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Abstract: In this talk we discuss point-wise state constraint prob-
lems with sparse controls for a general class of optimal control prob-
lems. We use the penalty formulation and derive the necessary opti-
mality condition based on the Lagrange multiplier theory. The exis-
tence of Lagrange multiplier associated with the point-wise state con-
straint as a measure is established. Also we develop a semi-smooth
Newton method for the penalty formulation. Numerical tests are
presented for parabolic and elliptic control problems. The results
show that the state constraint optimal control method enables us
to develop a much powerful and useful control law. For example
one can minimize the extreme events and prevent blow up solutions
for semi-linear equations. We also extend the results for point-wise
gradient constraint
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State constraint optimal control problem
We discuss a point-wise state constraint problem with sparse controls for

a general class of optimal control problems, including semi linear elliptic,
parabolic equations and wave equation. State constrained optimal control
problems have presented a challenge for some time. Earlier works focused on
the derivation of first order optimality conditions. Lavrentiev-type regular-
ization approach is used for a entire domain control case in to the lack of the
regularity and existence of the multiplier associated with the point-wise state
constrain. It deduces to the mixed control-state type point wise constraints.

In this talk the control inputs enters in a partial domain or are of a finite-
rank and thus it is is much more general and practical. In order to remedy
of such problems.

• We use the penalty formulation [Ito-Kunisch] and derive the correspond-
ing necessary optimality condition for a wide class of point-wise state
constraint.

• Then, we establish a necessary optimality condition with measure-valued
Lagrange multiplier associated with the point-wise state constraint by
letting penalty parameter to the infinity. The penalty formulation is
very general and powerful.

• The uniform L1 estimate of Lagrange multiplier for the penalty formu-
lation is established for a general class of point-wise state constraint
optimal control problems. It is the one of our major contribution.

• The other contribution is to use the semi-smooth Newton method for the
saddle point problem for the penalized problem. It requires to solve a
sequence of symmetric saddle point linear systems.. An Algorithm based
on our formulation is very general to solve a wide class of point-wise sate
constraint problems and it is observed that it is rapidly convergent and
globally convergent. Numerical tests demonstrate the feasibility of the
penalty formulation and the algorithm. It enables us to develop a unified
approach for a state constraint optimal control problem.
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Problem formulation Consider the state constraint optimal con-

trol problem

min

∫ T

0

∫
Ω

(H(u) + J(y)) dxdt

subject to E(y, u) = 0 and y ≤ ψ (point-wise state constraint) E is

an equality constraint as below and ψ ≥ 0 is an obstacle function.

J and H are cost functionals for state y and control u, respectively.

Our approach is based on the penalty formulation: for ε > 0

min

∫ T

0

∫
Ω

(H(u) + J(y)) +
|(y − ψ)+|2

2ε
) dxdt. (0.1)

where (y − ψ)+ = max(0, y − ψ). One uses H(u) = |u|1 (L1) and

H(u) = |u|0 (L0) for the sparsity. Bu = IΩ̃u with a subdomain Ω̃

for example.

• The sparsity method can determine an active sparse domain.

• One can minimize an extreme event by minimizing

min

∫ T

0

(H(u) + J(y)) dxdt +
1

2
γ2 subject to |y| ≤ γ

and the penalty formulation is given by

min

∫ T

0

∫
Ω

(H(u)+J(y)) dxdt+

∫ T

0

∫
Ω

|(|y| − γ)+|2

2ε
) dxdt+

1

2
γ2

The necessary condition gives γ =

∫ T

0

∫
Ω

(y − γ)+

ε
dxdt.

• Norm constraint case (e.g., Navier Stokes)

min

∫ T

0

(H(u) +J(y)) dxdt+

∫ T

0

|(|∇y|L2 − γ)+|2

2ε
) dt+

1

2
γ2

γ =
1

|∇y|L2
(|∇y|L2 − γ)+

ε
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Examples Let A be the second order elliptic operator:

Ay = ∇ · (A0(x)∇y) + b(x) · ∇y + c(x)y

where matrixA0(x) is symmetric and uniformly positive definite,

b(x) and c(x) are uniformly bounded. We use the fact that

(Ay, y+) ≤ 0 for y ∈ H1(Ω). (0.2)

For a bounded domain Ω we consider the Dirichlet, Neumann

boundary conditions for state variable y

Parabolic semilinear equations

E(y, u) =
d

dt
y − Ay − F (y)−Bu− f, y(0) = y0 in Ω,

Elliptic semilinear equations

E(y, u) = Ay − F (y)−Bu− f in Ω, ,

Wave equation

E(y, u) =
d2

dt2
y−∆y−Bu−f, y(0) = y0,

d

dt
y(0) = v0 in Ω.

