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The Control Problem

(P)  min J(u) := %/Q(yu(az)—yd(;r:))2 da:+%/9u2(x) dr (v >0)

uEZ/{ad

Uy ={u € L*(Q) : a < u(r) < B ae inQ}
(—o0 << f < +00)

Ay +b(x) - Vy + f(z,y) = uin Q
y=0onT
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Assumptions on the Linear Operator

e ()is an open domain in R", n = 2 or 3, with Lipschitz boundary I

o Ay = Z Op;(aij(x)0yy) with a;; € L™(Q),

1,5=1

e JA > 0 such that Z ai;(1)&€ > AE)* VE € R" and foraa. v €
ij=1
o h € LP(2) for some p to be fixed later
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Study of the Linear Operator

o Ay = Ay +b(z) - Vy + ap(x)y, ap > 0
Theorem. Let b € LP(Q))" with p > n, ay € LY(Q) with ¢ > 1 if

n=2andq>3ifn =3 Then, A: H}(Q) — H Q) is an

isomorphism.

o If Ay <0 =y <0 (Gilbarg and Trudinger)

e We take 0 < p < ess sup,coy(z), z(x) = (y(x) — p)*.

o (), ={xcQ:Vz(x)#0}. || — 0 when p — ess sup,cqy(z).
o 0> (Az z) > AHVZ”%Q(Q)?) - HbHL3(Qp)3||VZHL2(Q)3HZ”L6(Q)

o [|bllzsa,p = § >0V

e Fredholm Alternative
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Theorem. Let b € LP(Q))" with p > 2ifn=2and p > 6if n = 3,
ap € LY(Q) with g >1ifn=2and ¢ >2ifn=3. Lety € H}()
satisfy Ay = u for some u € LP(§2) with p > . Then, there exist
1 € (0,1) and Cy , independent of u such that y € C*#(Q2) and

”yHCOaN(Q) < OA,u”“”ﬁ(Q)-

Theorem. Assume that a;; € C%(Q) for 1 < 4,5 < n, b € LP(Q)"
for some p > n, and ay € L*(2). We also suppose that I is of class
Chloor Q) is convex. Then, A : H*(Q) N H}(Q) — L*Q) is an

isomorphism.
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The Adjoint Equation

Corollary. The adjoint operator A* : Hj(Q) — H () given by
Ao = Ao — div[b(z)p] + ao(z)g

is an isomorphism.

Corollary. Assume that a;; € C%(Q) for 1 <i,j <n, b e LF(Q)"

for some p > n, and ap € L*(£2). We also suppose that divb € L*(12),

[ is of class C1! or Q) is convex. Then, A* : H*(Q)NH}(Q2) — L*(Q)
is an isomorphism.

Proof. A*p = A*p — b(x)Vy + (ap(x) — divd(z))p
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Assumptions on Semilinear Equation

o f: () xR — Risa Carathéodory function, monotone nondecreasing
with respect to the second variable

o VM > 03y € L'(Q) with p > - |f(,y)] < du(x)
foraa. v € Qand V|y| < M

Theorem. Let b € LP(Q)" withp > 2ifn=2and p > 6if n = 3.
For every u € LP()) the semilinear equation has a unique solution ¥,

in Hy(€2) N C(2). Moreover, there exists a constant K independent
of u such that

Iulliggen + N9allciey < K (lullure) + 1FC 0)lioie) +1)
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A Monotonicity Result

Lemma. Under the assumptions of the above theorem, if yq,1y, €
Hi(Q) N C(Q) are solutions of the equations

with uy, us € LP(Q) and u; < ug in €, then y; < y5 in Q as well.

e The uniqueness of a solution of the state equation is consequence of
the above lemma.
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Existence: Sketch of Proof
e We redefine f = f — f(-,0) and u = u — f(-,0) € LP(Q).

