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Motivation Mode
Mat M

Data assimilation in Numerical Weather Prediction M

@ Data assimilation methods aim at finding a good initial condition of the
athmospheric system in order to get better weather forecasts;

@ Information can be obtained mainly from ground stations, radionsonds or
satellite images;

@ Reconstruction results depend strongly on the number of observations,
which can be very limited in some cases.
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Approaches to data assimilation Mot

Approaches based on static covariance matrices
o Optimal interpolation
o 3D-Var

Recent approaches based on dynamic covariance matrices
o 4D-Var

o Extended Kalman filters
o Ensemble methods

B

Atmospheric Modeling, Data Assimilation and Predictability



Optimal interpolation Modk

. Mat M
Kalman filter M

@ u, : background information vector
9 u, : “analysis” (estimation of the state)
@ z: observation vector

@ z = Hu + v, where H is an observation operator and v is the observation
error

o all variables are assumed to be Gaussian
Kalman filter

u, = up + K(z — Huy),

where K = BHT (HBH™ + R)~! is the Kalman gain corresponding to the linear
unbiased estimator of minimim variance.
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MAP estimation M

@ The data assimilation problem may be treated via a Bayesian approach to
find the maximum-a-posteriori (MAP) estimator.
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3 D 'Va.r Mode

Mat
MAP estimation i MM

@ The data assimilation problem may be treated via a Bayesian approach to
find the maximum-a-posteriori (MAP) estimator.

@ Using the Gaussian probability density functions
1
pleh) o exp (3 e~ Ho) "R (e )

pla) o exp (o = 7By~ 1))

o Using Bayes formula, p(u|z) = 2445 the MAP estimator corresponds to
the solution of the 3D-Var problem

1 1
min E(Z — Hu)"R™'(z — Hu) + E(ub —u)"' B (up, — u).
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Intuition of 4D-Var " =M
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4D-Var

Le Dimet and Talagrand (1986)

Finite dimensional problem

l
_1 (TR V)
] =55 ()] R [H(y(1)
—|—% [u—ub]TB l[u—ub]
subject to:
y(t) = M(y(t)) (Dynamical system)

y(th) =u (Initial condition).

2o(2:)]
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4 D 'Var Mode

Le Dimet and Talagrand (1986)

Finite dimensional problem

Mat \

1 I
HlHlJ u) = =5 Z 20(t)]" R [H((8:)) — 20(1)]
i=0
+% [u— ub]T e — wp]

subject to:

y(t) = M(y(t)) (Dynamical system)

y(th) =u (Initial condition).

Features

@ The dynamic problem incorporates all observations in a given time window;
@ The nonlinear dynamics may be taken into account;
@ The operational use is still a computational challenge.

10/30



4D-Var Mode

Mat
Le Dimet and Talagrand (1986) ’

Finite dimensional problem
1 I
man (y,u) = =5 ; ()] R [H((1:) — z0(t:))]
—|—% [u— ub]T =1 [ — up)
subject to:
y(t) = M(y(t)) (Dynamical system)
y(th) =u (Initial condition).

What about the infinite-dimensional problem?
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@ Analysis of variational data assimilation
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Semilinear problem Mat = V|

muinJ(y, u) = %Z[y(x/ﬁ 1) — 20 (i, 1))

k,i
1
+f|\u—ublll‘;4
+Ay+g(y) 0 inQ=0x]0,T[

subject to: y= 0 onX=Ix]0,T[
y(x,0)= u inQ,

Difficulties
@ Higher regularity of the initial condition is required to get some sort of
continuity of the state.
@ Pointwise misfits in the cost leads to right hand sides in M(Q) for the
adjoint equation. lll-posedness!
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Semilinear problem Mat = V|

T
1
mln‘] y7 2/ Wko-tpl Xk, t) - Zo(xkv t)]z dr
0 l
1 0
+ 3l =l + ZIV (= )72

+Ay+g(y) 0 inQ=0x]0,T[
subject to: y= 0 onX=TIx]0,T[

y(x,0)= u inQ,

Difficulties

@ Higher regularity of the initial condition is required to get some sort of
continuity of the state.

@ Pointwise misfits in the cost leads to right hand sides in M(Q) for the
adjoint equation. lll-posedness!

