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Motivation
Data assimilation in Numerical Weather Prediction

Data assimilation methods aim at finding a good initial condition of the
athmospheric system in order to get better weather forecasts;

Information can be obtained mainly from ground stations, radionsonds or
satellite images;
Reconstruction results depend strongly on the number of observations,
which can be very limited in some cases.
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Equations of the athmosphere
Basic model
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+ Boundary conditions
+ Initial conditions
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Approaches to data assimilation

Approaches based on static covariance matrices
Optimal interpolation
3D-Var

Recent approaches based on dynamic covariance matrices
4D-Var
Extended Kalman filters
Ensemble methods

Eugenia Kalnay
Atmospheric Modeling, Data Assimilation and Predictability
Cambridge Univ. Press, 2002.
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Optimal interpolation
Kalman filter

ub : background information vector
ua : “analysis” (estimation of the state)
z : observation vector
z = Hu + v, where H is an observation operator and v is the observation
error
all variables are assumed to be Gaussian

Kalman filter

ua = ub + K(z− Hub),

where K = BHT(HBHT + R)−1 is the Kalman gain corresponding to the linear
unbiased estimator of minimim variance.
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Intuition of OI
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3D-Var
MAP estimation

The data assimilation problem may be treated via a Bayesian approach to
find the maximum-a-posteriori (MAP) estimator.

Using the Gaussian probability density functions

p(z|u) ∝ exp

(
−1

2
(z− Hu)TR−1(z− Hu)

)
p(u) ∝ exp

(
−1

2
(ub − u)TB−1(ub − u)

)

Using Bayes formula, p(u|z) = p(z|u)p(u)
p(z) , the MAP estimator corresponds to

the solution of the 3D-Var problem

min
1
2

(z− Hu)TR−1(z− Hu) +
1
2

(ub − u)TB−1(ub − u).
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Intuition of 4D-Var
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4D-Var
Le Dimet and Talagrand (1986)

Finite dimensional problem

min
u

J(y, u) =
1
2

l∑
i=0

[H(y(ti))− zo(ti)]
T R−1

i [H(y(ti))− zo(ti)]

+
1
2

[u− ub]
T B−1 [u− ub]

subject to:
y(tl) = M(y(t0)) (Dynamical system)
y(t0) = u (Initial condition).
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[u− ub]
T B−1 [u− ub]

subject to:
y(tl) = M(y(t0)) (Dynamical system)
y(t0) = u (Initial condition).

Features
The dynamic problem incorporates all observations in a given time window;
The nonlinear dynamics may be taken into account;
The operational use is still a computational challenge.
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subject to:
y(tl) = M(y(t0)) (Dynamical system)
y(t0) = u (Initial condition).

What about the infinite-dimensional problem?
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Semilinear problem

min
u

J(y, u) =
1
2

∑
k,i

[y(xk, ti)− z0(xk, ti)]2

T∫
0

∑
k,i

wkσiρi(t)[y(xk, t)− zo(xk, t)]2 dt

+
1
2
‖u− ub‖2

B−1

+
ϑ

2
‖∇(u− ub)‖2

L2(Ω)

∂y
∂t + Ay + g(y) = 0 in Q = Ω×]0,T[

subject to: y = 0 on Σ = Γ×]0,T[
y(x, 0) = u in Ω,

Difficulties
Higher regularity of the initial condition is required to get some sort of
continuity of the state.
Pointwise misfits in the cost leads to right hand sides inM(Q) for the
adjoint equation. Ill-posedness!

w and σ are binary vectors, and ρi(t) support functions
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Well-posedness

Assumption on the nonlinearity
g = g(x, t, y) : Q× R 7→ R satisfies the Carathéodory conditions and is
uniformly bounded at the origin, i.e., |g(x, t, 0)| ≤ K, for some K > 0,
g is monotone increasing with respect to y for almost every (x, t) ∈ Q,
g is twice continuously differentiable with respect to y and

|gy(x, t, y)|+ |gyy(x, t, y)| ≤ K,

for some K > 0, for almost all (x, t) ∈ Q and any y ∈ R.

Theorem
If u ∈ H1

0(Ω) and the nonlinear term verifies the assumption, then the semilinear
equation has a unique solution y ∈ H2,1(Q) ↪→ L2(0,T; C(Ω)). Moreover,

‖y‖H2,1(Q) ≤ c(1 + ‖u‖H1
0(Ω)), for some c > 0.