Here, F is a semilinear operator which is a sum of monotone

and Lipschitz operators and B is a bounded input operator from

U → L2(Ω), where U is a Hilbert space. f is a souse function

in L∞(0, T ;L2(Ω).For example a partial domain control Bu =

χΩ̃u. The well-posedness of the control problems, i.e., a unique

mild solution exists given initial conditions and control functions

have been well studied in the literatures, e.g., via the semigroup

approach, e.g., [Ito-Kappel]. For example, one can show that

y ∈ L∞((0, T )× Ω) given u ∈ L2(0, T, U) and y0 ∈ L∞(Ω) for

parabolic and elliptic case.
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Parabolic case For the simplicity we consider H(u) = 1
2|u|

2

(can be L1 or L0 control) Let X0 = H1
0(Ω) for the Dirichlet

boundary and X0 = H1(Ω) for the Neumann boundary. Let

〈·, ·〉X∗0 ,X0
be the dual product. Let y ∈ W = H1(0, T,X∗0 ) ∩

L2(0, T,X0) is a weak solution to

〈 d
dt
y−Ay−F (y)−Bu−f, ψ〉 = 0 for all ψ ∈ X0 and a.e. t ∈ (0, T ).

(0.3)

Here,

〈Ay, ψ〉 =

∫
Ω

(A0(x)∇y,∇ψ) + b(x) · ∇yψ + c(x)yψ) dx

and it defines a bounded bilinear elliptic form on X0 ×X0. We

assume a scalar value function F satisfies

(F (y1)− F (y2), y1 − y2) ≤ δ |y1 − y2|2 all y1, y2 ∈ X0

It follows from e.g, [Ito-Kapple] that (0.3) has a unique solution

y ∈ W , given y0 ∈ L2(Ω) and u ∈ L2(0, T ;X).
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Define the Lagrangian functional

L(y, u, p) = J(y)+
1

2
|u|2+

1

2ε
|(y−ψ)+|2L2+

∫ T

0

〈Ay+Bu+f− d
dt
y, p〉 dt.

It follows from the Lagrange multiplier theory, e.g., [Ito-Kunisch]

that the necessary optimality condition is given by

u(t) = −B∗p(t)

where y, p ∈ W satisfies the state and adjoint equation:
d
dty = Ay + F (y) + Bu + f, y(0) = y0

− d
dtp = A∗p + F ′(y)∗p + λε + J ′(y), p(T ) = 0

(0.4)

with

λε(t) =
(y(t)− ψ)+

ε
≥ 0..

We use the notation s+ = max(0, s). Here, (uε, yε, pε) depends

on ε > 0 but we drop the dependency for the simplicity. Note

that if there is a feasible control u ∈ L2(0, T ;U) so that y(t) ≤
ψ, then √

ε p(t) ∈ W
uniformly in ε > 0. In fact,

J(yε) +
|(yε(t)− ψ)+|2

ε
+

1

2
|uε|2

is uniformly bounded in ε > 0 and thus∫ T

0

|
√
ελε|2 dt is uniformly bounded in ε > 0.

Since the adjoint equation is linear, we consider the decomposi-

tion p = p1 + p2 where p2 satisfies

− d
dt
p2 = A∗p2 + F ′(y)∗p2 + J ′(y).

6



− d
dt
p1 = A∗p1 + F ′(y)∗p1 + λε

Multiplying e2ωtp−1 we have

−1

2

d

dt
(e2ωt|p−1 |2)+e2ωtω |p1(t)−|2 = e2ωt ((Ap−1 , p

−
1 )+(F ′(y)∗p−1 , p

−)+(p−, λε))

If F ′(y)− ω ≤ 0,

e2ωt|p−1 |2 ≤ 0.

Thus, p1(t) ≥ 0 and p2 ∈ H1(0, T ; dom(A∗)) uniformly in ε >

0. First, consider the Neumann boundary condition case n ·
(A0∇y) = g and thus n · (A0∇p) = 0 at the boundary ∂Ω.

Without loss of generality we assume A0 = I for the clarity of

our presentation through the remaining of the talk. We assume

b(x) = 0 at ∂Ω.

Next, we show∫ T

0

∫
Ω

λε dxdt is uniformly bounded in ε > 0.