o Step 1: Ap € LP(Q) : |f(x,y)| < ¢(z) in 2 x R. We use Schauder's
Theorem.

e Step 2: 3¢ € LP(Q) such that f(x,y) > ¢(x) in X R.

filz,y) = flz,min{y, k}) = ¢(z) < fi(z,y) < grlz)
Ay + b(x) - Vyr + filz,yr) = u
Ay+b(z) - Vy=u—¢

Ay —yr) +b(x) - V(y —yr) = frlz,yp) — ¢ >0
=y <y = filz,yp) = f@,y0) if k2 [yl
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e Step 3: The general case.

fi(@,y) = f(z,proji_k 11 (y))

Ay +b(z) - Vyp + fi(z,yp) = u

Az +b(z) -V + f(z,27) =u

Az +0(x) - Vo + filz,21) = u+ fiulz,21) = f(@,27) <u

=2 <y, Vk>1

Az +b(x) - Vaoa =u— f(z, —|21]lc@)

A(zo = yi) +0(z) - V(22 —y) = filw,yx) — f(z, —||21llo) =0
=y < 22 = |[yllo@) < max{||z1llc@) 122llo@)

Sel@,ye) = flo,ye)  VE > max{||z1][c@)s [[22llc@)
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Theorem. Let {u;}7°, C LP(2) with p > % be a sequence weakly
converging to u in LP(Q). Then, y,, — y, strongly in Hg(2) N C(Q),
where y,,, is the solution of the semilinear equation associated to .

Theorem. Suppose that assumption on f holds with p = 2, a;; €
C'(Q) for 1 <i,5 < n, and b € LP(Q)" with p > 2 if n = 2 and
p > 6 if n = 3. We also suppose that I is of class C''"! or () is convex.
Then, for every u € L*(f)) the state equation has a unique solution
y, € H*(Q) N H(Q).
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Existence of solution of (P)

e We recall that

(P)  min J(u) := ! (yu(2) —ya(z))? dw+2 w (x)dx (v >0)
uEU,q 2 0 2 0O

Theorem. The control problem (P) has at least one solution .
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Differentiability Assumptions on f

o f: QxR — Risof class C* w.r.t. the second variable

o f(-,0) € LP(Q) with p > g and g—f(x,y) >0 ae. inQandVy € R
Y
0 0?
o VM >0 3C) |a—‘§(as,y)| + 8—;;(33,y)‘ <CruVyl <M

0’ f 0’f

VM > 0 and Ve > 0 40 > 0 such that
o
8—y2(5€,y2) - a—yg(%?ﬂ)

<ceif |y, |yo| <M, |y — 3| <9
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Differentiability of the Mapping u — vy,

Given p > %, let us denote G : LP(Q) — Y = Hj(2) N C() the
mapping associating with each control the state G(u) = y,,.

Theorem. The control-to-state mapping G is of class C and for every

u,v € LP(Q), we have that z, = G'(u)v is the solution of

dy

z=0on T

{ Az +b(z) - Vz + %(a:,yu)z = v in ()

and for v, w € LP(Q), z,., = G"(u)(v, w) solves the equation

2
{ Az +b(z) - Vz + g—i(x, Yu)Z + g—y];(a:, Yu) 2oz = 0 in

z=0on
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Analysis of the Cost Functional

Theorem. The functional J : L*(Q2) — R is of class C?. Moreover,
given u, v, vy, va € L*(€2) we have

J (u)v = /Q(gou + vu)vdx

T@lor,ez) = [

o0 f
[1 — goum(x, Yu) | 2o 20, dT + v | viv2da
Q Y

Q

where , € H}(2)NC(f) is the unique solution of the adjoint equation

. 0 .
{ A% — div[b(x)p] + a—g(w, Yu)P = Yu — Ya in €,

w=0onT.
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Local Solutions

Definition. We say that u € U,; is an L"({2)-weak local minimum of
(P), with 7 € [1, +00], if there exists some € > ( such that

J(u) < J(u) Vu € Uy with [[a — ul[1rq) < e.
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Local Solutions

Definition. We say that u € U,; is an L"({2)-weak local minimum of
(P), with r € [1, +00], if there exists some € > 0 such that

J(ﬂ) < J(u) Yu € U,y with ||ﬂ — u||Lr(Q) < e.

