Optimal control of a semilinear heat equation subject to state and control constraints

Axel Kröner

Humboldt-Universität Berlin

RICAM, October 17, 2019

Collaborators: M.S. Aronna (Escola d. Matematica. Rio de Janeiro). F. Bonnans (INRIA Saclay)

(1) The optimal control problem
(2) First order a nalysis and alternative costates
(3) On the regularity of the multiplier

4 Second order necessary conditions using radiality
(5) The Goh transformation of the quadratic form and critical cone
(6) Second order sufficient conditions

Content

(1) The optimal control problem
2) First order analysis and alternative costates
(3) On the regularity of the multiplier

4 Second order necessary conditions using radiality
(5) The Goh transformation of the quadratic form and critical cone
(6) Second order sufficient conditions

State equation

Control: u, \quad State: y
$\Omega \subset \mathbb{R}^{n}$, open and bounded with smooth boundary, $Q=\Omega \times(0, T), \Sigma=\partial \Omega \times(0, T)$.

$$
\left\{\begin{array}{l}
\dot{y}(x, t)-\Delta y(x, t)+\gamma y^{3}(x, t)=f(x, t)+y(x, t) \sum_{i=0}^{m} u_{i}(t) b_{i}(x) \text { in } Q \\
y=0 \text { on } \Sigma, \quad y(\cdot, 0)=y_{0} \text { in } \Omega
\end{array}\right.
$$

with $y_{0} \in W_{0}^{1, \infty}(\Omega), \quad f \in L^{\infty}(Q), \quad b \in W^{1, \infty}(\Omega)^{m+1}, \gamma \geq 0, u_{0} \equiv 1$ is a constant, and $u:=\left(u_{1}, \ldots, u_{m}\right) \in L^{2}(0, T)^{m}$.

State equation

Lemma

For $i=0, \ldots, m$, the mapping defined on $L^{2}(0, T) \times L^{\infty}(\Omega) \times L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, given by $\left(u_{i}, b_{i}, y\right) \mapsto u_{i} b_{i} y$, has image in $L^{2}(Q)$, is of class C^{∞}, and satisfies

$$
\left\|u_{i} b_{i} y\right\|_{2} \leq\left\|u_{i}\right\|_{2}\left\|b_{i}\right\|_{\infty}\|y\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} .
$$

The state equation has a unique solution in $Y:=H^{2,1}(Q)$.

Setting

Cost function

$$
J(u, y):=\frac{1}{2} \int_{Q}\left(y(x, t)-y_{d}(x)\right)^{2} \mathrm{~d} x \mathrm{~d} t+\frac{1}{2} \int_{\Omega}\left(y(x, T)-y_{d T}(x)\right)^{2} \mathrm{~d} x
$$

$$
+\sum_{i=1}^{m} \alpha_{i} \int_{0}^{T} u_{i}(t) \mathrm{d} t
$$

with $y_{d} \in L^{\infty}(Q), y_{d T} \in W_{0}^{1, \infty}(\Omega), \alpha \in \mathbb{R}^{m}$.

Optimal control problem

Control constraints $u \in \mathcal{U}_{\mathrm{ad}}$, where

$$
\mathcal{U}_{\mathrm{ad}}=\left\{u \in L^{2}(0, T)^{m} ; \check{u}_{i} \leq u(t) \leq \hat{u}_{i}, i=1, \ldots, m\right\},
$$

for some constants $\check{u}_{i}<\hat{u}_{i}$, for $i=1, \ldots, m$.
State constraints

$$
g_{j}(y(\cdot, t)):=\int_{\Omega} c_{j}(x) y(x, t) \mathrm{d} x+d_{j} \leq 0, \quad \text { for } t \in[0, T], \quad j=1, \ldots, q,
$$

where $c_{j} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ for $j=1, \ldots, q$, and $d \in \mathbb{R}^{q}$.

Optimal control problem

Control constraints $u \in \mathcal{U}_{\mathrm{ad}}$, where

$$
\mathcal{U}_{\mathrm{ad}}=\left\{u \in L^{2}(0, T)^{m} ; \check{u}_{i} \leq u(t) \leq \hat{u}_{i}, i=1, \ldots, m\right\},
$$

for some constants $\check{u}_{i}<\hat{u}_{i}$, for $i=1, \ldots, m$.
State constraints

$$
g_{j}(y(\cdot, t)):=\int_{\Omega} c_{j}(x) y(x, t) \mathrm{d} x+d_{j} \leq 0, \quad \text { for } t \in[0, T], \quad j=1, \ldots, q,
$$

where $c_{j} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ for $j=1, \ldots, q$, and $d \in \mathbb{R}^{q}$.
Optimal control problem

$$
\begin{equation*}
\operatorname{Min}_{u \in \mathcal{U}_{\mathbf{a d}}} J(u, y[u]) ; \quad \text { subject to the state constraints. } \tag{P}
\end{equation*}
$$

Aim: Second-order analysis

Tools:

- alternative costates
(Bonnans and Jaisson 2010)
- radiality to derive second order necessary conditions
(Aronna, Bonnans and Goh 2016)
- Goh transform (Goh 1966)

Results

- S. Aronna, F. Bonnans, A.K. State-constrained control-affine parabolic problems I: first and second order necessary optimality conditions 2019, preprint
- S. Aronna, F. Bonnans, A.K. State constrained control-affine parabolic problems II: Second order sufficient optimality conditions 2019, preprint
- J.F. Bonnans, Singular arcs in the optimal control of a parabolic equation, 2013, pp. 281-292, proc 11th IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP), Caen, F. Giri ed., July 3-5, 2013.
- M. S. Aronna, J.F. Bonnans, A.K., Optimal Control of Infinite Dimensional Bilinear Systems: Application to the Heat and Wave Equations, Math. Program. 168 (1) (2018) 717-757, erratum: Math. Programming Ser. A, Vol. 170 (2018).
- M. S. Aronna, J. F. Bonnans, A. K., Optimal control of PDEs in a complex space setting; application to the Schrödinger equation, SIAM J. Control Optim. 57 (2) (2019) 1390-1412.
- M. S. Aronna, J. F. Bonnans, B. S. Goh, Second order analysis of control-affine problems with scalar state constraint, Math. Program. 160 (1-2, Ser. A) (2016) 115-147.

Further results

- E. Casas, D. Wachsmuth, G. Wachsmuth, Second-order analysis and numerical approximation for bang-bang bilinear control problems, SIAM J. Control Optim. 56 (6) (2018) 4203-4227.
- E. Casas, F. Tröltzsch, A. Unger, Second order sufficient optimality conditions for a nonlinear elliptic control problem, J. for Analysis and its Applications (ZAA) 15 (1996) 687-707.
- J. F. Bonnans, Second-order analysis for control constrained optimal control problems of semilinear elliptic systems, Appl. Math. Optim. 38 (3) (1998) 303-325.
- E. Casas, M. Mateos, A. Rösch Error estimates for semilinear parabolic control problems in the absence of Tikhonov term, SIAM J. Control Optim., 57(4), 2515-2540, 2019.
- E. Casas, M. Mateos, F. Tröltzsch, Necessary and sufficient optimality conditions for optimization problems in function spaces and applications to control theory, in: Proceedings of 2003 MODE-SMAI Conference, Vol. 13 of ESAIM Proceedings, EDP Sciences, 2003, pp. 18-30.

Existence

Compactness

[Lions 1983] and [Edwards 1965]:

$$
\left\{\begin{array}{l}
\text { For any } p \in[1,10), \text { the following injection is compact: } \\
Y \hookrightarrow L^{p}\left(0, T ; L^{10}(\Omega)\right), \text { when } n \leq 3
\end{array}\right.
$$

The mapping $u \mapsto y[u]$ is sequentially weakly continuous from $L^{2}(0, T)^{m}$ into Y.

