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State equation

Control: u, State: y

Ω ⊂ Rn, open and bounded with smooth boundary, Q = Ω× (0, T ), Σ = ∂Ω× (0, T ). ẏ(x, t)−∆y(x, t) + γy3(x, t) = f(x, t) + y(x, t)

m∑
i=0

ui(t)bi(x) in Q,

y = 0 on Σ, y(·, 0) = y0 in Ω,

with y0 ∈W 1,∞
0 (Ω), f ∈ L∞(Q), b ∈W 1,∞(Ω)m+1, γ ≥ 0, u0 ≡ 1 is a constant,

and u := (u1, . . . , um) ∈ L2(0, T )m.
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State equation

Lemma

For i = 0, . . . ,m, the mapping de�ned on L2(0, T )× L∞(Ω)× L∞(0, T ;L2(Ω)), given
by (ui, bi, y) 7→ uibiy, has image in L2(Q), is of class C∞, and satis�es

‖uibiy‖2 ≤ ‖ui‖2‖bi‖∞‖y‖L∞(0,T ;L2(Ω)).

The state equation has a unique solution in Y := H2,1(Q).
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Setting

Cost function

J(u, y) := 1
2

∫
Q

(y(x, t)− yd(x))2dxdt+ 1
2

∫
Ω

(y(x, T )− ydT (x))2dx

+
m∑
i=1

αi

∫ T

0

ui(t)dt.

with yd ∈ L∞(Q), ydT ∈W 1,∞
0 (Ω), α ∈ Rm.
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Optimal control problem

Control constraints u ∈ Uad, where

Uad = {u ∈ L2(0, T )m; ǔi ≤ u(t) ≤ ûi, i = 1, . . . ,m},

for some constants ǔi < ûi, for i = 1, . . . ,m.

State constraints

gj(y(·, t)) :=

∫
Ω

cj(x)y(x, t)dx+ dj ≤ 0, for t ∈ [0, T ], j = 1, . . . , q,

where cj ∈ H2(Ω) ∩H1
0 (Ω) for j = 1, . . . , q, and d ∈ Rq.

Optimal control problem

Min
u∈Uad

J(u, y[u]); subject to the state constraints. (P)
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Aim: Second-order analysis

Tools:

alternative costates
(Bonnans and Jaisson 2010)

radiality to derive second order necessary conditions
(Aronna, Bonnans and Goh 2016)

Goh transform
(Goh 1966)
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Existence

Compactness

[Lions 1983] and [Edwards 1965]:{
For any p ∈ [1, 10), the following injection is compact:
Y ↪→ Lp(0, T ;L10(Ω)), when n ≤ 3.

The mapping u 7→ y[u] is sequentially weakly continuous from L2(0, T )m into Y .
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First order analysis

Implicit function theorem: u 7→ y[u] is of class C∞ from L2(0, T )m to Y

The generalized Lagrangian of problem (P ) is, choosing the multiplier of the state
equation to be (p, p0) ∈ L2(Q)×H−1(Ω) and taking β ∈ R+, dµ ∈M+(0, T ),

L[β, p, p0,dµ](u, y) := βJ(u, y)− 〈p0, y(·, 0)− y0〉H1
0 (Ω)

+

∫
Q

p
(

∆y(x, t)− γy3(x, t) + f(x, t) +
m∑
i=0

ui(t)bi(x)y(x, t)− ẏ(x, t)
)

dxdt

+

q∑
j=1

∫ T

0

gj(y(·, t))dµj(t).

Here: M+(0, T ) positive �nite Radon measures; we identify it with the set

BV (0, T )q0,+ := {µ ∈ BV (0, T )q ; µ(T ) = 0,dµ ≥ 0}.
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First order analysis

For each z ∈ L2(0, T ;H2(Ω)) and (x, t) ∈ Q,

(Az)(x, t) := −∆z(x, t) + 3γȳ(x, t)2z(x, t)−
m∑
i=0

ūi(t)bi(x)z(x, t).

Costate equation: for any z ∈ Y there exist p ∈ L2(Q) with

∫
Q

p(ż +Az)dxdt+ 〈p0, z(·, 0)〉H1
0 (Ω) =

q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t)

+ β

∫
Q

(ȳ − yd)zdxdt+ β

∫
Ω

(ȳ(x, T )− ydT (x))z(x, T )dx.

