

Optimal Control of Two-Phase Flow

Harald Garcke, Michael Hinze, Christian Kahle

RICAM special semester on Optimization WS1: New trends in PDE constrained optimization 14.10. – 18.10.2019

Optimal control of two-phase flow

Figure: without control

Christian Kahle

Optimal control of two-phase flow

Figure: without control

Figure: with control

Outline

Setting

The time discrete setting

The fully discrete setting

Numerical examples

Christian Kahle

Outline

Setting

The time discrete setting

The fully discrete setting

Numerical examples

Christian Kahle

Diffuse interface approach

Setting: Two subdomains Ω_1 and Ω_2 separated by unknown Γ_{ϵ} . **Assumption:** Γ_{ϵ} of small thickness $\mathcal{O}(\epsilon) > 0$ and components are mixed inside.

Representation: Continuous order parameter φ for Ω_1 and Ω_2 .

Diffuse interface approach

Setting: Two subdomains Ω_1 and Ω_2 separated by unknown Γ_{ϵ} . **Assumption:** Γ_{ϵ} of small thickness $\mathcal{O}(\epsilon) > 0$ and components are mixed inside.

Representation: Continuous order parameter φ for Ω_1 and Ω_2 .

Christian Kahle

Diffuse interface approach

Setting: Two subdomains Ω_1 and Ω_2 separated by unknown Γ_{ϵ} . **Assumption:** Γ_{ϵ} of small thickness $\mathcal{O}(\epsilon) > 0$ and components are mixed inside.

Representation: Continuous order parameter φ for Ω_1 and Ω_2 .

Christian Kahle

The two-phase flow model [Abels, Garcke, Grün, 2012]

1

v velocity, p pressure, φ phase field variable, μ chemical potential

$$\begin{aligned} \rho \partial_t v + ((\rho v + J) \cdot \nabla) v - \operatorname{div} (2\eta D v) + \nabla \rho &= -\varphi \nabla \mu + \rho g, \\ \operatorname{div} v &= 0, \\ \partial_t \varphi + v \cdot \nabla \varphi - \operatorname{div} (m \nabla \mu) &= 0, \\ -\sigma \epsilon \Delta \varphi + \sigma \epsilon^{-1} W'(\varphi) &= \mu, \end{aligned}$$

where
$$2Dv = \nabla v + (\nabla v)^t$$
, $J = -\rho'(\varphi)m(\varphi)\nabla\mu$.

- g gravity,
- ϵ interfacial width,
- $\sigma \text{ surface tension,} \\ \sigma = c_W \sigma^{phys},$

 $\rho(\varphi)$ density, $\eta(\varphi)$ viscosity, $m(\varphi)$ mobility.

Christian Kahle

Optimal Control of Two-Phase Flow

10/2019

Christian Kahle

The free energy density W

logarithmic: $W^{\log}(\varphi) = \frac{\theta}{2} \left((1+\varphi) \log(1+\varphi) + (1-\varphi) \log(1-\varphi) \right) + \frac{\theta_{\varphi}}{2} (1-\varphi^2),$ polynomial: $W^{poly}(\varphi) = \frac{1}{4} (1 - \varphi^2)^2$ **double-obstacle:** $W^{\infty}(\varphi) = \frac{1}{2} (1 - \varphi^2)$ iff $|\varphi| \le 1$, ∞ else, relaxed double-obstacle: $W^{s}(\varphi) = \frac{1}{2} \left(1 - (\xi \varphi)^{2} \right) + \frac{s}{2} \left(\max(0, \xi \varphi - 1)^{2} + \min(0, \xi \varphi + 1)^{2} \right) + \theta.$ 1 + ...Wlog Wpoly $^{-1}$ φ 1 φ 1 _1 φ 1 -1 φ -1 Optimal Control of Two-Phase Flow 10/2019 6/32