Content

(1) The optimal control problem
(2) First order analysis and alternative costates
(3) On the regularity of the multiplier

4 Second order necessary conditions using radiality
(5) The Goh transformation of the quadratic form and critical cone

6 Second order sufficient conditions

First order analysis

Implicit function theorem: $u \mapsto y[u]$ is of class C^{∞} from $L^{2}(0, T)^{m}$ to Y
The generalized Lagrangian of problem (P) is, choosing the multiplier of the state equation to be $\left(p, p_{0}\right) \in L^{2}(Q) \times H^{-1}(\Omega)$ and taking $\beta \in \mathbb{R}_{+}, \mathrm{d} \mu \in \mathcal{M}_{+}(0, T)$,

$$
\begin{aligned}
& \mathcal{L}\left[\beta, p, p_{0}, \mathrm{~d} \mu\right](u, y):=\beta J(u, y)-\left\langle p_{0}, y(\cdot, 0)-y_{0}\right\rangle_{H_{0}^{1}(\Omega)} \\
& +\int_{Q} p\left(\Delta y(x, t)-\gamma y^{3}(x, t)+f(x, t)+\sum_{i=0}^{m} u_{i}(t) b_{i}(x) y(x, t)-\dot{y}(x, t)\right) \mathrm{d} x \mathrm{~d} t \\
& +\sum_{j=1}^{q} \int_{0}^{T} g_{j}(y(\cdot, t)) \mathrm{d} \mu_{j}(t) .
\end{aligned}
$$

Here: $\mathcal{M}_{+}(0, T)$ positive finite Radon measures; we identify it with the set

$$
B V(0, T)_{0,+}^{q}:=\left\{\mu \in B V(0, T)^{q} ; \mu(T)=0, \mathrm{~d} \mu \geq 0\right\}
$$

First order analysis
For each $z \in L^{2}\left(0, T ; H^{2}(\Omega)\right)$ and $(x, t) \in Q$,

$$
(A z)(x, t):=-\Delta z(x, t)+3 \gamma \bar{y}(x, t)^{2} z(x, t)-\sum_{i=0}^{m} \bar{u}_{i}(t) b_{i}(x) z(x, t) .
$$

First order analysis

For each $z \in L^{2}\left(0, T ; H^{2}(\Omega)\right)$ and $(x, t) \in Q$,

$$
(A z)(x, t):=-\Delta z(x, t)+3 \gamma \bar{y}(x, t)^{2} z(x, t)-\sum_{i=0}^{m} \bar{u}_{i}(t) b_{i}(x) z(x, t)
$$

Costate equation: for any $z \in Y$ there exist $p \in L^{2}(Q)$ with

$$
\begin{aligned}
& \int_{Q} p(\dot{z}+A z) \mathrm{d} x \mathrm{~d} t+\left\langle p_{0}, z(\cdot, 0)\right\rangle_{H_{0}^{1}(\Omega)}=\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t) \\
&+\beta \int_{Q}\left(\bar{y}-y_{d}\right) z \mathrm{~d} x \mathrm{~d} t+\beta \int_{\Omega}\left(\bar{y}(x, T)-y_{d T}(x)\right) z(x, T) \mathrm{d} x
\end{aligned}
$$

First order analysis

For each $z \in L^{2}\left(0, T ; H^{2}(\Omega)\right)$ and $(x, t) \in Q$,

$$
(A z)(x, t):=-\Delta z(x, t)+3 \gamma \bar{y}(x, t)^{2} z(x, t)-\sum_{i=0}^{m} \bar{u}_{i}(t) b_{i}(x) z(x, t)
$$

Costate equation: for any $z \in Y$ there exist $p \in L^{2}(Q)$ with

$$
\begin{aligned}
& \int_{Q} p(\dot{z}+A z) \mathrm{d} x \mathrm{~d} t+\left\langle p_{0}, z(\cdot, 0)\right\rangle_{H_{0}^{1}(\Omega)}=\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t) \\
&+\beta \int_{Q}\left(\bar{y}-y_{d}\right) z \mathrm{~d} x \mathrm{~d} t+\beta \int_{\Omega}\left(\bar{y}(x, T)-y_{d T}(x)\right) z(x, T) \mathrm{d} x
\end{aligned}
$$

Alternative costates (Bonnans \& Jaisson 2010)

$$
\begin{equation*}
p^{1}:=p+\sum_{j=1}^{q} c_{j} \mu_{j} ; \quad p_{0}^{1}:=p_{0}+\sum_{j=1}^{q} c_{j} \mu_{j}(0) \tag{CS}
\end{equation*}
$$

where $\mu \in B V(0, T)_{0,+}^{q}$ associated with $\mathrm{d} \mu$.

Lemma

Let $\left(p, p_{0}, \mu\right) \in L^{2}(Q) \times H^{-1}(\Omega) \times B V(0, T)_{0,+}^{q}$ satisfy the weak formulation, and let (p^{1}, p_{0}^{1}) be associated costates. Then

$$
\begin{aligned}
& p^{1} \in Y, \quad p^{1}(0)=p_{0}^{1} \\
& -\dot{p}^{1}+A p^{1}=\beta\left(\bar{y}-y_{d}\right)+\sum_{j=1}^{q} \mu_{j} A c_{j}, \quad p^{1}(\cdot, T)=\beta\left(\bar{y}(\cdot, T)-y_{d T}\right)
\end{aligned}
$$

Moreover, $p(x, 0)$ and $p(x, T)$ are well-defined in $H_{0}^{1}(\Omega)$ in view of (CS), and we have

$$
p(\cdot, 0)=p_{0}, \quad p(\cdot, T)=\beta\left(\bar{y}(\cdot, T)-y_{d T}\right)
$$

Proof: Integration by parts

Proof by integration by parts

Remember

$$
\begin{equation*}
p^{1}:=p+\sum_{j=1}^{q} c_{j} \mu_{j} ; \quad p_{0}^{1}:=p_{0}+\sum_{j=1}^{q} c_{j} \mu_{j}(0) \tag{CS}
\end{equation*}
$$

With $\psi=z(\cdot, 0)$ we have

$$
\sum_{j=1}^{q} \int_{Q} c_{j} \mu_{j} \dot{z} \mathrm{~d} x \mathrm{~d} t+\sum_{j=1}^{q} \mu_{j}(0)\left\langle c_{j}, \psi\right\rangle_{L^{2}(\Omega)}=-\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t)
$$

The latter equation can be rewritten as

$$
\begin{equation*}
\int_{Q}\left(p^{1}-p\right) \dot{z} \mathrm{~d} x \mathrm{~d} t+\left\langle p_{0}^{1}-p_{0}, \psi\right\rangle_{H_{0}^{1}(\Omega)}=-\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t) \tag{1.1}
\end{equation*}
$$

Proof

That means, we have

$$
\int_{Q}\left(p^{1}-p\right) \dot{z} \mathrm{~d} x \mathrm{~d} t+\left\langle p_{0}^{1}-p_{0}, \psi\right\rangle_{H_{0}^{1}(\Omega)}=-\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t) .
$$

