_{T}(t)}-\chi_{\bar{\omega}}\right\|
$$

Static shape

Numerical examples

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=\mathrm{Cst}=0.1 \text { and } y_{0}=0
$$

Time shape

$$
t \rightarrow\left\|y_{T}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|\chi_{\omega_{T}(t)}-\chi_{\bar{\omega}}\right\|
$$

Static shape

Numerical examples

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=\mathrm{Cst}=0.1 \text { and } y_{0}=0
$$

Time shape

$t \rightarrow\left\|y_{T^{(}}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|\chi_{\omega_{T}(t)}-\chi \bar{\omega}\right\|$
Static shape

Numerical examples (2D)

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T=\{1,2\}, y_{d}=C \text { Cst }=0.1 \text { and } y_{0}=0
$$

(computed with FreeFem++and IpOpt)

Numerical examples (2D)

(0)

$\Omega=[-1,1]^{2}, L=\frac{3}{16}, T=2, y_{d}=\frac{1}{20}(x y+1)$ and $y_{0}=0$

(computed with FreeFem++and IpOpt)

Numerical examples (2D)

Ω stadium, $L=\frac{3}{16}, T=2, y_{d}=0.1$ and $y_{0}=0$

(computed with FreeFem++and IpOpt)

Numerical examples (3D)

$\Omega=[0,1]^{3}, L=\frac{1}{40}, T=1, y_{d}=0.1$ and $y_{0}=0$

(computed with FreeFem++and IpOpt)

Relaxation phenomenon (Lagrange case)

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=-\frac{1}{20}\left(x^{2}+y^{2}-2\right) \text { and } y_{0}=0
$$

$t=0$

$t=0.5$

$$
t \rightarrow\left\|y_{T^{\prime}}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|a_{T^{\prime}}(t)-\bar{a}\right\|
$$

Relaxation phenomenon (Lagrange case)

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=-\frac{1}{20}\left(x^{2}+y^{2}-2\right) \text { and } y_{0}=0
$$

$t=0$

$t=0.5$

$$
t \rightarrow\left\|y_{T}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|a_{T}(t)-\bar{a}\right\|
$$

Relaxation phenomenon (Lagrange case)

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=-\frac{1}{20}\left(x^{2}+y^{2}-2\right) \text { and } y_{0}=0
$$

$t=0$

$t=0.5$

$$
t \rightarrow\left\|y_{T}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|a_{T}(t)-\bar{a}\right\|
$$

Relaxation phenomenon (Lagrange case)

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=-\frac{1}{20}\left(x^{2}+y^{2}-2\right) \text { and } y_{0}=0
$$

$t=0$

$t=0.5$

$$
t \rightarrow\left\|y_{T}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|a_{T}(t)-\bar{a}\right\|
$$

Relaxation phenomenon (Lagrange case)

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=-\frac{1}{20}\left(x^{2}+y^{2}-2\right) \text { and } y_{0}=0
$$

$t=0$

$$
t=0.5
$$

$$
t \rightarrow\left\|y_{T^{\prime}}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|a_{T}(t)-\bar{a}\right\|
$$

Relaxation phenomenon (Lagrange case)

$$
\Omega=[-1,1]^{2}, L=\frac{1}{8}, T \in\{1 . .5\}, y_{d}=-\frac{1}{20}\left(x^{2}+y^{2}-2\right) \text { and } y_{0}=0
$$

$t=0$

$t=0.5$

$$
t \rightarrow\left\|y_{T^{\prime}}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|a_{T^{\prime}}(t)-\bar{a}\right\|
$$

Relaxation phenomenon (Lagrange case)

Maximum principle - parabolic equations

$$
\begin{array}{r}
\partial_{t} y_{T}-\triangle y_{T}=a_{T}, \quad y_{T} \mid \partial \Omega \\
\partial_{t} p_{T}+\Delta p_{T}=y_{T}-y_{d}, \quad p_{T} \mid \partial \Omega \\
\int_{\Omega} p_{T}(t, x) a_{T}(t, x) d x=y_{u \in \mathcal{U}_{L}} \max _{\Omega}(T)=0
\end{array}
$$