Functions depending on φ

The formal energy inequality

Theorem

Let v, φ, μ denote a sufficiently smooth solution (if exists) and let

$$E(t) = \int_{\Omega} \frac{1}{2} \rho(t) |v(t)|^2 \, \mathrm{dx} + \sigma \int_{\Omega} \frac{\epsilon}{2} |\nabla \varphi(t)|^2 + \frac{1}{\epsilon} W(\varphi(t)) \, \mathrm{dx}$$

denote the energy of the system. Let $v|_{\partial \Omega}=0$ hold. Then it holds

$$\begin{aligned} \frac{d}{dt}E(t) &= -\int_{\Omega} 2\eta(\varphi)|Dv|^2 \,\mathrm{dx} - \int_{\Omega} m(\varphi)|\nabla\mu|^2 \,\mathrm{dx} + \int_{\Omega} gv \,\mathrm{dx},\\ E(t_2) &+ \int_{t_1}^{t_2} \int_{\Omega} m(\varphi(s))|\nabla\mu(s)|^2 \,\mathrm{dxds} + \int_{t_1}^{t_2} \int_{\Omega} 2\eta(\varphi(s))|Dv(s)|^2 \,\mathrm{dxds} \\ &= E(t_1) + \int_{t_1}^{t_2} \int_{\Omega} gv(s) \,\mathrm{dxds} \end{aligned}$$

Applied Controls

 $\varphi_0 = \mathcal{B} \boldsymbol{u_I} = \boldsymbol{u_I}$

 $\begin{aligned} \mathcal{B} \boldsymbol{u}_{\boldsymbol{V}} &= \\ \sum_{i=1}^{S_{\boldsymbol{V}}} f_i(\boldsymbol{x}) \boldsymbol{u}_{\boldsymbol{V}}[i], \\ f_i \in L^2(\Omega)^n \end{aligned}$

$$\begin{split} u_V &\in L^2(0,T; \mathbb{R}^{s_V}) = U_V, \\ u_B &\in L^2(0,T; \mathbb{R}^{s_B}) = U_B, \\ u_I &\in \mathcal{K} := \{ v \in H^1(\Omega) \cap L^\infty(\Omega) \mid |v| \le 1, (v,1) = const \} = U_I, \\ u &= (u_V, u_B, u_I) \in U = U_V \times U_B \times U_I. \end{split}$$

1

The two-phase flow model with controls

v velocity, p pressure, φ phase field variable, μ chemical potential

$$\begin{aligned} \partial \partial_t v + ((\rho v + J) \cdot \nabla) v - \operatorname{div} (2\eta D v) + \nabla p &= -\varphi \nabla \mu + \rho g + \mathcal{B} u_V, \\ \operatorname{div} v &= 0, \\ \partial_t \varphi + v \cdot \nabla \varphi - \operatorname{div} (m \nabla \mu) &= 0, \\ -\sigma \epsilon \Delta \varphi + \sigma \epsilon^{-1} W'(\varphi) &= \mu, \end{aligned}$$

where
$$2Dv = \nabla v + (\nabla v)^t$$
, $J = -\rho'(\varphi)m(\varphi)\nabla \mu$, $v|_{\partial\Omega} = \mathcal{B}u_B$, $\varphi(0) = u_I$.

- g gravity,
- ϵ interfacial width,
- $\sigma \text{ surface tension,} \\ \sigma = c_W \sigma^{phys}, \\ \text{Christian Kable}$

 $\rho(\varphi)$ density, $\eta(\varphi)$ viscosity, $m(\varphi)$ mobility.

The optimal control problem

The optimal control problem

 φ_d : desired distribution,

$$\alpha_V + \alpha_B + \alpha_I = 1$$

$$\begin{aligned} \min J(u_{l}, u_{V}, u_{B}, \varphi) &\coloneqq \frac{1}{2} \|\varphi(T) - \varphi_{d}\|^{2} \\ &+ \frac{\alpha}{2} \left(\alpha_{l} \int_{\Omega} \frac{\epsilon}{2} |\nabla u_{l}|^{2} + \epsilon^{-1} W_{u}(u_{l}) \, \mathrm{dx} \right. \\ &\alpha_{V} \|u_{V}\|_{L^{2}(0,T;\mathbb{R}^{s_{V}})}^{2} + \alpha_{B} \|u_{B}\|_{L^{2}(0,T;\mathbb{R}^{s_{B}})}^{2} \right) \\ & \text{ s.t. two-phase fluid dynamics,} \\ & \text{ i.e. } \varphi \equiv \varphi(u_{V}, u_{B}, u_{l}) \end{aligned}$$