Proof

That means, we have

$$
\int_{Q}\left(p^{1}-p\right) \dot{z} \mathrm{~d} x \mathrm{~d} t+\left\langle p_{0}^{1}-p_{0}, \psi\right\rangle_{H_{0}^{1}(\Omega)}=-\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t)
$$

and together with the costate equation

$$
\begin{aligned}
\int_{Q} p(\dot{z}+A z) \mathrm{d} x \mathrm{~d} t+\left\langle p_{0},\right. & z(\cdot, 0)\rangle_{H_{0}^{1}(\Omega)}=\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t) \\
& +\beta \int_{Q}\left(\bar{y}-y_{d}\right) z \mathrm{~d} x \mathrm{~d} t+\beta \int_{\Omega}\left(\bar{y}(x, T)-y_{d T}(x)\right) z(x, T) \mathrm{d} x
\end{aligned}
$$

Proof

That means, we have

$$
\int_{Q}\left(p^{1}-p\right) \dot{z} \mathrm{~d} x \mathrm{~d} t+\left\langle p_{0}^{1}-p_{0}, \psi\right\rangle_{H_{0}^{1}(\Omega)}=-\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t)
$$

and together with the costate equation

$$
\begin{aligned}
& \int_{Q} p(\dot{z}+A z) \mathrm{d} x \mathrm{~d} t+\left\langle p_{0}, z(\cdot, 0)\right\rangle_{H_{0}^{1}(\Omega)}=\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t) \\
&+\beta \int_{Q}\left(\bar{y}-y_{d}\right) z \mathrm{~d} x \mathrm{~d} t+\beta \int_{\Omega}\left(\bar{y}(x, T)-y_{d T}(x)\right) z(x, T) \mathrm{d} x
\end{aligned}
$$

and

$$
\int_{Q}\left(p^{1}-p\right) A z=\int_{Q} \sum_{j=1}^{q} c_{j} \mu_{j} A z
$$

Proof

That means, we have

$$
\int_{Q}\left(p^{1}-p\right) \dot{z} \mathrm{~d} x \mathrm{~d} t+\left\langle p_{0}^{1}-p_{0}, \psi\right\rangle_{H_{0}^{1}(\Omega)}=-\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t)
$$

and together with the costate equation

$$
\begin{aligned}
& \int_{Q} p(\dot{z}+A z) \mathrm{d} x \mathrm{~d} t+\left\langle p_{0}, z(\cdot, 0)\right\rangle_{H_{0}^{1}(\Omega)}=\sum_{j=1}^{q} \int_{0}^{T} \int_{\Omega} c_{j} z \mathrm{~d} x \mathrm{~d} \mu_{j}(t) \\
&+\beta \int_{Q}\left(\bar{y}-y_{d}\right) z \mathrm{~d} x \mathrm{~d} t+\beta \int_{\Omega}\left(\bar{y}(x, T)-y_{d T}(x)\right) z(x, T) \mathrm{d} x
\end{aligned}
$$

and

$$
\int_{Q}\left(p^{1}-p\right) A z=\int_{Q} \sum_{j=1}^{q} c_{j} \mu_{j} A z
$$

we obtain, with $\varphi=\dot{z}+A z$, that

$$
\begin{aligned}
& \int_{Q} p^{1} \varphi \mathrm{~d} x \mathrm{~d} t+\left\langle p_{0}^{1}, \psi\right\rangle_{H_{0}^{1}(\Omega)} \\
& \quad=\beta \int_{Q}\left(\bar{y}-y_{d}\right) z \mathrm{~d} x \mathrm{~d} t+\beta \int_{\Omega}\left(\bar{y}(x, T)-y_{d T}(x)\right) z(x, T) \mathrm{d} x+\int_{Q} \sum_{j=1}^{q} c_{j} \mu_{j} A z
\end{aligned}
$$

So, we have

$$
\begin{aligned}
& \int_{Q} p^{1} \varphi \mathrm{~d} x \mathrm{~d} t+\left\langle p_{0}^{1}, \psi\right\rangle_{H_{0}^{1}(\Omega)} \\
& \quad=\beta \int_{Q}\left(\bar{y}-y_{d}\right) z \mathrm{~d} x \mathrm{~d} t+\beta \int_{\Omega}\left(\bar{y}(x, T)-y_{d T}(x)\right) z(x, T) \mathrm{d} x+\int_{Q} \sum_{j=1}^{q} c_{j} \mu_{j} A z
\end{aligned}
$$

Since A is symmetric, we see that p^{1} is solution in Y.

This shows the statement of the lemma:
Let $\left(p, p_{0}, \mu\right) \in L^{2}(Q) \times H^{-1}(\Omega) \times B V(0, T)_{0,+}^{q}$ satisfy the weak formulation, and let (p^{1}, p_{0}^{1}) be associated costates. Then

$$
\begin{aligned}
& p^{1} \in Y, \quad p^{1}(0)=p_{0}^{1} \\
& -\dot{p}^{1}+A p^{1}=\beta\left(\bar{y}-y_{d}\right)+\sum_{j=1}^{q} \mu_{j} A c_{j}, \quad p^{1}(\cdot, T)=\beta\left(\bar{y}(\cdot, T)-y_{d T}\right)
\end{aligned}
$$

Moreover, $p(x, 0)$ and $p(x, T)$ are well-defined in $H_{0}^{1}(\Omega)$ in view of (CS), and we have

$$
p(\cdot, 0)=p_{0}, \quad p(\cdot, T)=\beta\left(\bar{y}(\cdot, T)-y_{d T}\right)
$$

We know

$$
\begin{equation*}
p^{1}:=p+\sum_{j=1}^{q} c_{j} \mu_{j} ; \quad p_{0}^{1}:=p_{0}+\sum_{j=1}^{q} c_{j} \mu_{j}(0) \tag{CS}
\end{equation*}
$$

and since p^{1} and $c_{j} \mu_{j}$ belong to $L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ we have

$$
p \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)
$$

We know

$$
\begin{equation*}
p^{1}:=p+\sum_{j=1}^{q} c_{j} \mu_{j} ; \quad p_{0}^{1}:=p_{0}+\sum_{j=1}^{q} c_{j} \mu_{j}(0) \tag{CS}
\end{equation*}
$$

and since p^{1} and $c_{j} \mu_{j}$ belong to $L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ we have

$$
p \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)
$$

Corollary

If $\mu \in H^{1}(0, T)^{q}$ then $p \in Y$ and

$$
-\dot{p}+A p=\beta\left(\bar{y}-y_{d}\right)+\sum_{j=1}^{q} c_{j} \dot{\mu}_{j}
$$

Proof: This follows directly from the equation for p^{1} and (CS).

Reduced problem

Set

$$
\begin{aligned}
& F(u):=J(u, y[u]) \\
& \quad G: L^{2}(0, T)^{m} \rightarrow C([0, T])^{q}, \quad G(u):=g(y[u])
\end{aligned}
$$

Reduced problem:

$$
\begin{equation*}
\min _{u \in \mathcal{U}_{\mathbf{a d}}} F(u) ; \quad G(u) \in K \tag{RP}
\end{equation*}
$$

with $K:=C([0, T])_{-}^{q}$ closed convex cone.
Its interior is the set of functions in $C([0, T])^{q}$ with negative values.

Reduced problem

Set

$$
\begin{aligned}
& F(u):=J(u, y[u]) \\
& \quad G: L^{2}(0, T)^{m} \rightarrow C([0, T])^{q}, \quad G(u):=g(y[u])
\end{aligned}
$$

Reduced problem:

$$
\begin{equation*}
\min _{u \in \mathcal{U}_{\mathbf{a d}}} F(u) ; \quad G(u) \in K \tag{RP}
\end{equation*}
$$

with $K:=C([0, T])_{-}^{q}$ closed convex cone.
Its interior is the set of functions in $C([0, T])^{q}$ with negative values.