Maximum principle - elliptic equations

$$
\begin{array}{r}
-\triangle \bar{y}=\bar{a}, \quad \bar{y}_{\mid \partial \Omega}=0 \\
\triangle \bar{p}=\bar{y}-y_{d}, \quad \bar{p}_{\mid \partial \Omega}=0 \\
\int_{\Omega} \bar{p}(x) \bar{a}(x) d x=\max _{u \in \overline{\mathcal{U}}_{L}} \int_{\Omega} \bar{p}(x) u(x) d x
\end{array}
$$

$$
\overline{\mathcal{U}_{L}}=\left\{u \in L^{\infty}(\Omega), 0 \leq u(x) \leq 1\left|\int_{\Omega} a(x) d x \leq L\right| \Omega \mid\right\}
$$

Relaxation phenomenon (Lagrange case)

Maximum principle - parabolic equations

$$
\begin{array}{r}
\partial_{t} y_{T}-\triangle y_{T}=a_{T}, \quad y_{T} \mid \partial \Omega \\
\partial_{t} p_{T}+\Delta p_{T}=y_{T}-y_{d}, \quad p_{T} \mid \partial \Omega \\
\int_{\Omega} p_{T}(t, x) a_{T}(t, x) d x=y_{0}, \quad p_{T}(T)=0 \\
\max _{u \in \overline{\mathcal{U}}_{L}} \int_{\Omega} p_{T}(t, x) u(x) d x
\end{array}
$$

Maximum principle - elliptic equations

$$
\begin{array}{r}
-\triangle \bar{y}=\bar{a}, \quad \bar{y}_{\mid \partial \Omega}=0 \\
\triangle \bar{p}=\bar{y}-y_{d}, \quad \bar{p}_{\mid \partial \Omega}=0 \\
\int_{\Omega} \bar{p}(x) \bar{a}(x) d x=\max _{u \in \overline{\mathcal{U}}_{L}} \int_{\Omega} \bar{p}(x) u(x) d x
\end{array}
$$

$$
\overline{\mathcal{U}_{L}}=\left\{u \in L^{\infty}(\Omega), 0 \leq u(x) \leq 1\left|\int_{\Omega} a(x) d x \leq L\right| \Omega \mid\right\}
$$

Future prospects

Lagrange case :

- Existence of optimal shapes:
- sufficient conditions for existence of time shape ?
- Replacing $|\omega| \leq L|\Omega|$ by $\mathcal{P}(\omega) \leq \alpha \Longrightarrow$ existence of time and static shape.
- Turnpike on state, adjoint and control:

$$
\forall T>0, \int_{0}^{T}\left(\left\|y_{T}(t)-\bar{y}\right\|+\left\|p_{T}(t)-\bar{p}\right\|+\left\|\chi_{\omega_{T}(t)}-\chi_{\bar{\omega}}\right\|\right) d t<M
$$

Future prospects

Lagrange case :

- Existence of optimal shapes:
- sufficient conditions for existence of time shape ?
- Replacing $|\omega| \leq L|\Omega|$ by $\mathcal{P}(\omega) \leq \alpha \Longrightarrow$ existence of time and static shape.
- Turnpike on state, adjoint and control:

Future prospects

Mayer case - terminal cost :

Figure: Hausdorff distance $d_{\mathcal{H}}(A, B)$

Figure: Symmetric difference $A \triangle B$

We have

$$
d_{\mathcal{H}}\left(\omega_{T}(t), \bar{\omega}\right) \leq C e^{-\mu(T-t)}
$$