Outline

Setting

The time discrete setting

The fully discrete setting

Numerical examples

Christian Kahle

A weak formulation

Abbreviate

$$a(u, v, w) \coloneqq \frac{1}{2}((u \cdot \nabla)v, w) - \frac{1}{2}((u \cdot \nabla)w, v)$$

The model satisfies

$$\partial_t \rho(\varphi) + \operatorname{div}(\rho(\varphi)v + J) = -\nabla \mu \cdot \nabla \rho'(\varphi)$$

If $\rho(\varphi)$ is linear (mass conservation)

$$\rho \partial_t v + ((\rho v + J) \cdot \nabla) v - \operatorname{div}(2\eta D v) = \mu \nabla \varphi,$$

$$\partial_t (\rho v) + \operatorname{div}(\rho v \otimes v) + \operatorname{div}(v \otimes J) - \operatorname{div}(2\eta D v) = \mu \nabla \varphi.$$

Then a weak formulation is

 $\frac{1}{2}(\rho\partial_t v + \partial_t(\rho v), w) + a(\rho v + J, v, w) + 2(\eta D v, D w) = (\mu \nabla \varphi, w) \quad \forall w \in H_\sigma$

Christian Kahle

An energy stable time discretization [Garcke, Hinze, K. 2016] $u_{\star}^{k} \coloneqq \frac{1}{\tau} \int_{t_{k-1}}^{t_{k}} u_{\star}(t) \, \mathrm{dt}, \, v^{k}|_{\partial \Omega} = \mathcal{B} u_{B}^{k}, \, \varphi^{0} = u_{I}$

$$\begin{aligned} \frac{1}{\tau} \int_{\Omega} \left(\frac{\rho^{k-1} + \rho^{k-2}}{2} v^k - \rho^{k-2} v^{k-1} \right) w \, \mathrm{dx} \\ + a(\rho^{k-1} v^{k-1} + J^{k-1}, v^k, w) + \int_{\Omega} 2\eta^{k-1} D v^k : Dw \, \mathrm{dx} \\ + \int_{\Omega} \varphi^{k-1} \nabla \mu^k \cdot w \, \mathrm{dx} - \int_{\Omega} \rho^{k-1} g \cdot w \, \mathrm{dx} - \int_{\Omega} \mathcal{B} u_V^k w \, \mathrm{dx} = 0 \, \forall \, w \in \mathcal{H}_{\sigma}(\Omega), \\ \frac{1}{\tau} \int_{\Omega} (\varphi^k - \varphi^{k-1}) \Psi \, \mathrm{dx} - \int_{\Omega} \varphi^{k-1} v^k \cdot \nabla \Psi \, \mathrm{dx} \\ &+ \int_{\Omega} m \nabla \mu^k \cdot \nabla \Psi \, \mathrm{dx} = 0 \, \forall \, \Psi \in \mathcal{H}^1(\Omega), \\ \sigma \epsilon \int_{\Omega} \nabla \varphi^k \cdot \nabla \Phi \, \mathrm{dx} - \int_{\Omega} \mu^k \Phi \, \mathrm{dx} \\ &+ \frac{\sigma}{\epsilon} \int_{\Omega} ((\mathcal{W}_+)'(\varphi^k) + (\mathcal{W}_-)'(\varphi^{k-1})) \Phi \, \mathrm{dx} = 0 \, \forall \, \Phi \in \mathcal{H}^1(\Omega). \end{aligned}$$
Christian Kalte Optimal Control of Two-Phase Flow 10/2019 (CHNS_{\tau})