We assume that the reduced problem (RP) is qualified at \bar{u} if:

$$
\left\{\begin{array}{l}
\text { there exists } u \in \mathcal{U}_{\mathrm{ad}} \text { such that } v:=u-\bar{u} \text { satisfies } \\
G(\bar{u})+D G(\bar{u}) v \in \operatorname{int}(K) .
\end{array}\right.
$$

Lagrange multiplier

We say that

$$
(\beta, p, \mathrm{~d} \mu) \text { is a Lagrange multiplier }
$$

if it satisfies the following first-order optimality conditions:

- $\mathrm{d} \mu$ is complementary to the state constraint,
- p is the costate,
- $(\beta, \mathrm{d} \mu) \neq 0$.
- Setting

$$
\Psi(t):=\beta \alpha(t)+\int_{\Omega} b(x) \bar{y}(x, t) p(x, t) \mathrm{d} x
$$

one has:

$$
\int_{0}^{T} \Psi(t)(u(t)-\bar{u}(t)) \mathrm{d} t \geq 0, \quad \text { for every } u \in \mathcal{U}_{\mathrm{ad}}
$$

Denote the set of Lagrange multipliers $(\beta, p, \mathrm{~d} \mu)$ by $\Lambda(\bar{u}, \bar{y})$.

Lemma

Let $(\bar{u}, y[\bar{u}])$ be an L^{2}-local solution of (P). Then:

- the associated set Λ of multipliers is nonempty,
- if in addition the qualification condition holds at \bar{u}, then there is no singular multiplier, and we call

$$
\Lambda_{1}:=\{(p, \mathrm{~d} \mu) \text { with }(1, p, \mathrm{~d} \mu) \in \Lambda(\bar{u}, \bar{y}) .\}
$$

Lemma

Let $(\bar{u}, y[\bar{u}])$ be an L^{2}-local solution of (P). Then:

- the associated set Λ of multipliers is nonempty,
- if in addition the qualification condition holds at \bar{u}, then there is no singular multiplier, and we call

$$
\Lambda_{1}:=\{(p, \mathrm{~d} \mu) \text { with }(1, p, \mathrm{~d} \mu) \in \Lambda(\bar{u}, \bar{y}) .\}
$$

Proof: (i) Set

$$
L[\beta, \mathrm{~d} \mu](u):=\beta F(u)+\sum_{j=1}^{q} \int_{0}^{T} G_{j}(u)(t) \mathrm{d} \mu_{j}(t)
$$

Let \bar{u} be a local solution of (RP). By, e.g., [Bonnans \& Shapiro, Prop. 3.18], since K has nonempty interior, there exists a generalized Lagrange multiplier

$$
(\beta, \mathrm{d} \mu) \in \mathbb{R}_{+} \times N_{K}(G(\bar{u}))
$$

such that

$$
(\beta, \mathrm{d} \mu) \neq 0 \quad \text { and } \quad-D_{u} L[\beta, \mathrm{~d} \mu](\bar{u}) \in N_{\mathcal{U}_{\mathbf{a d}}}(\bar{u}) .
$$

Lemma

Let $(\bar{u}, y[\bar{u}])$ be an L^{2}-local solution of (P). Then:

- the associated set Λ of multipliers is nonempty,
- if in addition the qualification condition holds at \bar{u}, then there is no singular multiplier, and we call

$$
\Lambda_{1}:=\{(p, \mathrm{~d} \mu) \text { with }(1, p, \mathrm{~d} \mu) \in \Lambda(\bar{u}, \bar{y}) .\}
$$

Proof: (i) Set

$$
L[\beta, \mathrm{~d} \mu](u):=\beta F(u)+\sum_{j=1}^{q} \int_{0}^{T} G_{j}(u)(t) \mathrm{d} \mu_{j}(t)
$$

Let \bar{u} be a local solution of (RP). By, e.g., [Bonnans \& Shapiro, Prop. 3.18], since K has nonempty interior, there exists a generalized Lagrange multiplier

$$
(\beta, \mathrm{d} \mu) \in \mathbb{R}_{+} \times N_{K}(G(\bar{u}))
$$

such that

$$
(\beta, \mathrm{d} \mu) \neq 0 \quad \text { and } \quad-D_{u} L[\beta, \mathrm{~d} \mu](\bar{u}) \in N_{\mathcal{U}_{\mathbf{a d}}}(\bar{u})
$$

Due to the costate equation, the latter condition is equivalent to the variational inequality above.
(ii) Follows by [Bonnans \& Shapiro, Prop. 3.16].

Contact sets

In the following let (\bar{u}, \bar{y}) be an admissible trajectory.
associated with

- control constraints:

$$
\check{I}_{i}:=\left\{t \in[0, T] ; \bar{u}_{i}(t)=\check{u}_{i}\right\}, \quad \hat{I}_{i}:=\left\{t \in[0, T] ; \bar{u}_{i}(t)=\hat{u}_{i}\right\}, \quad I_{i}:=\check{I}_{i} \cup \hat{I}_{i} .
$$

Contact sets

In the following let (\bar{u}, \bar{y}) be an admissible trajectory.
associated with

- control constraints:

$$
\check{I}_{i}:=\left\{t \in[0, T] ; \bar{u}_{i}(t)=\check{u}_{i}\right\}, \quad \hat{I}_{i}:=\left\{t \in[0, T] ; \bar{u}_{i}(t)=\hat{u}_{i}\right\}, \quad I_{i}:=\check{I}_{i} \cup \hat{I}_{i} .
$$

- j th state constraint, $j=1, \ldots, q$, is

$$
I_{j}^{C}:=\left\{t \in[0, T] ; g_{j}(\bar{y}(\cdot, t))=0\right\} .
$$

Contact sets

In the following let (\bar{u}, \bar{y}) be an admissible trajectory.
associated with

- control constraints:

$$
\check{I}_{i}:=\left\{t \in[0, T] ; \bar{u}_{i}(t)=\check{u}_{i}\right\}, \quad \hat{I}_{i}:=\left\{t \in[0, T] ; \bar{u}_{i}(t)=\hat{u}_{i}\right\}, \quad I_{i}:=\check{I}_{i} \cup \hat{I}_{i} .
$$

- j th state constraint, $j=1, \ldots, q$, is

$$
I_{j}^{C}:=\left\{t \in[0, T] ; g_{j}(\bar{y}(\cdot, t))=0\right\} .
$$

- Given $0 \leq a<b \leq T$, we call (a, b) a maximal state constrained arc for the j th state constraints, if I_{j}^{C} contains (a, b) but it contains no open interval strictly containing (a, b).
- We define in the same way a maximal (lower or upper) control bound constraints arc.

First order optimality condition

$$
\Psi_{i}^{p}(t)=\alpha_{i}+\int_{\Omega} b_{i}(x) \bar{y}(x, t) p(x, t) \mathrm{d} x, \quad \text { for } i=1, \ldots, m
$$

one has $\Psi^{p} \in L^{\infty}(0, T)^{m}$ and

$$
\begin{equation*}
\sum_{i=1}^{m} \int_{0}^{T} \Psi_{i}^{p}(t)\left(u_{i}(t)-\bar{u}_{i}(t)\right) \mathrm{d} t \geq 0, \quad \text { for every } u \in \mathcal{U}_{\mathrm{ad}} \tag{1.2}
\end{equation*}
$$

Corollary

The first order optimality condition is equivalent to

$$
\left\{t \in[0, T] ; \Psi_{i}^{p}(t)>0\right\} \subseteq \check{I}_{i}, \quad\left\{t \in[0, T] ; \Psi_{i}^{p}(t)<0\right\} \subseteq \hat{I}_{i}
$$

for every $(p, \mathrm{~d} \mu) \in \Lambda_{1}$.