Alternative costates (Bonnans & Jaisson 2010)

p1 := p+

q∑
j=1

cjµj ; p1
0 := p0 +

q∑
j=1

cjµj(0), (CS)

where µ ∈ BV (0, T )q0,+ associated with dµ.
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Lemma

Let (p, p0, µ) ∈ L2(Q)×H−1(Ω)×BV (0, T )q0,+ satisfy the weak formulation, and let

(p1, p1
0) be associated costates. Then

p1 ∈ Y, p1(0) = p1
0,

− ṗ1 +Ap1 = β(ȳ − yd) +

q∑
j=1

µjAcj , p1(·, T ) = β(ȳ(·, T )− ydT ).

Moreover, p(x, 0) and p(x, T ) are well-de�ned in H1
0 (Ω) in view of (CS), and we have

p(·, 0) = p0, p(·, T ) = β(ȳ(·, T )− ydT ).

Proof: Integration by parts
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Proof by integration by parts

Remember

p1 := p+

q∑
j=1

cjµj ; p1
0 := p0 +

q∑
j=1

cjµj(0). (CS)

With ψ = z(·, 0) we have

q∑
j=1

∫
Q

cjµj żdxdt+

q∑
j=1

µj(0)〈cj , ψ〉L2(Ω) = −
q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t).

The latter equation can be rewritten as∫
Q

(p1 − p)żdxdt+ 〈p1
0 − p0, ψ〉H1

0 (Ω) = −
q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t). (1.1)
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Proof
That means, we have∫

Q

(p1 − p)żdxdt+ 〈p1
0 − p0, ψ〉H1

0 (Ω) = −
q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t).

and together with the costate equation∫
Q

p(ż +Az)dxdt+ 〈p0, z(·, 0)〉H1
0 (Ω) =

q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t)

+ β

∫
Q

(ȳ − yd)zdxdt+ β

∫
Ω

(ȳ(x, T )− ydT (x))z(x, T )dx.

and ∫
Q

(p1 − p)Az =

∫
Q

q∑
j=1

cjµjAz

we obtain, with ϕ = ż +Az, that∫
Q

p1ϕdxdt+ 〈p1
0, ψ〉H1

0 (Ω)

= β

∫
Q

(ȳ − yd)zdxdt+ β

∫
Ω

(ȳ(x, T )− ydT (x))z(x, T )dx+

∫
Q

q∑
j=1

cjµjAz.
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So, we have∫
Q

p1ϕdxdt+ 〈p1
0, ψ〉H1

0 (Ω)

= β

∫
Q

(ȳ − yd)zdxdt+ β

∫
Ω

(ȳ(x, T )− ydT (x))z(x, T )dx+

∫
Q

q∑
j=1

cjµjAz.

Since A is symmetric, we see that p1 is solution in Y .

�

This shows the statement of the lemma:

Let (p, p0, µ) ∈ L2(Q)×H−1(Ω)×BV (0, T )q0,+ satisfy the weak formulation, and let

(p1, p1
0) be associated costates. Then

p1 ∈ Y, p1(0) = p1
0,

− ṗ1 +Ap1 = β(ȳ − yd) +

q∑
j=1

µjAcj , p1(·, T ) = β(ȳ(·, T )− ydT ).

Moreover, p(x, 0) and p(x, T ) are well-de�ned in H1
0 (Ω) in view of (CS), and we have

p(·, 0) = p0, p(·, T ) = β(ȳ(·, T )− ydT ).
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We know

p1 := p+

q∑
j=1

cjµj ; p1
0 := p0 +

q∑
j=1

cjµj(0), (CS)

and since p1 and cjµj belong to L∞(0, T ;H1
0 (Ω)) we have

p ∈ L∞(0, T ;H1
0 (Ω)).

Corollary

If µ ∈ H1(0, T )q then p ∈ Y and

− ṗ+Ap = β(ȳ − yd) +

q∑
j=1

cj µ̇j .

Proof: This follows directly from the equation for p1 and (CS).
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Reduced problem

Set

F (u) := J(u, y[u]),

G : L2(0, T )m → C([0, T ])q, G(u) := g(y[u]).

Reduced problem:
min
u∈Uad

F (u); G(u) ∈ K, (RP)

with K := C([0, T ])q− closed convex cone.