@ w and o are binary vectors, and p;(r) support functions
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Well-posedness Mat

Assumption on the nonlinearity

0 g=g(x,1,y): O x R— R satisfies the Carathéodory conditions and is
uniformly bounded at the origin, i.e., |g(x, ,0)| < K, for some K > 0,

o g is monotone increasing with respect to y for almost every (x,¢) € Q,
o g is twice continuously differentiable with respect to y and
gy (x, 2, )| + [gyy(x,1,¥)| < K,

for some K > 0, for almost all (x,7) € Q and any y € R.

Theorem

Ifu € H}(Q) and the nonlinear term verifies the assumption, then the semilinear
equation has a unique solutiony € H>»'(Q) — L*(0,T; C(2)). Moreover,

Iyllez) < (1 + HuHH(I)(Q)), for some ¢ > 0.
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Differentiability N

Theorem

The control-to-state mapping S : Hy(2) — H>'(Q), u — S(u) = y, is Gateaux
differentiable. Its derivative, in direction h € H}(S2), is given by n € H>'(Q)
solution of:

9+ An+g ()= 0 inQ
n= 0 onX
n(x,0)= h inQ,
Adjoint equation
) .
,ai;’ +Ap+¢p= p inQ
p= 0 onX
p(x,T)= 0 inQ,

with p € L*(0, T; M(Q)) has a unique solution p € L2(0, T; W,”(Q2)), with
r € [1,-"—[. Casas-Clason-Kunisch 2013, Meyer-Susu 2017

m—1

13/30



Optimality system

State equation (in strong form):

—|-Ay +g(y)= 0 inQ,
y= 0 on}j
y(x,0) = u inq.
Adjoint equation (in very weak form):
L E: (
ot p g P = WkUzpz — 2o\ X,
p= 0
p(x,T)= 0
Gradient equation (in weak form):
—9A(a — up) + B~ (l/t —up) +p(0) =

N

o O

1] ©6(x —x)

in Q,

onTl.

Mode

Mat M

inQ,

ony,
in Q.
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@ Interplay between function spaces and type of observations;
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Extensions Mat =\

@ Interplay between function spaces and type of observations;

@ Solutions for the dynamics of the atmosphere are not necessarily
continuous;

@ Variational DA models typically contain a classical Tikhonov regularization
|| — up||%-,, which is not appropriate to reconstruct sharp fronts

o Recently Freitag and co. (2013, 2015) proposed an alternative total variation
(TV) regularization to recover solutions with sharp fronts.

@ A drawback of TV is, however, the staircase effect, which may lead to
undesired artifacts in the reconstruction.

@ We studied second order total generalized variation regularization De los
Reyes, Loayza (2019)

Is this of operational use?
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@ Optimal placement problem
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Observation stations Mat — |\
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More observations are required to further improve forecasts
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Mode

Observation stations Mat — |\

150w 120m sow sow D oe e e soe 12ve 1soe

Problem

One has to make the best possible decision about where to locate the next
observation stations to obtain better reconstructions of the initial condition.
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State-of-the-art Ma

o Optimal filtering Bensoussan and collab. (1971, 1972), Burns and collab. (1994, 1995,

1998, 2009, 2011), Rautenberg and collab. (2015, 2016)
o Observability approaches Privat, Trelat, Zuazua (2013, 2015, 2017)

o Supervised learning Haber, Horesh, Tenorio (2008, 2010), De los Reyes, Schénlieb
and collab. (2013, 2016, 2017), Kunisch and collab. (2013, 2018)

o Bayesian optimal experimental design Alexanderian et al. (2014, 2015), Herzog et
al. (2015, 2017)

v
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State-of-the-art e

o Optimal filtering Bensoussan and collab. (1971, 1972), Burns and collab. (1994, 1995,
1998, 2009, 2011), Rautenberg and collab. (2015, 2016)

o Observability approaches Privat, Trelat, Zuazua (2013, 2015, 2017)

o Supervised learning Haber, Horesh, Tenorio (2008, 2010), De los Reyes, Schanlieb
and collab. (2013, 2016, 2017), Kunisch and collab. (2013, 2018)

o Bayesian optimal experimental design Alexanderian et al. (2014, 2015), Herzog et
al. (2015, 2017)

4

Features and goals

@ Bilevel learning approach: flexibility about quality measures and more
natural framework for nonlinear lower level problems.

@ Analysis of the resulting problem in function space: optimality conditions
and multiplier regularity.