Content

(1) The optimal control problem
(2) First order analysis and alternative costates
(3) On the regularity of the multiplier

4 Second order necessary conditions using radiality
(5) The Goh transformation of the quadratic form and critical cone
(6) Second order sufficient conditions

Hypothesis

Finite arc property:
$\left\{\begin{array}{c}\text { the contact sets for the state and bound constraints are, } \\ \text { up to a finite set }\end{array}\right.$

There exist junction points

$$
0=: \tau_{0}<\cdots<\tau_{r}:=T
$$

such that the intervals $\left(\tau_{k}, \tau_{k+1}\right)$ are maximal arcs with constant active constraints.

Hypothesis

Finite arc property:
$\left\{\begin{array}{c}\text { the contact sets for the state and bound constraints are, } \\ \text { up to a finite set, the union of finitely many maximal arcs. }\end{array}\right.$

There exist junction points

$$
0=: \tau_{0}<\cdots<\tau_{r}:=T
$$

such that the intervals $\left(\tau_{k}, \tau_{k+1}\right)$ are maximal arcs with constant active constraints.

Definition

For $k=0, \ldots, r-1$, let $\check{B}_{k}, \hat{B}_{k}, C_{k}$ denote the set of indexes of active lower and upper bound constraints, and state constraints, on the maximal $\operatorname{arc}\left(\tau_{k}, \tau_{k+1}\right)$, and set $B_{k}:=\check{B}_{k} \cup \hat{B}_{k}$.

For $v:[0, T] \rightarrow X, X$ Banach space, we denote (if they exist) its left and right limits at $\tau \in[0, T]$ by $v(\tau \pm)$, with

$$
v(0-):=v(0), \quad v(T+):=v(T)
$$

and the jump by

$$
[v(\tau)]:=v(\tau+)-v(\tau-) .
$$

For $v:[0, T] \rightarrow X, X$ Banach space, we denote (if they exist) its left and right limits at $\tau \in[0, T]$ by $v(\tau \pm)$, with

$$
v(0-):=v(0), \quad v(T+):=v(T)
$$

and the jump by

$$
[v(\tau)]:=v(\tau+)-v(\tau-)
$$

We denote the time derivative of the state constraints by

$$
g_{j}^{(1)}(\bar{y}(\cdot, t)):=\frac{\mathrm{d}}{\mathrm{~d} t} g_{j}(\bar{y}(\cdot, t))=\int_{\Omega} c_{j}(x) \dot{\bar{y}}(x, t) \mathrm{d} x, \quad j=1, \ldots, q .
$$

Note that $g_{j}^{(1)}(\bar{y}(\cdot, t))$ is an element of $L^{1}(0, T)$, for each $j=1, \ldots, q$.

For $v:[0, T] \rightarrow X, X$ Banach space, we denote (if they exist) its left and right limits at $\tau \in[0, T]$ by $v(\tau \pm)$, with

$$
v(0-):=v(0), \quad v(T+):=v(T)
$$

and the jump by

$$
[v(\tau)]:=v(\tau+)-v(\tau-)
$$

We denote the time derivative of the state constraints by

$$
g_{j}^{(1)}(\bar{y}(\cdot, t)):=\frac{\mathrm{d}}{\mathrm{~d} t} g_{j}(\bar{y}(\cdot, t))=\int_{\Omega} c_{j}(x) \dot{\bar{y}}(x, t) \mathrm{d} x, \quad j=1, \ldots, q .
$$

Note that $g_{j}^{(1)}(\bar{y}(\cdot, t))$ is an element of $L^{1}(0, T)$, for each $j=1, \ldots, q$.

Lemma

Let \bar{u} have left and right limits at $\tau \in(0, T)$. Then

$$
\left[\Psi_{i}^{p}(\tau)\right]\left[\bar{u}_{i}(\tau)\right]=\left[g_{j}^{(1)}(\bar{y}(\cdot, \tau))\right]\left[\mu_{j}(\tau)\right]=0, \quad i=1, \ldots, m, \quad j=1, \ldots, q .
$$

Local controllability condition

For fixed k in $\{0, \ldots, r-1\}$ and maximal arc $\left(\tau_{k}, \tau_{k+1}\right)$, setting

$$
M_{i j}(t):=\int_{\Omega} b_{i}(x) c_{j}(x) \bar{y}(x, t) \mathrm{d} x, \quad 1 \leq i \leq m, \quad 1 \leq j \leq q
$$

Let $\bar{M}_{k}(t)$ (of size $\left|\bar{B}_{k}\right| \times\left|C_{k}\right|$) denote the submatrix of $M(t)$ having rows with index in \bar{B}_{k} and columns with index in C_{k}.

Local controllability condition

For fixed k in $\{0, \ldots, r-1\}$ and maximal arc (τ_{k}, τ_{k+1}), setting

$$
M_{i j}(t):=\int_{\Omega} b_{i}(x) c_{j}(x) \bar{y}(x, t) \mathrm{d} x, \quad 1 \leq i \leq m, \quad 1 \leq j \leq q .
$$

Let $\bar{M}_{k}(t)$ (of size $\left|\bar{B}_{k}\right| \times\left|C_{k}\right|$) denote the submatrix of $M(t)$ having rows with index in \bar{B}_{k} and columns with index in C_{k}.

Hypothesis

Assume $\left|C_{k}\right| \leq\left|\bar{B}_{k}\right|$, for $k=0, \ldots, r-1$, and

$$
\left\{\begin{array}{l}
\text { there exists } \alpha>0, \text { such that }\left|\bar{M}_{k}(t) \lambda\right| \geq \alpha|\lambda|, \tag{1.3}\\
\text { for all } \lambda \in \mathbb{R}^{\left|C_{k}\right|} \text {, a.e. on }\left(\tau_{k}, \tau_{k+1}\right), \text { for } k=0, \ldots, r-1 .
\end{array}\right.
$$

This hypothesis was already used in a different setting (i.e. higher-order state constraints in the finite dimensional case) in e.g. [Bonnans, Hermant 2009; Maurer 1979].

Hypothesis

We assume

- discontinuity of the derivative of the state constraints at corresponding junction points,
- the control \bar{u} has left and right limits at the junction points $\tau_{k} \in(0, T)$.

Hypothesis

We assume

- discontinuity of the derivative of the state constraints at corresponding junction points,
- the control \bar{u} has left and right limits at the junction points $\tau_{k} \in(0, T)$.

Under the hypotheses and the lemma (on the jumps) we obtain

Theorem

(i) For $u \in L^{\infty}(0, T)^{m}$, the associated state $y[u]$ belongs to $C(\bar{Q})$.
(ii) For every $(p, \mathrm{~d} \mu) \in \Lambda_{1}$, one has that $\mu \in W^{1, \infty}(0, T)^{q}$ and p is essentially bounded in Q.