12 / 30



Differentiability

Theorem

The control-to-state mapping S : H1
0(Ω)→ H2,1(Q), u 7→ S(u) = y, is Gâteaux

differentiable. Its derivative, in direction h ∈ H1
0(Ω), is given by η ∈ H2,1(Q)

solution of: 
∂η
∂t + Aη + g′(y)η = 0 in Q

η = 0 on Σ
η(x, 0) = h in Ω,

Adjoint equation

−∂p
∂t

+ A∗p + g′(y)p = µ in Q

p = 0 on Σ
p(x,T) = 0 in Ω,

with µ ∈ L2(0,T;M(Ω)) has a unique solution p ∈ L2(0,T; W1,r
0 (Ω)), with

r ∈ [1, m
m−1 [. Casas-Clason-Kunisch 2013, Meyer-Susu 2017
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Optimality system
State equation (in strong form):

∂ȳ
∂t + Aȳ + g(ȳ) = 0 in Q,

ȳ = 0 on Σ,
ȳ(x, 0) = ū in Ω.

Adjoint equation (in very weak form):

−∂p̄
∂t

+ A∗p̄ + g′(ȳ)p̄ =
∑
k,i

wkσiρi(t) [ȳ(x, t)− zo(x, t)]⊗ δ(x− xk) in Q,

p̄ = 0 on Σ,
p̄(x,T) = 0 in Ω.

Gradient equation (in weak form):

−ϑ∆(ū− ub) + B−1(ū− ub) + p̄(0) = 0 in Ω,
ū = 0 on Γ.
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Extensions

Interplay between function spaces and type of observations;

Solutions for the dynamics of the atmosphere are not necessarily
continuous;
Variational DA models typically contain a classical Tikhonov regularization
‖u− ub‖2

B−1 , which is not appropriate to reconstruct sharp fronts
Recently Freitag and co. (2013, 2015) proposed an alternative total variation
(TV) regularization to recover solutions with sharp fronts.
A drawback of TV is, however, the staircase effect, which may lead to
undesired artifacts in the reconstruction.
We studied second order total generalized variation regularization De los
Reyes, Loayza (2019)

Is this of operational use?
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Observation stations

More observations are required to further improve forecasts

Problem
One has to make the best possible decision about where to locate the next
observation stations to obtain better reconstructions of the initial condition.
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State-of-the-art

Optimal filtering Bensoussan and collab. (1971, 1972), Burns and collab. (1994, 1995,
1998, 2009, 2011), Rautenberg and collab. (2015, 2016)

Observability approaches Privat, Trelat, Zuazua (2013, 2015, 2017)

Supervised learning Haber, Horesh, Tenorio (2008, 2010), De los Reyes, Schönlieb
and collab. (2013, 2016, 2017), Kunisch and collab. (2013, 2018)

Bayesian optimal experimental design Alexanderian et al. (2014, 2015), Herzog et
al. (2015, 2017)

Features and goals
Bilevel learning approach: flexibility about quality measures and more
natural framework for nonlinear lower level problems.
Analysis of the resulting problem in function space: optimality conditions
and multiplier regularity.
Design of efficient solution algorithms.
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Bilevel learning problem
Mixed integer-infinite dimensional optimization

min
w,σ∈{0,1}

x

Q

N∑
j=1

L(yj, y†j ) dxdt + β

∫
Ω

N∑
j=1

l(uj, u†j ) dx + βw

∑
k

wk + βσ
∑

i

σi

subject to (∀j = 1, . . . ,N) :

min
uj

1
2

T∫
0

∑
k,i

(
wkσiρi(t)[yj(xk, t)− zoj(xk, t)]

2
)

dt

+
1
2
‖uj − ubj‖B−1 + ϑ

2 ‖∇(uj − ubj)‖2
L2(Ω)

subject to:
∂yj

∂t
+ Ayj + g(yj) = 0 in Q

yj = 0 on Σ
yj(0) = uj in Ω.
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x

Q

N∑
j=1

L(yj, y†j ) dxdt + β

∫
Ω

N∑
j=1

l(uj, u†j ) dx + βw

∑
k

wk + βσ
∑

i

σi

βw > 0 corresponds to the sparsity penalty term for w and βσ > 0 the one for σ;

The training set
(

u†j , y
†
j

)
, ∀j = 1, . . . ,N is built from improved reconstructions of the initial

condition and the observed state;
We aim at learning the vector of placements w such that the quality measure of the
training set is minimized in average

(
u†j , y

†
j

)
.
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Dealing with sparsity

Relaxing the integer constraints, 0 ≤ w, σ ≤ 1, we simply get linearity with
respect to w and σ:

min
0≤w,σ≤1

x

Q

N∑
j=1

L(yj, y
†
j ) dxdt + β

∫
Ω

N∑
j=1

l(uj, u
†
j ) dx + βw

∑
k

wk + βσ
∑

i

σi

Although sparsity is obtained as a result of the `1-norm penalty, the number
of values different from 0 or 1 makes the solution difficult to interprete
We consider also an approximation of the lp norm, with p ∈ (0, 1). For
instance