Christian Kahle

Energy inequality

Theorem

Let $k \ge 2$, φ^k , μ^k , v^k be a solution to $(CHNS_{\tau})$, and $u_B \equiv 0$. Then the following energy inequality holds

$$\begin{split} \frac{1}{2} \int_{\Omega} \rho^{k-1} \left| v^k \right|^2 \mathrm{dx} + \sigma \int_{\Omega} \frac{\epsilon}{2} |\nabla \varphi^k|^2 + \frac{1}{\epsilon} W(\varphi^k) \, \mathrm{dx} \\ + \frac{1}{2} \int_{\Omega} \rho^{k-2} |v^k - v^{k-1}|^2 \, \mathrm{dx} + \frac{\sigma\epsilon}{2} \int_{\Omega} |\nabla \varphi^k - \nabla \varphi^{k-1}|^2 \, \mathrm{dx} \\ + \tau \int_{\Omega} 2\eta^{k-1} |Dv^k|^2 \, \mathrm{dx} + \tau \int_{\Omega} m |\nabla \mu^k|^2 \, \mathrm{dx} \\ \leq \frac{1}{2} \int_{\Omega} \rho^{k-2} |v^{k-1}|^2 \, \mathrm{dx} + \sigma \int_{\Omega} \frac{\epsilon}{2} |\nabla \varphi^{k-1}|^2 + \frac{1}{\epsilon} W(\varphi^{k-1}) \, \mathrm{dx} \\ + \int_{\Omega} \rho^{k-1} g v^k \, \mathrm{dx} + \int_{\Omega} (\mathcal{B} u^k_V) v^k \, \mathrm{dx} \end{split}$$

Existence of a unique solution

Theorem

Let Ω denote a polygonally / polyhedrally bounded Lipschitz domain. Let $v^{k-1} \in H_{\sigma}(\Omega)$, $\varphi^{k-2} \in H^{1}(\Omega) \cap L^{\infty}(\Omega)$, $\varphi^{k-1} \in H^{1}(\Omega) \cap L^{\infty}(\Omega)$, and $\mu^{k-1} \in W^{1,3}(\Omega)$ be given data. Further let $\mathcal{B}u_{V}^{k} \in L^{2}(\Omega)^{n}$, $\mathcal{B}u_{B}^{k} \in H^{\frac{1}{2}}(\partial\Omega)$, $\mathcal{B}u_{I} \in H^{1}(\Omega) \cap L^{\infty}(\Omega)$ be given data. Then there exists a weak solution $\varphi^{k} \in H^{1}(\Omega) \cap C(\overline{\Omega})$, $\mu^{k} \in W^{1,3}(\Omega)$, $v^{k} \in H_{\sigma}(\Omega)$ to (CHNS_{τ}). Furthermore, it can be found by Newton's method.

Initialization step

For
$$k = 1$$
 we solve: $v^{1}|_{\partial\Omega} = \mathcal{B}u_{B}^{1}, \varphi^{0} = u_{I}$

$$\frac{1}{\tau} \int_{\Omega} \left(\frac{\rho^{1} + \rho^{0}}{2} v^{1} - \rho^{0} v^{0} \right) w \, dx + a(\rho^{1}v^{0} + J^{1}, v^{1}, w)$$

$$+ \int_{\Omega} 2\eta^{1} Dv^{1} : Dw \, dx - \int_{\Omega} \mu^{1} \nabla \varphi^{0} w \, dx - \int_{\Omega} \mathcal{B}u_{V}^{1} w \, dx - \int_{\Omega} \rho^{0} g \cdot w = 0 \, \forall w \in H_{\sigma}$$

$$\frac{1}{\tau} \int_{\Omega} (\varphi^{1} - \varphi^{0}) \Psi \, dx - \int_{\Omega} \varphi^{0} v^{0} \cdot \nabla \Psi \, dx$$

$$+ \int_{\Omega} m \nabla \mu^{1} \cdot \nabla \Psi \, dx = 0 \, \forall \Psi \in H^{1}$$

$$\sigma \epsilon \int_{\Omega} \nabla \varphi^{1} \cdot \nabla \Phi \, dx - \int_{\Omega} \mu^{1} \Phi \, dx$$