Its interior is the set of functions in C([0, T ])q with negative values.

We assume that the reduced problem (RP) is quali�ed at ū if:{
there exists u ∈ Uad such that v := u− ū satis�es
G(ū) +DG(ū)v ∈ int(K).
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Lagrange multiplier

We say that
(β, p,dµ) is a Lagrange multiplier

if it satis�es the following �rst-order optimality conditions:

dµ is complementary to the state constraint,

p is the costate,

(β, dµ) 6= 0.

Setting

Ψ(t) := βα(t) +

∫
Ω

b(x)ȳ(x, t)p(x, t)dx

one has: ∫ T

0

Ψ(t)(u(t)− ū(t))dt ≥ 0, for every u ∈ Uad.

Denote the set of Lagrange multipliers (β, p, dµ) by Λ(ū, ȳ).
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Lemma

Let (ū, y[ū]) be an L2-local solution of (P ). Then:

the associated set Λ of multipliers is nonempty,

if in addition the quali�cation condition holds at ū, then there is no singular

multiplier, and we call

Λ1 := {(p,dµ) with (1, p, dµ) ∈ Λ(ū, ȳ).}

Proof: (i) Set

L[β, dµ](u) := βF (u) +

q∑
j=1

∫ T

0

Gj(u)(t)dµj(t).

Let ū be a local solution of (RP). By, e.g., [Bonnans & Shapiro, Prop. 3.18], since K
has nonempty interior, there exists a generalized Lagrange multiplier

(β, dµ) ∈ R+ ×NK(G(ū))

such that
(β, dµ) 6= 0 and −DuL[β, dµ](ū) ∈ NUad(ū).

Due to the costate equation, the latter condition is equivalent to the variational
inequality above.

(ii) Follows by [Bonnans & Shapiro, Prop. 3.16].
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inequality above.

(ii) Follows by [Bonnans & Shapiro, Prop. 3.16].
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Contact sets

In the following let (ū, ȳ) be an admissible trajectory.

associated with

control constraints:

Ǐi := {t ∈ [0, T ]; ūi(t) = ǔi}, Îi := {t ∈ [0, T ]; ūi(t) = ûi}, Ii := Ǐi ∪ Îi.

jth state constraint, j = 1, . . . , q, is

ICj := {t ∈ [0, T ]; gj(ȳ(·, t)) = 0}.

Given 0 ≤ a < b ≤ T , we call (a, b) a maximal state constrained arc for the jth
state constraints, if ICj contains (a, b) but it contains no open interval strictly
containing (a, b).

We de�ne in the same way a maximal (lower or upper) control bound constraints
arc.
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First order optimality condition

Ψp
i (t) = αi +

∫
Ω

bi(x)ȳ(x, t)p(x, t)dx, for i = 1, . . . ,m,

one has Ψp ∈ L∞(0, T )m and

m∑
i=1

∫ T

0

Ψp
i (t)(ui(t)− ūi(t))dt ≥ 0, for every u ∈ Uad. (1.2)

Corollary

The �rst order optimality condition is equivalent to

{t ∈ [0, T ]; Ψp
i (t) > 0} ⊆ Ǐi, {t ∈ [0, T ]; Ψp

i (t) < 0} ⊆ Îi,

for every (p, dµ) ∈ Λ1.
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Hypothesis

Finite arc property:{
the contact sets for the state and bound constraints are,
up to a �nite set, the union of �nitely many maximal arcs.

There exist junction points
0 =: τ0 < · · · < τr := T ,

such that the intervals (τk, τk+1) are maximal arcs with constant active constraints.

De�nition

For k = 0, . . . , r − 1, let B̌k, B̂k, Ck denote the set of indexes of active lower and upper
bound constraints, and state constraints, on the maximal arc (τk, τk+1), and set
Bk := B̌k ∪ B̂k.
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For v : [0, T ]→ X, X Banach space, we denote (if they exist) its left and right limits at
τ ∈ [0, T ] by v(τ±), with

v(0−) := v(0), v(T+) := v(T )

and the jump by
[v(τ)] := v(τ+)− v(τ−).

We denote the time derivative of the state constraints by

g
(1)
j (ȳ(·, t)) :=

d

dt
gj(ȳ(·, t)) =

∫
Ω

cj(x) ˙̄y(x, t)dx, j = 1, . . . , q.