φ(x) =


x
ε if 0 ≤ x < ε

2

pε(x) if ε2 < x ≤ 2ε
1 if 2ε ≤ x ≤ 1

Alexandarian et al. 2014
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Control of a singular system with measures
Replacing the lower level problems by their necessary optimality condition:

min
0≤w,σ≤1

J(y, p, u,w) =
x

Q

N∑
j=1

L(yj, y†j ) dxdt + β

∫
Ω

N∑
j=1

l(uj, u†j ) dx + βw

∑
k

wk + βσ
∑

i

σi

subject to:

∂yj

∂t
+ Ayj + g(yj) = 0

yj|Γ = 0
yj(0) = uj

−∂pj

∂t
+ A∗pj + g′(yj)pj =

∑
k,i

wkσiρi(t) [ȳ(x, t)− zo(x, t)]⊗ δ(x− xk)

pj|Γ = 0
pj(T) = 0

−ϑ∆(uj − ub) + B−1(uj − ub) = −pj(0)
ū|Γ = 0.

Casas, Clason, Kunisch, Neitzel, Pieper, Vexler, ...
Difficulty: No unique solution of the optimality system!
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Control of a singular system with measures
Replacing the lower level problems by their necessary optimality condition:

min
0≤w,σ≤1

J(y, p, u,w) =
x

Q

N∑
j=1

L(yj, y†j ) dxdt + β

∫
Ω

N∑
j=1

l(uj, u†j ) dx + βw

∑
k

wk + βσ
∑

i

σi

subject to:

∂yj

∂t
+ Ayj + g(yj) = 0

yj|Γ = 0
yj(0) = uj

−∂pj

∂t
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wkσiρi(t) [ȳ(x, t)− zo(x, t)]⊗ δ(x− xk)

pj|Γ = 0
pj(T) = 0

−ϑ∆(uj − ub) + B−1(uj − ub) = −pj(0)
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Adapted penalty approach
For (ȳ, p̄, ū) ∈ H2,1(Q)× L2(W1,r

0 (Ω))× H1
0(Ω) solution of the bilevel problem, find

(yγ , pγ ,wγ , sγ , vγ) ∈ H2,1(Q)× L2(W1,r
0 (Ω))× Vad × L2(Q)× L2(Q) that solves:

min
w,s,v

Jγ(y, p,w, s, v) = J(y, p,w) +
γ

2

x

Q

(s− g(y))2 +
γ

2

x

Q

(v− g′(y)p)2

+
1
2
‖p− p̄‖2

L2(Q) +
1
2

x

Q

(s− g(ȳ))2 +
1
2

x

Q

(v− g′(ȳ)p̄)2

subject to:
∂y
∂t

+ Ay + s = 0 in Q

y = 0 on Σ

y(0) = −G−1p(0) in Ω

−∂p
∂t

+ A∗p + v =
∑
k,i

wkσiρi(t) [y(x, t)− zo(x, t)]⊗ δ(x− xk) in Q

p = 0 on Σ
p(T) = 0 in Ω.

〈Gu, τ〉H−1,H1
0

:=

∫
Ω

(u− ub)B−1τ + ϑ

∫
Ω

∇(u− ub).∇τ = −
∫
Ω

p(0)τ,∀τ ∈ H1
0(Ω).
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Consistency
The penalized problem has at least one solution
(yγ , pγ ,wγ , sγ , vγ) ∈ H2,1(Q)× L2(W1,r

0 (Ω))× Vad × L2(Q)× L2(Q) and
corresponding Lagrange multipliers (ηγ , ζγ) ∈ L2(Q)× H2,1(Q). Moreover, the
sequence {(yγ , pγ ,wγ , sγ , vγ)} converges strongly to the solution
(ȳ, p̄, w̄, g(ȳ), g′(ȳ)p̄).

Structure of penalized cost and properties of state and adjoint eq. to get
boundedness of variables;
Compact embedding H2,1(Q) ↪→↪→ Lµ(Q), with µ ≤ 10, and continuous
embedding W1,r(Ω) ↪→ Lq(Ω) for q ≤ mr

m−r ;
Existence of multipliers using the linearity of the constraints.
Using Hölder properties of Bochner spaces and properties of the PDE, we
get uniform bounds on the regularized variables.