Content

(1) The optimal control problem
2) First order analysis and alternative costates
(3) On the regularity of the multiplier

4 Second order necessary conditions using radiality
(5) The Goh transformation of the quadratic form and critical cone
(6) Second order sufficient conditions

Second variation

For $(p, \mathrm{~d} \mu) \in \Lambda_{1}$, set

$$
\kappa(x, t):=1-6 \gamma \bar{y}(x, t) p(x, t),
$$

and consider the quadratic form

$$
\mathcal{Q}[p, \mathrm{~d} \mu](z, v):=\int_{Q}\left(\kappa z^{2}+2 p \sum_{i=1}^{m} v_{i} b_{i} z\right) \mathrm{d} x \mathrm{~d} t+\int_{\Omega} z(x, T)^{2} \mathrm{~d} x .
$$

Let (u, y) be a trajectory, and set

$$
(\delta y, v):=(y-\bar{y}, u-\bar{u})
$$

We have

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} t} \delta y+A \delta y=\sum_{i=1}^{m} v_{i} b_{i} y-3 \gamma \bar{y}(\delta y)^{2}-\gamma(\delta y)^{3} \quad \text { in } Q \\
\delta y=0 \quad \text { on } \Sigma, \quad \delta y(\cdot, 0)=0 \quad \text { in } \Omega
\end{array}\right.
$$

Proposition

Let $(p, \mathrm{~d} \mu) \in \Lambda_{1}$, and let (u, y) be a trajectory. Then

$$
\begin{aligned}
\mathcal{L}[p, \mathrm{~d} \mu](u, y, p)-\mathcal{L}[p, \mathrm{~d} \mu] & (\bar{u}, \bar{y}, p) \\
& =\int_{0}^{T} \Psi^{p}(t) \cdot v(t) \mathrm{d} t+\frac{1}{2} \mathcal{Q}[p, \mathrm{~d} \mu](\delta y, v)-\gamma \int_{Q} p(\delta y)^{3} \mathrm{~d} x \mathrm{~d} t
\end{aligned}
$$

Critical cone

For $\bar{u} \in L^{2}$ we define

$$
C:=\left\{\begin{array}{l}
(z[v], v) \in Y \times L^{2}(0, T)^{m} ; v_{i}(t) \Psi_{i}^{p}(t)=0 \text { a.e. on }[0, T] \\
\text { for all }(p, \mathrm{~d} \mu) \in \Lambda_{1} \\
v_{i}(t) \geq 0 \text { a.e. on } \check{I}_{i}, v_{i}(t) \leq 0 \text { a.e. on } \hat{I}_{i}, \text { for } i=1, \ldots, m, \\
\int_{\Omega} c_{j}(x) z[v](x, t) \mathrm{d} x \leq 0 \text { on } I_{j}^{C}, \text { for } j=1, \ldots, q
\end{array}\right\} .
$$

Strict critical cone

Imposing that the linearization of active constraints is zero

$$
C_{\mathrm{s}}:=\left\{\begin{array}{l}
(z[v], v) \in Y \times L^{2}(0, T)^{m} ; v_{i}(t)=0 \text { a.e. on } I_{i}, \text { for } i=1, \ldots, m \\
\int_{\Omega} c_{j}(x) z[v](x, t) \mathrm{d} x=0 \text { on } I_{j}^{C}, \text { for } j=1, \ldots, q
\end{array}\right\}
$$

Hence, clearly $C_{\mathrm{s}} \subseteq C$, and C_{s} is a closed subspace of $Y \times L^{2}(0, T)^{m}$.

Radiality of critical directions

Hypothesis: uniform distance to control bounds whenever they are not active,
Aronna et al. 2016: a critical direction (z, v) is quasi radial if there exists $\tau_{0}>0$ such that, for $\tau \in\left[0, \tau_{0}\right]$, the following conditions are satisfied:

$$
\begin{gathered}
\max _{t \in[0, T]}\left\{g_{j}(\bar{y}(\cdot, t))+\tau g_{j}^{\prime}(\bar{y}(\cdot, t)) z(t)\right\}=o\left(\tau^{2}\right), \quad \text { for } j=1, \ldots, q, \\
\check{u}_{i} \leq \bar{u}_{i}(t)+\tau v_{i}(t) \leq \hat{u}_{i}, \quad \text { a.e. on }[0, T], \quad \text { for } i=1, \ldots, m .
\end{gathered}
$$

Radiality of critical directions

Hypothesis: uniform distance to control bounds whenever they are not active,

Aronna et al. 2016: a critical direction (z, v) is quasi radial if there exists $\tau_{0}>0$ such that, for $\tau \in\left[0, \tau_{0}\right]$, the following conditions are satisfied:

$$
\begin{gathered}
\max _{t \in[0, T]}\left\{g_{j}(\bar{y}(\cdot, t))+\tau g_{j}^{\prime}(\bar{y}(\cdot, t)) z(t)\right\}=o\left(\tau^{2}\right), \quad \text { for } j=1, \ldots, q, \\
\check{u}_{i} \leq \bar{u}_{i}(t)+\tau v_{i}(t) \leq \hat{u}_{i}, \quad \text { a.e. on }[0, T], \quad \text { for } i=1, \ldots, m
\end{gathered}
$$

Corollary

The set of quasi radial critical directions of C_{s} is dense in C_{s}.

Theorem (Second order necessary condition)

Let the admissible trajectory (\bar{u}, \bar{y}) be an L^{∞}-local solution of (P). Then

$$
\max _{(p, \mathrm{~d} \mu) \in \Lambda_{1}} \mathcal{Q}[p, \mathrm{~d} \mu](z, v) \geq 0, \quad \text { for all }(z, v) \in C_{\mathrm{s}} .
$$

Content

(1) The optimal control problem
(2) First order analysis and alternative costates
(3) On the regularity of the multiplier

4 Second order necessary conditions using radiality
(5) The Goh transformation of the quadratic form and critical cone
(6) Second order sufficient conditions

Goh transform

Given a critical direction (z, v), set

$$
w(t):=\int_{0}^{t} v(s) \mathrm{d} s ; \quad B(x, t):=\bar{y}(x, t) b(x) ; \quad \zeta(x, t):=z(x, t)-B(x, t) \cdot w(t)
$$

based on [Goh 1966].

Goh transform

Given a critical direction (z, v), set

$$
w(t):=\int_{0}^{t} v(s) \mathrm{d} s ; \quad B(x, t):=\bar{y}(x, t) b(x) ; \quad \zeta(x, t):=z(x, t)-B(x, t) \cdot w(t),
$$

based on [Goh 1966]. We have

$$
\dot{\zeta}+A \zeta=\underbrace{\left(\dot{z}+A z-\sum_{i=1}^{m} v_{i} B_{i}\right)}_{=0}-\sum_{i=1}^{m} w_{i}\left(A B_{i}+\dot{B}_{i}\right), \quad \zeta(\cdot, 0)=0
$$

Since $\dot{B}_{i}=b_{i} \dot{\bar{y}}$ it follows that

$$
\begin{equation*}
\dot{\zeta}(x, t)+(A \zeta)(x, t)=B^{1}(x, t) \cdot w(t), \quad \zeta(\cdot, 0)=0 \tag{1.4}
\end{equation*}
$$

where

$$
B_{i}^{1}:=-f b_{i}+2 \nabla \bar{y} \cdot \nabla b_{i}+\bar{y} \Delta b_{i}-2 \gamma \bar{y}^{3} b_{i}, \quad \text { for } i=1, \ldots, m
$$

Lemma (Transformed second variation)

We can define a quadratic form $\widehat{\mathcal{Q}}$ such that for $v \in L^{2}(0, T)^{m}$, and $w \in A C([0, T])^{m}$ given by the Goh transform, and for all $(p, \mathrm{~d} \mu) \in \Lambda_{1}$, we have

$$
\mathcal{Q}[p, \mathrm{~d} \mu](z[v], v)=\widehat{\mathcal{Q}}[p, \mathrm{~d} \mu](\zeta[w], w, w(T)) .
$$

Goh transform of the critical cone

Set of primitives of strict critical direction

$$
P C:=\left\{\begin{array}{l}
(\zeta, w, w(T)) \in Y \times H^{1}(0, T)^{m} \times \mathbb{R}^{m} ; \\
(\zeta, w) \text { is given by the Goh transform for some }(z, v) \in C_{\mathrm{s}}
\end{array}\right\},
$$

and let

$$
P C_{2}:=\text { closure of } P C \text { in } Y \times L^{2}(0, T)^{m} \times \mathbb{R}^{m} \text {. }
$$

Goh transform of the critical cone

Set of primitives of strict critical direction

$$
P C:=\left\{\begin{array}{l}
(\zeta, w, w(T)) \in Y \times H^{1}(0, T)^{m} \times \mathbb{R}^{m} ; \\
(\zeta, w) \text { is given by the Goh transform for some }(z, v) \in C_{\mathbf{s}}
\end{array}\right\},
$$

and let

$$
P C_{2}:=\text { closure of } P C \text { in } Y \times L^{2}(0, T)^{m} \times \mathbb{R}^{m} \text {. }
$$

\longrightarrow We can give a characterization of a superset $P C_{2}^{\prime}$ which coincides with $P C_{2}$ for scalar controls (i.e. $m=1$).
\longrightarrow We will formulate the second-order sufficient optimality condition on a superset $P C_{2} \subset P C_{2}^{*}$.