Note that g
(1)
j (ȳ(·, t)) is an element of L1(0, T ), for each j = 1, . . . , q.

Lemma

Let ū have left and right limits at τ ∈ (0, T ). Then

[Ψp
i (τ)][ūi(τ)] = [g

(1)
j (ȳ(·, τ))][µj(τ)] = 0, i = 1, . . . ,m, j = 1, . . . , q.
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Local controllability condition

For �xed k in {0, . . . , r − 1} and maximal arc (τk, τk+1), setting

Mij(t) :=

∫
Ω

bi(x)cj(x)ȳ(x, t)dx, 1 ≤ i ≤ m, 1 ≤ j ≤ q.

Let M̄k(t) (of size |B̄k| × |Ck|) denote the submatrix of M(t) having rows with index in
B̄k and columns with index in Ck.

Hypothesis

Assume |Ck| ≤ |B̄k|, for k = 0, . . . , r − 1, and{
there exists α > 0, such that |M̄k(t)λ| ≥ α|λ|,

for all λ ∈ R|Ck|, a.e. on (τk, τk+1), for k = 0, . . . , r − 1.
(1.3)

This hypothesis was already used in a di�erent setting (i.e. higher-order state constraints
in the �nite dimensional case) in e.g. [Bonnans, Hermant 2009; Maurer 1979].
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Hypothesis

We assume

discontinuity of the derivative of the state constraints at corresponding junction
points,

the control ū has left and right limits at the junction points τk ∈ (0, T ).

Under the hypotheses and the lemma (on the jumps) we obtain

Theorem

(i) For u ∈ L∞(0, T )m, the associated state y[u] belongs to C(Q̄).

(ii) For every (p, dµ) ∈ Λ1, one has that µ ∈W 1,∞(0, T )q and p is essentially

bounded in Q.
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Second variation

For (p, dµ) ∈ Λ1, set

κ(x, t) := 1− 6γȳ(x, t)p(x, t),

and consider the quadratic form

Q[p,dµ](z, v) :=

∫
Q

(
κz2 + 2p

m∑
i=1

vibiz

)
dxdt+

∫
Ω

z(x, T )2dx.
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Let (u, y) be a trajectory, and set

(δy, v) := (y − ȳ, u− ū).

We have 
d

dt
δy +Aδy =

m∑
i=1

vibiy − 3γȳ(δy)2 − γ(δy)3 in Q,

δy = 0 on Σ, δy(·, 0) = 0 in Ω.

Proposition

Let (p, dµ) ∈ Λ1, and let (u, y) be a trajectory. Then

L[p, dµ](u, y, p)− L[p, dµ](ū, ȳ, p)

=

∫ T

0

Ψp(t) · v(t)dt+ 1
2
Q[p,dµ](δy, v)− γ

∫
Q

p(δy)3dxdt.
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Critical cone

For ū ∈ L2 we de�ne

C :=



(z[v], v) ∈ Y × L2(0, T )m; vi(t)Ψ
p
i (t) = 0 a.e. on [0, T ],

for all (p, dµ) ∈ Λ1

vi(t) ≥ 0 a.e. on Ǐi, vi(t) ≤ 0 a.e. on Îi, for i = 1, . . . ,m,∫
Ω

cj(x)z[v](x, t)dx ≤ 0 on ICj , for j = 1, . . . , q


.
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Strict critical cone

Imposing that the linearization of active constraints is zero

Cs :=


(z[v], v) ∈ Y × L2(0, T )m; vi(t) = 0 a.e. on Ii, for i = 1, . . . ,m,∫

Ω

cj(x)z[v](x, t)dx = 0 on ICj , for j = 1, . . . , q

 .

Hence, clearly Cs ⊆ C, and Cs is a closed subspace of Y × L2(0, T )m.
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Radiality of critical directions

Hypothesis: uniform distance to control bounds whenever they are not active,

Aronna et al. 2016: a critical direction (z, v) is quasi radial if there exists τ0 > 0 such
that, for τ ∈ [0, τ0], the following conditions are satis�ed:

max
t∈[0,T ]

{
gj(ȳ(·, t)) + τg′j(ȳ(·, t))z(t)

}
= o(τ2), for j = 1, . . . , q,

ǔi ≤ ūi(t) + τvi(t) ≤ ûi, a.e. on [0, T ], for i = 1, . . . ,m.