Lagrange multipliers
There exists an adjoint state (ηj, ζj, τj) ∈ L2(Q)× H2,1(Q)× H1

0(Ω), for all
j = 1, . . . ,N, and KKT multipliers λa, λb ∈ Rns × RnT .
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Adjoint system of the bilevel problem

−
∂ηj

∂t
+ A∗ηj + g′(yj)ηj + g′′(yj)pjζj

=
∑
k,i

wkσiρi(t)ζj(x, t)⊗ δ(x− xk)−∇yjL(yj) in Q

ηj =0 on Σ

ηj(T) =0 in Ω.

∂ζj

∂t
+ Aζj + g′(yj)ζj =0 in Q

ζj =0 on Σ

ζj(0) =− τj in Ω

−ϑ∆τj + B−1τj =ηj(0)− β∇uj l(uj) in Ω

τj =0 on Γ,

very weakly, strongly and weakly, respectively.
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Karush-Kuhn-Tucker condition
Gradient system:

βw −
N∑

j=1

T∫
0

∑
i

σiρi(t)ζj(xk, t) (yj(xk, t)− zoj(xk, t)) dt = λa
k − λb

k , ∀k,

βσ −
N∑

j=1

T∫
0

∑
k

wkρi(t)ζj(xk, t) (yj(xk, t)− zoj(xk, t)) dt = λa
ns+i − λb

ns+i, ∀i.

Complementarity system:

λa
r ≥ 0, λb

r ≥ 0, for all r = 1, . . . , ns + nT

λa
kw̄k = λb

k(w̄k − 1) = 0, for all k = 1, . . . , ns

λa
ns+iσ̄i = λb

ns+i(σ̄i − 1) = 0, for all i = 1, . . . , nT

0 ≤ w̄k ≤ 1, for all k = 1, . . . , ns

0 ≤ σ̄i ≤ 1, for all i = 1, . . . , nT .

24 / 30



Outline

1 Motivation

2 Analysis of variational data assimilation

3 Optimal placement problem

4 Numerical results

5 Summary of topics



Projected BFGS method

Let S be an index set and RS the matrix defined by

RS =

{
δij, if i ∈ S or j ∈ S;
0, if not.

We denote by y# = RIεk (wk)(y)

.

Hk corresponds to the iteration matrix of the projected BFGS method

Hk+1 = RIεk (wk)HkRIεk (wk) − RIεk (wk)
HksksT

k Hk

sT
k Hksk

RIεk (wk) +
y#

k (y#
k )T

sT
k y#

k

,

We consider the recursive update of the inverse Kelly 1999:

Bk+1 =

(
I −

s#
k (y#

k )T

(y#
k )Ts#

k

)
RIBkRI

(
I −

y#
k (s#

k )T

(y#
k )Ts#

k

)
+

s#
k (s#

k )T

(y#
k )Ts#

k

,
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Implementation details

We solve in parallel N independent data assimilation optimality systems
and N independent adjoint systems. The information is then integrated via
the gradient formula
The projected BFGS is used for the update of the placement vectors w and
σ. The method is initialized with the identity matrix.
Projected line-search rule with backtracking of the form

1
2k‖∇f (w0)‖ , k = 0, 1, . . .

The nonlinearity considered as example is g(y) = y√
y2+ε2
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Experiment 1

Placement is allowed in any grid point
Observations are taken in every time step
Goal: verify the descent of the cost functional along the iterations
Goal: observe how the solution structure changes with respect to γ
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Figure: Descent of the cost function
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Experiment 1

Placement is allowed in any grid point
Observations are taken in every time step
Goal: verify the descent of the cost functional along the iterations
Goal: observe how the solution structure changes with respect to γ

βw # zeros in w # ones in w

1× 10−5 0 400
0.0001 88 312
0.0005 116 284
0.0020 176 224
0.0050 228 172
0.0072 268 132
0.0073 302 98
0.0074 334 66
0.0079 361 39
0.0080 400 0
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Experiment 2

Placement is allowed only at 8 candidate locations

x1 = (0.2, 0.2) x4 = (0.8, 0.0) x7 = (0.4, 0.9)
x2 = (0.5, 0.4) x5 = (0.8, 1.0) x8 = (0.3, 0.8)
x3 = (0.7, 0.3) x6 = (0.8, 0.6)

Observations are taken in every time step
Goal: observe how the solution structure changes with respect to the
penalization parameters
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Summary

4D data assimilation problems in infinite dimensions: control spaces, type
of observations, nonlinear dynamics;
Bilevel learning (data-driven) approaches for estimating parameters in
PDE-constrained optimization problems;
Optimal placement of observations/sensors in inverse problems;
Sparse solutions for PDE-constrained optimization problems;
Singular control problems with measures as controls;
Efficient numerical strategies for solving bilevel PDE-constrained
optimization problems.
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