We would like

$$
\left|\omega_{T}(t) \triangle \bar{\omega}\right| \leq C e^{-\mu(T-t)}
$$

Then state and control Turnpike:

$$
\left\|y_{T}(t)-\bar{y}\right\|_{L^{2}(\Omega)}+\left\|\chi_{\omega_{T}(t)}-\chi_{\bar{\omega}}\right\|_{L^{1}(\Omega)} \leq C e^{-\mu(T-t)}
$$

Future prospects : Other PDEs

- Generalize to parabolic equations and general semilinear PDEs

$$
\partial_{t} y-A y=\chi_{\omega(\cdot)} \quad \text { or } \quad \partial_{t} y-A y-f(y)=\chi_{\omega(\cdot)}
$$

- Wavemaker thanks to shape moving bottom : (Dalphin - 2017, Nersisyan Dutykh Zuazua - 2015)

Future prospects : shallow water

- h : water's height
- u : water's velocity
- $q=h u:$ flow
- z : shape of the bottom
- S_{f} : viscous effects

$$
\begin{gathered}
\min _{z} J_{T}(z)=\int_{0}^{T}\left\|h(t)-h_{o b s}\right\|^{2} d t \\
h_{t}+q_{x}=0 \\
q_{t}+\left(\frac{g}{2} h^{2}+\frac{q^{2}}{h}\right)_{x}=-g h z_{x}+S_{f} \\
h(0)=h_{0},
\end{gathered} \quad q(0)=q_{0}=~ \$
$$

Static wave

Future prospects : shallow water

Kinetic interpretation of shallow water equations (Perthame Simeoni 2001)

$$
\begin{aligned}
\chi: \mathbf{R} \rightarrow \mathbf{R}, \chi(\xi) & =\chi(-\xi) \\
\int_{\mathbf{R}} \chi(\xi) d \xi & =1 \\
\int_{\mathbf{R}} \xi^{2} \chi(\xi) d \xi & =\frac{g}{2}
\end{aligned}
$$

$$
\left(\begin{array}{c}
h \\
q \\
\frac{g}{2} h^{2}+\frac{q^{2}}{h}
\end{array}\right)=\int_{\mathbf{R}}\left(\begin{array}{c}
1 \\
\xi \\
\xi^{2}
\end{array}\right) M(\xi) d \xi \quad \int_{\mathbf{R}} Q d \xi=\int_{\mathbf{R}} \xi Q d \xi=0
$$

$\rightarrow(h, h u)$ strong solution of the shallow water system iff $M(h, \xi-u)$ satisfies the kinetic equation

$$
M_{t}+\xi \cdot M_{x}-g z_{x} \cdot M_{\xi}=Q
$$

Future prospects : shallow water

Perthame Simeon - 2001

Shallow water description

$$
h_{t}+q_{x}=0
$$

$$
q_{t}+\left(\frac{g}{2} h^{2}+\frac{q^{2}}{h}\right)_{x}=-g h z_{x}
$$

$$
h(0)=h_{0}, \quad q(0)=q_{0}
$$

Kinetic description

$$
M_{t}+\xi \cdot M_{x}-g z_{x} \cdot M_{\xi}=Q, \quad M(0)=M_{0}
$$

PM

Adjoint representation

$$
\begin{aligned}
& \left(p_{h}\right)_{t}-\left(g h-\frac{q^{2}}{h^{2}}\right)\left(p_{q}\right)_{x}-g z_{x} p_{q}=h-h_{o b s} \\
& \left(p_{q}\right)_{t}-\left(p_{h}\right)_{x}-\frac{2 q}{h}\left(p_{q}\right)_{x}=0 \\
& p_{h}(T)=0, p_{q}(T)=0
\end{aligned}
$$

$$
P_{t}+\xi \cdot P_{x}-g z_{x} P_{\xi}=M-M_{o b s}+\frac{\partial Q}{\partial M}, \quad P(T)=0
$$

Optimization process : p_{h}, p_{q} needed to find a gradient descent
(Joint work with Jacques Sainte-Marie)