Corollary

The set of quasi radial critical directions of Cs is dense in Cs.
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Theorem (Second order necessary condition)

Let the admissible trajectory (ū, ȳ) be an L∞-local solution of (P ). Then

max
(p,dµ)∈Λ1

Q[p,dµ](z, v) ≥ 0, for all (z, v) ∈ Cs.
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Goh transform

Given a critical direction (z, v), set

w(t) :=

∫ t

0

v(s)ds; B(x, t) := ȳ(x, t)b(x); ζ(x, t) := z(x, t)−B(x, t) · w(t),

based on [Goh 1966].

We have

ζ̇ +Aζ =

(
ż +Az −

m∑
i=1

viBi

)
︸ ︷︷ ︸

=0

−
m∑
i=1

wi(ABi + Ḃi), ζ(·, 0) = 0.

Since Ḃi = bi ˙̄y it follows that

ζ̇(x, t) + (Aζ)(x, t) = B1(x, t) · w(t), ζ(·, 0) = 0, (1.4)

where
B1
i := −fbi + 2∇ȳ · ∇bi + ȳ∆bi − 2γȳ3bi, for i = 1, . . . ,m.
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Lemma (Transformed second variation)

We can de�ne a quadratic form Q̂ such that for v ∈ L2(0, T )m, and w ∈ AC([0, T ])m

given by the Goh transform, and for all (p, dµ) ∈ Λ1, we have

Q[p, dµ](z[v], v) = Q̂[p, dµ](ζ[w], w, w(T )).
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Goh transform of the critical cone

Set of primitives of strict critical direction

PC :=

{
(ζ, w,w(T )) ∈ Y ×H1(0, T )m ×Rm;

(ζ, w) is given by the Goh transform for some (z, v) ∈ Cs

}
,

and let
PC2 := closure of PC in Y × L2(0, T )m ×Rm.

−→ We can give a characterization of a superset PC′2 which coincides with PC2 for
scalar controls (i.e. m = 1).

−→ We will formulate the second-order su�cient optimality condition on a superset
PC2 ⊂ PC∗2 .
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We take a closer look.
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We recall

For �xed k in {0, . . . , r − 1} and maximal arc (τk, τk+1), setting

Mij(t) :=

∫
Ω

bi(x)cj(x)ȳ(x, t)dx, 1 ≤ i ≤ m, 1 ≤ j ≤ q.
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For any (ζ, w, h) ∈ PC, it holds

wBk (t) =
1

τk+1 − τk

∫ τk+1

τk

wBk (s)ds, for k = 0, . . . , r − 1. (1.5)

Take (z, v) ∈ Cs, and (w, ζ[w]) given by the Goh transform.

Let k ∈ {0, . . . , r− 1} and j ∈ Ck. Then 0 =

∫
Ω

cj(x)z(x, t)dx on (τk, τk+1). Therefore,

letting Mj(t) denote the jth column of the matrix M(t), one has

Mj(t) · w(t) = −
∫

Ω

cj(x)ζ[w](x, t)dt, on (τk, τk+1), for j ∈ Ck. (1.6)

We can rewrite (1.5)-(1.6) in the form

Ak(t)w(t) =
(
Bkw

)
(t), on (τk, τk+1), (1.7)

where Ak(t) is an mk ×m matrix with mk := |Bk|+ |Ck|, and
Bk : L2(0, T )m → H1(τk, τk+1)mk .
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Let ck+1 ∈ Rm be such that, for some νk+i,

ck+1 = Ak+i(τk+1)>νk+i, for i = 0, 1, (1.8)

meaning that ck+1 is a linear combination of the rows of Ak+i(τk+1) for both i = 0, 1.

Lemma

Let k = 0, . . . , r − 1, and let ck+1 satisfy (1.8). Then, the junction condition

ck+1 ·
(
w(τ+

k+1)− w(τ−k+1)
)

= 0, (1.9)

holds for all (ζ, w, h) ∈ PC2.
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Set

PC′2 := {(ζ[w], w, h); w ∈ Ker(A− B), (1.9) holds, for all c satisfying (1.8)}.