$$+ \frac{\sigma}{\epsilon} \int_{\Omega} ((W_{+})'(\varphi^{1}) + (W_{-})'(\varphi^{0})) \Phi \, dx = 0 \, \forall \Phi \in H^{1}$$

$$(CHNS_{\tau}^{I})$$

Stability

Theorem

Let Ω denote a polygonally / polyhedrally bounded Lipschitz domain. Let $v^0 \in H_{\sigma}(\Omega)$, $(u_l, u_V, u_B) \in U$ be given. Then there exist sequences $(v^k)_{k=1}^K \in H_{\sigma}(\Omega)^K$, $(\varphi^k)_{k=1}^K \in (H^1(\Omega) \cap C(\overline{\Omega}))^K$, $(\mu^k)_{k=1}^K \in W^{1,3}(\Omega)^K$ such that (v^k, φ^k, μ^k) is the unique solution to (CHNS_{τ}^l) for k = 1 and to (CHNS_{τ}) for $k = 2, \ldots, K$. Moreover there holds

$$\begin{split} \| (v^{k})_{k=1}^{K} \|_{\ell^{\infty}(H^{1}(\Omega))} &\leq C \left(v^{0}, u_{I}, u_{V}, u_{B} \right), \\ \| (\varphi^{k})_{k=1}^{K} \|_{\ell^{\infty}(H^{1}(\Omega) \cap C(\overline{\Omega}))} &\leq C \left(v^{0}, u_{I}, u_{V}, u_{B} \right), \\ \| (\mu^{k})_{k=1}^{K} \|_{\ell^{\infty}(W^{1,3}(\Omega))} &\leq C \left(v^{0}, u_{I}, u_{V}, u_{B} \right). \end{split}$$

Stability in stronger norms

Theorem

Let Ω be polygonally / polyhedrally bounded and convex or of class $C^{1,1}$. Let $v^0 \in H_{\sigma}(\Omega) \cap L^{\infty}(\Omega)^n$, $(u_l, u_V, u_B) \in U$ be given. Then there exist sequences $(v^k)_{k=1}^K \in H_{\sigma}(\Omega)^K$, $(\varphi^k)_{k=1}^K \in H^2(\Omega)^K$, $(\mu^k)_{k=1}^K \in H^2(\Omega)^K$ such that (v^k, φ^k, μ^k) is the unique solution to $(CHNS_{\tau}^{\prime})$ for k = 1 and to $(CHNS_{\tau})$ for $k = 2, \ldots, K$. Moreover there holds

$$\begin{split} &\| (v^k)_{k=1}^{K} \|_{\ell^{\infty}(H^1(\Omega))} \leq C \left(v^0, u_I, u_V, u_B \right), \\ &\| (\varphi^k)_{k=1}^{K} \|_{\ell^{\infty}(H^2(\Omega))} \leq C \left(v^0, u_I, u_V, u_B \right), \\ &\| (\mu^k)_{k=1}^{K} \|_{\ell^{\infty}(H^2(\Omega))} \leq C \left(v^0, u_I, u_V, u_B \right). \end{split}$$

The optimal control problem

Theorem

Let Ω be polygonally / polyhedrally bounded and convex or of class $C^{1,1}$. The optimization problem

$$\min J(u_{I}, u_{V}, u_{B}, (\varphi^{k})_{k=1}^{K}) \coloneqq \frac{1}{2} \|\varphi^{K} - \varphi_{d}\|^{2} + \frac{\alpha}{2} \left(\alpha_{I} \int_{\Omega} \frac{\epsilon}{2} |\nabla u_{I}|^{2} + \epsilon^{-1} W_{u}(u_{I}) dx \right)$$
$$\alpha_{V} \|u_{V}\|_{L^{2}(0,T;\mathbb{R}^{s_{V}})}^{2} + \alpha_{B} \|u_{B}\|_{L^{2}(0,T;\mathbb{R}^{s_{B}})}^{2} \right)$$

s.t. $(CHNS_{\tau}^{l})$ and $(CHNS_{\tau})$

 (\mathcal{P}_{τ}) has at least one solution and first order optimality conditions can be derived by Lagrangian calculus.