@ Design of efficient solution algorithms.
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Bilevel learning problem e

Mixed integer-infinite dimensional optimization M
N N
m?& I}IIZL(}V’))T) dxdt + B/Zl uj, Ll ) dx + B Zwk + Bs EG‘
w,o€0, N
Q0 Jj=I1 Jj=l1
subjectto (Vj=1,...,N):

mln* /Z WAUsz )i (ks 1) — Zoj (x5 1)) >dt

1
§||“j — wjllp-1 + 51V (5 — up) |72

subject to:
Jyj _ N .
ot +Ay+g(y) = 0 inQ
yy = 0 onXx
yi(0) = u in €.
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Bilevel learning problem Mode

) . o ) . L . Mat M
Mixed integer-infinite dimensional optimization M
N
L‘,,U%%%,I}HZL iy} dadi + B/;l ) Ak D it Po D o
Q
@ 3, > 0 corresponds to the sparsity penalty term for w and 3, > 0 the one for o;
@ The training set <u}L,y;f>, Vj=1,...,N is built from improved reconstructions of the initial

condition and the observed state;
@ We aim at learning the vector of placements w such that the quality measure of the
training set is minimized in average (uj.,y}).
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Dealing with sparsity Mat =]

@ Relaxing the integer constraints, 0 < w, o < 1, we simply get linearity with
respect to w and o:

N . N
L DRI DO CAIRISTD SRS B
-7 0 j=l o J=1 k i
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N N
0<r£i§1<1jjzl*(yj7)’;r) dxdt+ﬂ/zl(uf7uf) dx+ B, > wi+Bs Y o
- 7= 0 j=1 o J=1 k i

@ Although sparsity is obtained as a result of the ¢;-norm penalty, the number
of values different from 0 or 1 makes the solution difficult to interprete
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Dealing with sparsity Mat =]

@ Relaxing the integer constraints, 0 < w, o < 1, we simply get linearity with
respect to w and o:

N N
0<r£i§1<1jjzl*(yj7)’;r) dxdt+ﬂ/zl(uf7uf) dx+ B, > wi+Bs Y o
- 7= 0 j=1 o J=1 k i

@ Although sparsity is obtained as a result of the ¢;-norm penalty, the number
of values different from 0 or 1 makes the solution difficult to interprete

@ We consider also an approximation of the 7, norm, with p € (0, 1). For

instance
: ifo<x<3$
P(x) = qpe(x) 5 <x<2e
1 if 2e <x <1

Alexandarian et al. 2014

19/30



Mode

Control of a singular system with measures Mat =M

Replacing the lower level problems by their necessary optimality condition:

0<I§11§1<1J Y, Dy Uy W) IIZL y/,yj dxdt—i—ﬁ/Zlu/ dx—&-ﬁMZWk—}—ﬁme

Q /=1
subject to:
ayj
E +Ay;+g(j)= 0
yile= 0
) yi(0) = u
—SL A g p = D wioipi(t) (e, 1) — 20(x,1)] @ 8(x — 1)
k,i
pilr= 0
pi(T)= 0
— A (uj — up) + B~ (u; — up) = —p;(0)

e

<
=
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Control of a singular system with measures Mat =M

\'

Replacing the lower level problems by their necessary optimality condition:

0<I§ll§1<l‘/ Y, Dy Uy W) IIZL y/,yj dxdt—i—[J’/Zlu/ dx—&—ﬁMZwk—Q—ﬁme

Q /=1

subject to:

ayj
E +Ayi+g(y)= 0

)’J|1 =0
yi(0) = u
15) _
;’ +AT D+ i = Y wkoipi(t) [F(x, 1) — 2(x,1)] © S(x — xx)
k,i
pilr= 0
pi(T)= 0
—OA(w; — up) + B~ (uj — wp) = —p;(0)
l_l|p = 0.

Casas, Clason, Kunisch, Neitzel, Pieper, Vexler, ...
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Control of a singular system with measures Mat =M

Replacing the lower level problems by their necessary optimality condition:

0<I§11;1<1J Y, Dy Uy W) IIZL y/,yj dxdt—i—[‘f/Zluj dx—&-ﬁwZWk—t—ﬁme

Q /=1
subject to:
ayj
E +Ay;+g(j)= 0
yile= 0
) yi(0) = u
—SL A g p = D wioipi(t) (e, 1) — 20(x,1)] @ 8(x — 1)
k,i
pilr= 0
pi(T)= 0
— A (uj — up) + B~ (u; — up) = —p;(0)

e

=l
=

Difficulty: No unique solution of the optimality system!
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Adapted penalty approach " =M