First, integrating the adjoint equation, we have∫
Ω

p1(0) dx =

∫ T

0

∫
Ω

(F ′(y), p1(t) + λε(t)) dxdt (0.5)

Next, multiplying −p and y−ψ to the first and second equation

of (0.4), respectively∫
Ω

(y0 − ψ)p(0) dx +

∫ T

0

(
∂y − ψ
∂n

, p) dt

=

∫ T

0

(−(Aψ + f, p) +
|(y − ψ)+|2

ε
+ |B∗p|2

+(J ′(y), y − ψ) + (−F (y) + F ′(y)(y − ψ), p)) dxdt.
(0.6)
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Assume that for δ > 0

−F (y)+F ′(y)(y−ψ) ≥ −2ω(y−ψ)−(Aψ+f ) ≥ δ for y ≤ ψ,

y0 − ψ < −δ < 0 and ∂y−ψ
∂n ≤ 0 at ∂Ω. Since

((y − ψ)+, p) ≤ |(y − ψ)+|2

2ε
+

1

2
|
√
εp|2,

we obtain

(p1(0), ψ − y0) +
∫ T

0 (−F (y) + F ′(y)(y − ψ)− (Aψ + f ))p1(t) dt

+

∫ T

0

(|u|2 +
|(y − ψ)+|2

2ε
) dt

(0.7)

is uniformly bounded in ε > 0.
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Remark Concerning with our assumption on ψand f we have

the followings.

(1) Let ȳ satisfy

Aȳ + f = 0.

If we define ỹ = y − ȳ. then ỹ satisfies

d

dt
ỹ = Aỹ + Bu, ỹ(0) = y − 0− ȳ.

(2) If we discuss eωty(t) ≤ ψ, then ŷ = eωty satisfies

d

dt
ŷ = (A + ω)ŷ + Bû, ŷ(0) = y0.

where we assume f = 0.

(3) For F (y) = −y3

−F (y) + F ′(y)(y − ψ) = y3 − 3− 3y2(y − ψ) = y2(3ψ − 2y).

(4) For ψ = c1 + c2 (1− x)x on x ∈ Ω = (0, 1)

∆ψ = −c2,
∂ψ

∂n
= −c2.

Assume that uε → u in L2(0, T ;U) and yε − ψ → y − ψ in

L∞(0, T,Ω). In fact, since λε ∈ L1((0, T × Ω) uniformly, it

follows from the second equation in (0.4) that {pε} is a compact

in L∞(0, T ;L2(Ω)) and uε = −B∗pε has a strong convergence

subsequence un → u in L∞(0, T ;U). Thus, the corresponding

sequence yn − ψ converges strongly to L∞((0, T ) × Ω). Then,
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there exits λ ∈ L∞(Ω)∗ such that

d
dty = Ay + Bu + f, u = −B∗p

− d
dtp = A∗p + λ + J ′(y), 〈λ, y − ψ〉 = 0

y ≤ ψ and λ ≥ 0

(0.8)

That is, since |(y−ψ)+|2
ε is bounded and y ≤ ψ and since λε ≥ 0

and L1((0, T )×Ω) bounded λ ≥ 0 in L∞((0, T )×Ω)∗. In fact,

let X = L∞((0, T ) × Ω. It follows from the fact that closed

balls in X∗ are w∗-compact (by the Banach-Alaoglu theorem

there exists a w∗-accumulation point λ of λε. The sequence

yε−ψ and y−ψ generate a separable subspace of X. Therefore

we can assume without restriction that X itself is separable.

Using the fact that for separable spaces the w∗-topology on w∗-

compact subsets of X∗ is metrizable, we conclude that there

exists a subsequence λn such that w∗− limλn = λ. This implies

lim
n→∞
〈λn, yn − ψ〉 = 〈λ, y − ψ〉

Since

0 ≤ (λn, yn − ψ) = (λn, yε − y) + (λn − λ, y − ψ)→ 0

the complementarity 〈λ, y − ψ〉 = 0 holds.
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Dirichlet boundary case We consider the Dirichlet boundary con-

dition y = g(x) at ∂Ω. Since p(0) = 0 at ∂Ω, ∂
∂np1(t) ≤ 0 at

∂Ω. (0.5) becomes∫
Ω

p1(0) dx =

∫ T

0

(

∫
∂Ω

∂

∂n
pi(t) +

∫
Ω

λε) dt

and (0.7) becomes

(p(0), y0 − ψ)Ω −
∫ T

0

(g − ψ, ∂p
∂n

)∂Ω +

∫ T

0

(|u|2 +
|(y − ψ)+|2

ε

+(J ′(y), y − ψ)− (Aψ + f, p) + (−F (y) + F ′(y)(y − ψ), p) dt.