Outline

Setting

The time discrete setting

The fully discrete setting

Numerical examples

Christian Kahle

Finite element approximation

 \mathcal{T}_h^k triangulation of $\overline{\Omega}$ at time instance t_k ,

$$V_1^k := \{ v \in C(\overline{\Omega}) \mid v|_T \in P^1 \,\forall T \in \mathcal{T}_h^k \}, \\ V_2^k := \{ v \in C(\overline{\Omega})^n \mid v|_T \in (P^2)^n \,\forall T \in \mathcal{T}_h^k, \, (div(v), q) = 0 \,\forall q \in V_1^k \},$$

 $P^k: H^1(\Omega) \to V_1^k$ prolongation, e.g. H^1 -prolongation.

Christian Kahle

The fully discrete setting

Christian Kahle

Energy inequality in the fully discrete setting

Theorem

Let $k \ge 2$, φ_h^k , μ_h^k , v_h^k be a solution to (CHNS_h), and $u_B \equiv 0$. Then the following energy inequality holds

$$\begin{split} \frac{1}{2} \int_{\Omega} \rho_h^{k-1} \left| v_h^k \right|^2 \mathrm{dx} + \sigma \int_{\Omega} \frac{\epsilon}{2} |\nabla \varphi_h^k|^2 + \frac{1}{\epsilon} W(\varphi_h^k) \, \mathrm{dx} \\ + \frac{1}{2} \int_{\Omega} \rho_h^{k-2} |v_h^k - v_h^{k-1}|^2 \, \mathrm{dx} + \frac{\sigma \epsilon}{2} \int_{\Omega} |\nabla \varphi_h^k - \nabla P^k \varphi^{k-1_h}|^2 \, \mathrm{dx} \\ + \tau \int_{\Omega} 2\eta_h^{k-1} |Dv_h^k|^2 \, \mathrm{dx} + \tau \int_{\Omega} m |\nabla \mu_h^k|^2 \, \mathrm{dx} \\ \leq \frac{1}{2} \int_{\Omega} \rho_h^{k-2} \left| v_h^{k-1} \right|^2 \, \mathrm{dx} + \sigma \int_{\Omega} \frac{\epsilon}{2} |\nabla P^k \varphi_h^{k-1}|^2 + \frac{1}{\epsilon} W(P^k \varphi_h^{k-1}) \, \mathrm{dx} \\ + \int_{\Omega} \rho_h^{k-1} g v_h^k \, \mathrm{dx} + \int_{\Omega} (\mathcal{B} u_V^k) v_h^k \, \mathrm{dx} \end{split}$$

Stability in the fully discrete setting

Theorem

Let Ω be polygonally / polyhedrally bounded and convex. Let $v^0 \in H_{\sigma}(\Omega) \cap L^{\infty}(\Omega)$, $u \in U$ be given. Then there exist sequences $(v_h^k)_{k=1}^K \in (V_2^k)_{k=1}^K$, $(\varphi_h^k)_{k=1}^K$, $(\mu_h^k)_{k=1}^K \in (V_1^k)_{k=1}^K$, such that $(v_h^k, \varphi_h^k, \mu_h^k)$ is the unique solution to $(CHNS_h)$ for k = 1, ..., K. Moreover it holds

$$\begin{split} &\| (v_h^{\kappa})_{k=1}^{\kappa} \|_{\ell^{\infty}(H^1(\Omega))} \leq C \left(v^0, u_I, u_V, u_B \right), \\ &\| (\varphi_h^{\kappa})_{k=1}^{\kappa} \|_{\ell^{\infty}(W^{1,4}(\Omega))} \leq C \left(v^0, u_I, u_V, u_B \right), \\ &\| (\mu_h^{\kappa})_{k=1}^{\kappa} \|_{\ell^{\infty}(W^{1,3}(\Omega))} \leq C \left(v^0, u_I, u_V, u_B \right). \end{split}$$