For (3,p, @) € H>'(Q) x L*(W,"(2)) x Hj(9) solution of the bilevel problem, find
(Vs Doy s Woys S5 V) € H1(Q) x L2(Wy"(Q)) X Vaa x L*(Q) x L*(Q) that solves:

minJy (v, p,W,5,9) = J0,p,w) + 3 [[ (s =80 + 3 [[ (v =& 0)p)’

0 0
1 1 _ 1
+5lp =Pl + 5 [ (s =80 + 5 [ =5 GIp)
0 0
subject to:
ady .
ar +Ay+s= 0 inQ
y= 0 on X
y(0)= —G7'p(0) InQ
0, .
— ATty = Y wioip(0) b 1) — 2o(n )] @60 —x)  inQ
o ki
p= 0 onXY
p(T)= 0 in Q.
(Gu, 7)1 gy = /(u —u))B ' + ﬁ/V(u —up).VT = — /p(O)T7 Vr € Hy(Q).
Q Q Q
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Consistency
The penalized problem has at least one solution
(Vs Py Wy Sy, V) € HPH(Q) X LA(Wy" (Q)) X Vg X LX(Q) x LX(Q) and
corresponding Lagrange multipliers (n,,¢,) € L*(Q) x H*'(Q). Moreover, the
sequence {(yy,p~, W, S, v,)} converges strongly to the solution
¥,p,w,8(¥),8' (¥)p)-
o Structure of penalized cost and properties of state and adjoint eq. to get
boundedness of variables;
o Compact embedding H*!(Q) < L“(Q) with 1 < 10, and continuous
embedding W' (Q) < L1(Q) for g < -—;
o Existence of multipliers using the linearity of the constraints.
o Using Holder properties of Bochner spaces and properties of the PDE, we
get uniform bounds on the regularized variables.
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(Vs Py Wy Sy, V) € HPH(Q) X LA(Wy" (Q)) X Vg X LX(Q) x LX(Q) and
corresponding Lagrange multipliers (n,,¢,) € L*(Q) x H*'(Q). Moreover, the
sequence {(yy,p~, W, S, v,)} converges strongly to the solution
¥,p,w,8(¥),8' (¥)p)-
o Structure of penalized cost and properties of state and adjoint eq. to get
boundedness of variables;
o Compact embedding H*!(Q) < L“(Q) with 1 < 10, and continuous
embedding W' (Q) < L1(Q) for g < -—;
o Existence of multipliers using the linearity of the constraints.
o Using Holder properties of Bochner spaces and properties of the PDE, we
get uniform bounds on the regularized variables.

Lagrange multipliers

There exists an adjoint state (1, (;, 7;) € L*(Q) x H>'(Q) x H} (), for all
j=1,...,N, and KKT multipliers A%, \’ € R™ x R"".
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Adjoint system of the bilevel problem Mat =]

omi .
——L + A"+ g (vj)nj + &" )P

ot
=Y wioipi(1)G(x, 1) @ 6(x —xi) — Vi L(y;) inQ
k,i
7; =0 onyY
ni(T) =0 in €.
9

5, TAGHE )G =0  inQ
¢ =0 on X
G0)=—7 InQ
—9AT + B~'7; =n;(0) — BV, l(w;) inQ
77 =0 onl,

very weakly, strongly and weakly, respectively.
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Karush-Kuhn-Tucker condition Mat =\

Gradient system:

Z/Zalpl C/ Xk, 1 y/(xka ) Zoj(Xk7t)) dt = /\Z - /\b7 Vka

=Ly i

N T
- Z/ Wkpl Cj Xk ) (yj(xka t) - ZOj(xkvt)) dr = )\Z.Hri - )\ZX—H? Vi.
0

J=1

Complementarity system:

/\2207)\520, forallr=1,...,n,+nr
Y = N (wp — 1) = 0, forallk=1,...,n
N o= (6:—1)=0, foralli=1,...,nr
0<w <1, forallk=1,...,n

0<a <1, foralli=1,...,nr.
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@ Numerical results
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Projected BFGS method Mt

@ Let S be an index set and Rs the matrix defined by

_J o4, ifieSorjeSs;
Rs {0, if not.
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Projected BFGS method Mt

@ Let S be an index set and Rs the matrix defined by

Rs :{ 6j, ifieSorjes;

0, ifnot.

o We denote by y# = Rye. () ().
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Mode

Projected BFGS method Mat = ]
@ Let S be an index set and Rs the matrix defined by
ifieSorjes;