We take a closer look.

We recall

For fixed k in $\{0, \ldots, r-1\}$ and maximal arc $\left(\tau_{k}, \tau_{k+1}\right)$, setting

$$
M_{i j}(t):=\int_{\Omega} b_{i}(x) c_{j}(x) \bar{y}(x, t) \mathrm{d} x, \quad 1 \leq i \leq m, \quad 1 \leq j \leq q .
$$

For any $(\zeta, w, h) \in P C$, it holds

$$
\begin{equation*}
w_{B_{k}}(t)=\frac{1}{\tau_{k+1}-\tau_{k}} \int_{\tau_{k}}^{\tau_{k+1}} w_{B_{k}}(s) \mathrm{d} s, \quad \text { for } k=0, \ldots, r-1 \tag{1.5}
\end{equation*}
$$

For any $(\zeta, w, h) \in P C$, it holds

$$
\begin{equation*}
w_{B_{k}}(t)=\frac{1}{\tau_{k+1}-\tau_{k}} \int_{\tau_{k}}^{\tau_{k+1}} w_{B_{k}}(s) \mathrm{d} s, \quad \text { for } k=0, \ldots, r-1 \tag{1.5}
\end{equation*}
$$

Take $(z, v) \in C_{\mathrm{s}}$, and $(w, \zeta[w])$ given by the Goh transform.
Let $k \in\{0, \ldots, r-1\}$ and $j \in C_{k}$. Then $0=\int_{\Omega} c_{j}(x) z(x, t) \mathrm{d} x$ on $\left(\tau_{k}, \tau_{k+1}\right)$. Therefore, letting $M_{j}(t)$ denote the j th column of the matrix $M(t)$, one has

$$
\begin{equation*}
M_{j}(t) \cdot w(t)=-\int_{\Omega} c_{j}(x) \zeta[w](x, t) \mathrm{d} t, \quad \text { on }\left(\tau_{k}, \tau_{k+1}\right), \text { for } j \in C_{k} \tag{1.6}
\end{equation*}
$$

For any $(\zeta, w, h) \in P C$, it holds

$$
\begin{equation*}
w_{B_{k}}(t)=\frac{1}{\tau_{k+1}-\tau_{k}} \int_{\tau_{k}}^{\tau_{k+1}} w_{B_{k}}(s) \mathrm{d} s, \quad \text { for } k=0, \ldots, r-1 \tag{1.5}
\end{equation*}
$$

Take $(z, v) \in C_{\mathrm{s}}$, and $(w, \zeta[w])$ given by the Goh transform.
Let $k \in\{0, \ldots, r-1\}$ and $j \in C_{k}$. Then $0=\int_{\Omega} c_{j}(x) z(x, t) \mathrm{d} x$ on $\left(\tau_{k}, \tau_{k+1}\right)$. Therefore, letting $M_{j}(t)$ denote the j th column of the matrix $M(t)$, one has

$$
\begin{equation*}
M_{j}(t) \cdot w(t)=-\int_{\Omega} c_{j}(x) \zeta[w](x, t) \mathrm{d} t, \quad \text { on }\left(\tau_{k}, \tau_{k+1}\right), \text { for } j \in C_{k} \tag{1.6}
\end{equation*}
$$

We can rewrite (1.5)-(1.6) in the form

$$
\begin{equation*}
\mathcal{A}^{k}(t) w(t)=\left(\mathcal{B}^{k} w\right)(t), \quad \text { on }\left(\tau_{k}, \tau_{k+1}\right) \tag{1.7}
\end{equation*}
$$

where $\mathcal{A}^{k}(t)$ is an $m_{k} \times m$ matrix with $m_{k}:=\left|B_{k}\right|+\left|C_{k}\right|$, and $\mathcal{B}^{k}: L^{2}(0, T)^{m} \rightarrow H^{1}\left(\tau_{k}, \tau_{k+1}\right)^{m_{k}}$.

Let $c_{k+1} \in \mathbb{R}^{m}$ be such that, for some ν^{k+i},

$$
\begin{equation*}
c_{k+1}=\mathcal{A}^{k+i}\left(\tau_{k+1}\right)^{\top} \nu^{k+i}, \text { for } i=0,1 \tag{1.8}
\end{equation*}
$$

meaning that c_{k+1} is a linear combination of the rows of $\mathcal{A}^{k+i}\left(\tau_{k+1}\right)$ for both $i=0,1$.

Lemma

Let $k=0, \ldots, r-1$, and let c_{k+1} satisfy (1.8). Then, the junction condition

$$
\begin{equation*}
c_{k+1} \cdot\left(w\left(\tau_{k+1}^{+}\right)-w\left(\tau_{k+1}^{-}\right)\right)=0 \tag{1.9}
\end{equation*}
$$

holds for all $(\zeta, w, h) \in P C_{2}$.

Set

$$
P C_{2}^{\prime}:=\{(\zeta[w], w, h) ; w \in \operatorname{Ker}(\mathcal{A}-\mathcal{B}),(1.9) \text { holds, for all } c \text { satisfying (1.8) }\}
$$

We have proved that

$$
P C_{2} \subseteq P C_{2}^{\prime}
$$

In the case of a scalar control $(m=1)$ we can show that these two sets coincide.

Proposition

If the control is scalar, then

$$
P C_{2}=\left\{\begin{array}{l}
(\zeta[w], w, h) \in Y \times L^{2}(0, T) \times \mathbb{R} ; \quad w \in \operatorname{Ker}(\mathcal{A}-\mathcal{B}) \\
w \text { is continuous at } B B, B C, C B \text { junctions } \\
\lim _{t \downarrow 0} w(t)=0 \text { if the first arc is not singular } \\
\lim _{t \uparrow T} w(t)=h \text { if the last arc is not singular }
\end{array}\right\}
$$

Second order necessary condition in transformed variables

Theorem

If (\bar{u}, \bar{y}) is an L^{∞}-local solution of problem (P), then

$$
\max _{(p, \mathrm{~d} \mu) \in \Lambda_{1}} \widehat{\mathcal{Q}}[p, \mathrm{~d} \mu](\zeta, w, h) \geq 0, \quad \text { on } P C_{2} .
$$

Content

(1) The optimal control problem
(2) First order analysis and alternative costates
(3) On the regularity of the multiplier

4 Second order necessary conditions using radiality
(5) The Goh transformation of the quadratic form and critical cone
(6) Second order sufficient conditions

Pontryagin minimum

(i) An admissible trajectory (\bar{u}, \bar{y}) is said to be a Pontryagin minimum if for all $N>0$, there exists $\varepsilon_{N}>0$ such that, (\bar{u}, \bar{y}) is optimal among all the admissible trajectories (u, y) verifying

$$
\|u-\hat{u}\|_{\infty}<N \quad \text { and } \quad\|u-\hat{u}\|_{1}<\varepsilon_{N}
$$

Pontryagin minimum

(i) An admissible trajectory (\bar{u}, \bar{y}) is said to be a Pontryagin minimum if for all $N>0$, there exists $\varepsilon_{N}>0$ such that, (\bar{u}, \bar{y}) is optimal among all the admissible trajectories (u, y) verifying

$$
\|u-\hat{u}\|_{\infty}<N \quad \text { and } \quad\|u-\hat{u}\|_{1}<\varepsilon_{N}
$$

(ii) A sequence $\left(v_{\ell}\right) \subset L^{\infty}(0, T)^{m}$ is said to converge to 0 in the Pontryagin sense if it is bounded in $L^{\infty}(0, T)^{m}$ and $\left\|v_{\ell}\right\|_{1} \rightarrow 0$.