Assume that g − ψ ≤ −δ < 0. Using the same arguments as

above we have∫
Ω

p1(0)(ψ − y0) dx−
∫ T

0

(

∫
∂Ω

(ψ − g)
∂

∂n
p1 dsdt)

+

∫ T

0

(−F (y) + F ′(y)(y − ψ)− (Aψ + f ))p1(t) dt

+

∫ T

0

(|u|2 +
|(y − ψ)+|2

2ε
is uniformly bounded in ε > 0,

Hence, we have∫ T

0

∫
Ω

λε dxdt is uniformly bounded in ε > 0.

Thus, the optimality condition (0.8) holds for (y, u, p, λ).
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Boundary optimal control case Consider a boundary con-

trol of the form
∂

∂n
y + G(y) = Bu

at boundary ∂Ω with B ∈ L(U,L2(∂Ω)). Then, we have

∂

∂n
p + G′(y)p = 0.

for the adjoint p. We assume that −G(y) + G′(y)(y − ψ) ≥ δ

for y ≤ ψ. Note that

(y − ψ,A∗p)Ω = (−G′(y)(y − ψ), p)∂Ω − (−G(y) + Bu, p)∂Ω − (A(y − ψ), p)Ω

Using the similar arguments above p1(t) ≥ 0 and we have

(p(0), y0 − ψ)Ω −
∫ T

0 (−G(y) + G′(y)(y − ψ), p)∂Ω + (−F (y) + F ′(y)(y − ψ)− (Aψ + f ))p(t) dt

=

∫ T

0

(|u|2 +
|(y − ψ)+|2

ε
+ (J ′(y), y − ψ)− (Aψ, p).

and

(ψ − y(0), p(0))Ω +
∫ T

0 (−G(y) + G′(y)(y − ψ)), p1(t))∂Ω dt

+

∫ T

0

(−F (y) + F ′(y)(y − ψ)− (Aψ + f ), p1) + |u|2 +
|(y − ψ)+|2

2ε
) dt

is uniformly bounded in ε > 0. Under the same assumption as

above, we have∫ T

0

∫
Ω

λε dxdt is uniformly bounded in ε > 0.
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Algorithm (semi-smooth Newton method The opti-

mality system (0.8) is a general saddle point problem. Note

that a Newton derivative N [Ito-Kunisch] of the max function

s→ max(0, s) is given by

N(s) =


0 s ≤ 0

1 s > 0

Thus, for the linear case the semi-smooth Newton method [Ito-

Kunisch] is of the form for the new update (p+, y+) given the

current integrate (p, u) BB∗ D

D∗ −Q− χy>ψ
ε


 p+

y+

 =

 f

−Qyd −
χy>ψ
ε
ψ


(0.9)

where

J(y) = (Q(y − yd), y − yd).
Here, χS is the indicator function of set S and yd is a desired

state. and the solution operator D is given by

D = −A, D =
d

dt
− A, D =

d2

dt2
−∆,

for elliptic, parabolic and wave equation cases, respectively. One

can prove the local super linear convergence and the global mono-

tone convergence [Ito-Kunisch] . The details will be presented in

a forthcoming paper.

For our tests we discretize A by the standard central difference

method for A and the implicit Euler method for d
dt and the ex-

plicit central difference method for d2

dt2
in time under CFL condi-

tion. One can solve (0.9) for the discretized system by MINRES
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(symmetric indefinite system) or a reduced order CG for a large

scale system.

Numerical tests We consider two dimensional heat equation

yt = ∆y + χS(x)u(t) + f (x), y(0) = y0

in square domain Ω = (0, 1)2 with homogeneous boundary con-

dition y = 0, where S = (.4, .6)2 is the control subdomain.

ynj,i − ynj,i
∆t

=
4ynj,i − yni,i+1 − ynj,i−1 − ynj+1,i − ynj−1,i

h2
+Bj,iuj.i+fj,i, 1 ≤ i ≤ N−1, 1 ≤ j ≤ N−1.

with

yj,0 = yj,N = 0, 1 ≤ j ≤ N−1 y0,i = yN,i = 0, 1 ≤ i ≤ N−1

and h = 1
N . Thus,

Dy =
yn − yn−1

∆t
−Hyn, B = χS.

with H ∈ RN−1,N−1 is the central difference matrix.

We set N = 10 and ∆ = 1
50 and y0 = exp(−100((x1 − .5)2 +

(x2 − .5)2)) and ψ = .02, f = 1 and yd = 0. We let y(t) ≤ ψ

on .1 ≤ t ≤ T = 1.

Figure 1: 2D heat equation
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The first two figures are for state and control trajectory on (0, T ).

(state vector y(t) ∈ R81,1 and control vector u(t) ∈ R9,1. The

last two figures show control function on S and state function

y(t) on Ω at t = .6. The control trajectory achieves the state

constraint on t ≥ .1 and the control becomes stationary as t

increases as we discussed.
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