_ ) %y
Rs _{0, if not.

o We denote by y# = Rye () (y).
@ H, corresponds to the iteration matrix of the projected BFGS method

HkSkS/ZHk y,i# (y,’#)T
— 5 R + T

Hipr = Ryex () HiRpei () — Ryee (wy) sTHsy SV

25/30



. Mode
Projected BFGS method Mat = ]
@ Let S be an index set and Rs the matrix defined by
_J o4, ifieSorjeSs;
Rs _{ 0, if not.

o We denote by y# = Rye. () ().
@ H, corresponds to the iteration matrix of the projected BFGS method

# (T

HkSkS/ZHk Yk (yk )

Hi1 = Ryee (g HiRiek ) — Rick () — 75— Rres sy
1 19k (we) HER e (wy) 1k (wi) s,{Hksk Ik (w) t S,{yif

@ We consider the recursive update of the inverse Kelly 1999:

# (L ENT # ( HNT # ( FNT
Bii1 = (]_Sk 0%) )R,BkR, (I_yk (si) >+sk (si)

OE)rs OO sE ) )T
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Implementation details Mat =]

@ We solve in parallel N independent data assimilation optimality systems
and N independent adjoint systems. The information is then integrated via
the gradient formula

@ The projected BFGS is used for the update of the placement vectors w and
o. The method is initialized with the identity matrix.
@ Projected line-search rule with backtracking of the form
1 _
werteo k=01
@ The nonlinearity considered as example is g(y) = —=

26/30
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Experiment 1 Mt =M

o Placement is allowed in any grid point

@ Observations are taken in every time step

o Goal: verify the descent of the cost functional along the iterations
@ Goal: observe how the solution structure changes with respect to ~
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o Placement is allowed in any grid point
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20 [ 7 300
200 300
200
150 200
100 100 100
50
L 0 0
1 2 3 4 5 6 7 2 1 6 8 0 2 4 6 8 10 12

iter iter iter

Figure: Descent of the cost function
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Experiment 1 Mt =M

@ Placement is allowed in any grid point

@ Observations are taken in every time step

o Goal: verify the descent of the cost functional along the iterations
@ Goal: observe how the solution structure changes with respect to ~

B # zerosinw  # onesinw
1x107° 0 400
0.0001 88 312
0.0005 116 284
0.0020 176 224
0.0050 228 172
0.0072 268 132
0.0073 302 98
0.0074 334 66
0.0079 361 39

0.0080 400 0
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Experiment 1

@ Placement is allowed in any grid point
@ Observations are taken in every time step

Mode

o Goal: verify the descent of the cost functional along the iterations
@ Goal: observe how the solution structure changes with respect to ~
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Mode

Experiment 2 Mt =M

M
@ Placement is allowed only at 8 candidate locations
x; = (0.2,0.2) x4 = (0.8,0.0) x; = (0.4,0.9)
x; = (0.5,0.4) xs = (0.8,1.0) xs = (0.3,0.8)
x3 = (0.7,0.3) xs = (0.8,0.6)

@ Observations are taken in every time step
@ Goal: observe how the solution structure changes with respect to the
penalization parameters
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Experiment 2 Mt =M

M
@ Placement is allowed only at 8 candidate locations
x; = (0.2,0.2) x4 = (0.8,0.0) x; = (0.4,0.9)
x; = (0.5,0.4) xs = (0.8,1.0) xs = (0.3,0.8)
x3 = (0.7,0.3) x¢ = (0.8,0.6)

@ Observations are taken in every time step
@ Goal: observe how the solution structure changes with respect to the
penalization parameters
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Outline "

@ Summary of topics



Mode

Summary oy

@ 4D data assimilation problems in infinite dimensions: control spaces, type
of observations, nonlinear dynamics;

@ Bilevel learning (data-driven) approaches for estimating parameters in
PDE-constrained optimization problems;

@ Optimal placement of observations/sensors in inverse problems;
@ Sparse solutions for PDE-constrained optimization problems;
@ Singular control problems with measures as controls;

o Efficient numerical strategies for solving bilevel PDE-constrained
optimization problems.
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IFIP TC7 Conference Mat =]

29th IFIP TC7 CONFERENCE ON SYSTEM
MODELLING AND OPTIMIZATION

Quito, Ecuador, September 2020
; Escuela Politécnica Nacional

August 31 - September 4, 2020
Save the date!
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