The optimal control problem in the fully discrete setting

Theorem

The optimization problem

$$\min J(u_{I}, u_{V}, u_{B}, (\varphi_{h}^{K})_{k=1}^{K}) \coloneqq \frac{1}{2} \|\varphi_{h}^{K} - \varphi_{d}\|^{2} + \frac{\alpha}{2} \left(\alpha_{I} \int_{\Omega} \frac{\epsilon}{2} |\nabla u_{I}|^{2} + \epsilon^{-1} W_{u}(u_{I}) dx \right) \\ \alpha_{V} \|u_{V}\|_{L^{2}(0,T;\mathbb{R}^{s_{V}})}^{2} + \alpha_{B} \|u_{B}\|_{L^{2}(0,T;\mathbb{R}^{s_{B}})}^{2} \right)$$

$$s.t. \quad (CHNS_{h})$$

$$(\mathcal{P}_{h})$$

has at least one solution and first order optimality conditions can be derived by Lagrangian calculus.

The limit $h \rightarrow 0$

Theorem

Let $(u_h^*, v_h^*, \varphi_h^*, \mu_h^*)$ denote a stationary point of (\mathcal{P}_h) . Then there exists a stationary point $(u^*, v^*, \varphi^*, \mu^*)$ of (\mathcal{P}_τ) , such that $u_{V,h}^* \rightarrow u_V^* \in U_V, \quad u_{B,h}^* \rightarrow u_B^* \in U_B, \quad \varphi_h^{k,*} \rightarrow \varphi^{k,*} \in W^{1,4}(\Omega),$ $u_{I,h}^* \rightarrow u_I^* \in H^1(\Omega), \qquad \varphi_h^{k,*} \rightarrow \varphi^{k,*} \in H^1(\Omega),$ $\mu_h^{k,*} \rightarrow \mu^{k,*} \in W^{1,3}(\Omega), \qquad v_h^{k,*} \rightarrow v^{k,*} \in H_\sigma(\Omega).$

Outline

Setting

The time discrete setting

The fully discrete setting

Numerical examples

Christian Kahle

Validity of the energy inequality

Christian Kahle

Rising Bubble, setup

Boundary control, setup from first [Hysing et al, 2009] Benchmark, $\rho_1 = 1000$, $\rho_2 = 100$, $\eta_1 = 10$, $\eta_2 = 1$, $\sigma = 15.6$, T = 1.0

Figure: left to right: φ^0 , φ_d , four Ansatzfunctions

Rising Bubble, results

Christian Kahle

Initial value identification

Optimization with a phase field as control works best with non-smooth free energy densities.

$$W_u(\varphi) = W^{\infty}(\varphi) = \begin{cases} \frac{1}{2}(1-\varphi^2) & \text{if } |\varphi| \le 1, \\ \infty & \text{else.} \end{cases}$$

Results in constraint minimization problem

$$\min_{u_l \in H^1(\Omega) \cap L^{\infty}(\Omega), |u_l| \leq 1} J(u_l)$$

Solved by VMPT [Blank, Rupprecht, SICON 2017].

Initial value problem, setup

Initial value control, setup from second [Hysing et al] Benchmark, ρ_1 = 1000, ρ_2 = 1, η_1 = 10, η_2 = 0.1, σ = 1.96, T = 1.0

Figure: left to right: φ_d , $\varphi_0 = u_I^0 = -0.8$

Initial value problem, result

Figure: left to right: u_l^{opt} , $\varphi(u_l^{opt})$ at final time with zero level line of φ_d

Christian Kahle

Energy stable time discretization concept for two-phase flow time discrete fully discrete

Energy stable time discretization concept for two-phase flow time discrete fully discrete Time discrete optimal control of two-phase flow with three kinds of control actions

time discrete fully discrete

Energy stable time discretization concept for two-phase flow time discrete fully discrete Time discrete optimal control of two-phase flow with three kinds of control actions time discrete fully discrete

Convergence analysis for $h \rightarrow 0$.

Energy stable time discretization concept for two-phase flow time discrete fully discrete Time discrete optimal control of two-phase flow with three kinds of control actions time discrete fully discrete

Convergence analysis for $h \rightarrow 0$.

Thank you for your attention.

christian.kahle@uni-koblenz.de