Pontryagin minimum

(i) An admissible trajectory (\bar{u}, \bar{y}) is said to be a Pontryagin minimum if for all $N>0$, there exists $\varepsilon_{N}>0$ such that, (\bar{u}, \bar{y}) is optimal among all the admissible trajectories (u, y) verifying

$$
\|u-\hat{u}\|_{\infty}<N \quad \text { and } \quad\|u-\hat{u}\|_{1}<\varepsilon_{N}
$$

(ii) A sequence $\left(v_{\ell}\right) \subset L^{\infty}(0, T)^{m}$ is said to converge to 0 in the Pontryagin sense if it is bounded in $L^{\infty}(0, T)^{m}$ and $\left\|v_{\ell}\right\|_{1} \rightarrow 0$.
(iii) We say that (\bar{u}, \bar{y}) is a Pontryagin minimum satisfying the weak quadratic growth condition if there exists $\rho>0$ such that, for every sequence of admissible variations $\left(v_{\ell}, \delta y_{\ell}\right)$ having $\left(v_{\ell}\right)$ convergent to 0 in the Pontryagin sense, one has

$$
F\left(u_{\ell}\right)-F(\bar{u}) \geq \rho\left(\left\|w_{\ell}\right\|_{2}^{2}+\left|w_{\ell}(T)\right|^{2}\right)
$$

for ℓ sufficiently large and where $w_{\ell}(t)=\int_{0}^{t} v_{\ell}(s) \mathrm{d} s$.

Consider the condition

$$
\begin{equation*}
g_{j}^{\prime}(\bar{y}(\cdot, T))(\zeta(\cdot, T)+B(\cdot, T) h)=0, \text { if } T \in I_{j}^{C} \text { and }\left[\mu_{j}(T)\right]>0, \text { for } j=1, \ldots, q \tag{1.10}
\end{equation*}
$$

We define

$$
P C_{2}^{*}:=\left\{\begin{array}{l}
(\zeta[w], w, h) \in Y \times L^{2}(0, T)^{m} \times \mathbb{R}^{m} ; w_{B_{k}} \text { is constant on each arc; } \\
(1.4),(1.6),(1.11)(\mathrm{i})-(\mathrm{ii}),(1.10) \text { hold. }
\end{array}\right\}
$$

$P C_{2}^{*}$ is a superset of $P C_{2}$.

We recall that $(\zeta[w], w, h)$ in $P C$ satisfy

$$
\left\{\begin{array}{l}
\text { (i) } \quad w_{i}=0 \text { a.e. on }\left(0, \tau_{1}\right), \text { for each } i \in B_{0} \tag{1.11}\\
\text { (ii) } w_{i}=h_{i} \text { a.e. on }\left(\tau_{r-1}, T\right), \text { for each } i \in B_{r-1}, \\
\text { (iii) } g_{j}^{\prime}(\bar{y}(\cdot, T))[\zeta(\cdot, T)+B(\cdot, T) \cdot h]=0 \text { if } j \in C_{r-1}
\end{array}\right.
$$

and

$$
\begin{gather*}
\dot{\zeta}(x, t)+(A \zeta)(x, t)=B^{1}(x, t) \cdot w(t), \quad \zeta(\cdot, 0)=0 \tag{1.4}\\
M_{j}(t) \cdot w(t)=-\int_{\Omega} c_{j}(x) \zeta[w](x, t) \mathrm{d} t, \quad \text { on }\left(\tau_{k}, \tau_{k+1}\right), \text { for } j \in C_{k} \tag{1.6}
\end{gather*}
$$

Theorem (Sufficient conditions)

a) Assume additional that
(i) (\bar{u}, \bar{y}) is a feasible trajectory with nonempty associated set of multipliers Λ_{1};
(ii) strict complementarity for control and state constraints;
(iii) for each $(p, \mathrm{~d} \mu) \in \Lambda_{1}, \widehat{\mathcal{Q}}[p, \mathrm{~d} \mu](\cdot)$ is a Legendre form on

$$
\left\{(\zeta[w], w, h) \in Y \times L^{2}(0, T)^{m} \times \mathbb{R}^{m}\right\}
$$

(iv) the uniform positivity: there exists $\rho>0$ with

$$
\max _{(p, \mathrm{~d} \mu) \in \Lambda_{1}} \widehat{\mathcal{Q}}[p, \mathrm{~d} \mu](\zeta[w], w, h) \geq \rho\left(\|w\|_{2}^{2}+|h|^{2}\right), \quad \text { for all }(w, h) \in P C_{2}^{*}
$$

Then (\bar{u}, \bar{y}) is a Pontryagin minimum satisfying the weak quadratic growth condition.

Theorem (Sufficient conditions)

a) Assume additional that
(i) (\bar{u}, \bar{y}) is a feasible trajectory with nonempty associated set of multipliers Λ_{1};
(ii) strict complementarity for control and state constraints;
(iii) for each $(p, \mathrm{~d} \mu) \in \Lambda_{1}, \widehat{\mathcal{Q}}[p, \mathrm{~d} \mu](\cdot)$ is a Legendre form on

$$
\left\{(\zeta[w], w, h) \in Y \times L^{2}(0, T)^{m} \times \mathbb{R}^{m}\right\}
$$

(iv) the uniform positivity: there exists $\rho>0$ with

$$
\max _{(p, \mathrm{~d} \mu) \in \Lambda_{1}} \widehat{\mathcal{Q}}[p, \mathrm{~d} \mu](\zeta[w], w, h) \geq \rho\left(\|w\|_{2}^{2}+|h|^{2}\right), \quad \text { for all }(w, h) \in P C_{2}^{*}
$$

Then (\bar{u}, \bar{y}) is a Pontryagin minimum satisfying the weak quadratic growth condition.
b) Conversely, for an admissible trajectory ($\bar{u}, y[\bar{u}]$) satisfying a (certain) quadratic growth condition, it holds

$$
\max _{(p, \mathrm{~d} \mu) \in \Lambda_{1}} \widehat{\mathcal{Q}}[p, \mathrm{~d} \mu](\zeta[w], w, h) \geq \rho\left(\|w\|_{2}^{2}+|h|^{2}\right), \quad \text { for all }(w, h) \in P C_{2}
$$

Aronna, Bonnans, K., preprint, 2019.

Summary

- Second-order analysis for semilinear parabolic equations with
- state constraints,
- several controls.
- Techniques:
- alternative costates,
- radiality,
- Goh transformation.
- Result:
- Second-order sufficient optimality condition with gap.

Thank you for your attention.