We have proved that
PC2 ⊆ PC′2.

In the case of a scalar control (m = 1) we can show that these two sets coincide.

Proposition

If the control is scalar, then

PC2 =


(ζ[w], w, h) ∈ Y × L2(0, T )×R; w ∈ Ker(A− B);

w is continuous at BB, BC, CB junctions

limt↓0 w(t) = 0 if the �rst arc is not singular

limt↑T w(t) = h if the last arc is not singular

 .

Axel Kröner Optimal control of PDEs October, 2019 45



Second order necessary condition in transformed variables

Theorem

If (ū, ȳ) is an L∞-local solution of problem (P), then

max
(p,dµ)∈Λ1

Q̂[p,dµ](ζ, w, h) ≥ 0, on PC2.
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Pontryagin minimum

(i) An admissible trajectory (ū, ȳ) is said to be a Pontryagin minimum if for all
N > 0, there exists εN > 0 such that, (ū, ȳ) is optimal among all the admissible
trajectories (u, y) verifying

‖u− û‖∞ < N and ‖u− û‖1 < εN .

(ii) A sequence (v`) ⊂ L∞(0, T )m is said to converge to 0 in the Pontryagin sense if
it is bounded in L∞(0, T )m and ‖v`‖1 → 0.

(iii) We say that (ū, ȳ) is a Pontryagin minimum satisfying the weak quadratic growth

condition if there exists ρ > 0 such that, for every sequence of admissible
variations (v`, δy`) having (v`) convergent to 0 in the Pontryagin sense, one has

F (u`)− F (ū) ≥ ρ(‖w`‖22 + |w`(T )|2),

for ` su�ciently large and where w`(t) =
∫ t

0
v`(s)ds.
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Consider the condition

g′j(ȳ(·, T ))(ζ(·, T ) +B(·, T )h) = 0, if T ∈ ICj and [µj(T )] > 0, for j = 1, . . . , q.
(1.10)

We de�ne

PC∗2 :=

{
(ζ[w], w, h) ∈ Y × L2(0, T )m ×Rm; wBk is constant on each arc;

(1.4), (1.6), (1.11)(i)-(ii), (1.10) hold.

}
.

PC∗2 is a superset of PC2.

We recall that (ζ[w], w, h) in PC satisfy
(i) wi = 0 a.e. on (0, τ1), for each i ∈ B0,

(ii) wi = hi a.e. on (τr−1, T ), for each i ∈ Br−1,

(iii) g′j(ȳ(·, T ))[ζ(·, T ) +B(·, T ) · h] = 0 if j ∈ Cr−1.

(1.11)

and

ζ̇(x, t) + (Aζ)(x, t) = B1(x, t) · w(t), ζ(·, 0) = 0, (1.4)

Mj(t) · w(t) = −
∫

Ω

cj(x)ζ[w](x, t)dt, on (τk, τk+1), for j ∈ Ck. (1.6)
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Theorem (Su�cient conditions)

a) Assume additional that
(i) (ū, ȳ) is a feasible trajectory with nonempty associated set of multipliers Λ1;
(ii) strict complementarity for control and state constraints;

(iii) for each (p, dµ) ∈ Λ1, Q̂[p, dµ](·) is a Legendre form on

{(ζ[w], w, h) ∈ Y × L2(0, T )m ×Rm};

(iv) the uniform positivity: there exists ρ > 0 with

max
(p,dµ)∈Λ1

Q̂[p, dµ](ζ[w], w, h) ≥ ρ(‖w‖22 + |h|2), for all (w, h) ∈ PC∗2 .

Then (ū, ȳ) is a Pontryagin minimum satisfying the weak quadratic growth
condition.

b) Conversely, for an admissible trajectory (ū, y[ū]) satisfying a (certain) quadratic
growth condition, it holds

max
(p,dµ)∈Λ1

Q̂[p, dµ](ζ[w], w, h) ≥ ρ(‖w‖22 + |h|2), for all (w, h) ∈ PC2.

Aronna, Bonnans, K., preprint, 2019.
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Summary

Second-order analysis for semilinear parabolic equations with
I state constraints,
I several controls.

Techniques:
I alternative costates,
I radiality,
I Goh transformation.

Result:
I Second-order su�cient optimality condition with gap.
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Thank you for your attention.
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