An element u € U, is said a strong local minimum of (P) if there exists
some € > () such that

J(u) < J(u) Yu € Uy with ||yg — yullze) < e

We say that @ € U, is a strict (weak or strong) local minimum if the
above inequalities are strict for u # .
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I - Relationships among these Notions

o If U,, is bounded in L?(f2), then

1. 4 is an L'(Q2)-weak local minimum of (P) if and only if it is an
L7 (€))-weak local minimum of (P) for every r € (1, 400).

2. If wis an L"(Q2)-weak local minimum of (P) for some r < +o0,
then it is an L>°(£2)-weak local minimum of (P).

3. u is a strong local minimum of (P) if and only if it is an L"(2)-weak
local minimum of (P) for all r € [1, 00).
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e If U,, is not bounded in L?(12), then

1. If wis an L?(€2)-weak local solution, then % is an L'(Q)-weak local
solution.
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II - Relationships among these Notions

e If U,, is not bounded in L?(12), then

1. If wis an L?(€2)-weak local solution, then % is an L'(Q)-weak local
solution.

2. If uis an LP(Q))-weak local solution, then @ is an L%(f))-weak local
solution for every p < ¢ < <.
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II - Relationships among these Notions

e If U,, is not bounded in L?(12), then

1. If wis an L?(€2)-weak local solution, then % is an L'(Q)-weak local
solution.

2. If uis an LP(Q))-weak local solution, then @ is an L%(f))-weak local
solution for every p < ¢ < <.

3. u is an L*(£2)-weak local solution if and only if it is a strong local
solution.
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First Order Optimality Conditions

Theorem. Let u be a local solution of (P) in any of the previous senses,
then there exist two unique elements 7, € Hg () N C(Q) such that

Ay +b(x) - Vy+ f(z,y) =u in €,
y=0onT,

. .0 N .
A~ divpla)g] + 5w p)p =5 - wain 2
©o=0onT,
/(@—Fm])(u—ﬂ)dazz 0 Yu € Uy
Q
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First Order Optimality Conditions

Theorem. Let u be a local solution of (P) in any of the previous senses,
then there exist two unique elements 7, € Hg () N C(Q) such that

Ay +b(x) - Vy+ f(z,y) =u in €,
y=0onT,

)
{ A% — divbla)g] + a—gm 96 =5 — yain O,

©o=0onT,
/

Moreover, & € H'(2) N C(2) holds.

/

e+rvu)(u—u)de >0 Yu € Uy
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Second Order Conditions

eCone of critical directions:

Cu = {U € LX) : J'(w)v = 0 and v() { 2 0ifa(z) =a }

<0Oifu(z)=20

Theorem If % is a local minimum of (P), then J"(@)v? > 0 Vv € Cy.
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Second Order Conditions

eCone of critical directions:
> 01f u —
Cy = {’U c L*(Q) : J'(w)v = 0 and v(z) { > 0if a(z) = a }

<0ifu(x)=p

Theorem If % is a local minimum of (P), then J"(@)v? > 0 Vv € Cy.

Conversely, if u € U,  satisfies the first order optimality conditions and
J"(u)v? > 0 Vv € Cy \ {0}, then there exist ¢ > 0 and x > 0 such
that

_ K _ _
Tw)+ Sl — al}} < () Yo € Usat g — gllimio) < &
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Second Order Conditions

eCone of critical directions:
o YR > 0if u(zr) = «
Cy = {UEL (2) : J'(w)v = 0 and v(x){ <0 a(z) = 3

Theorem If % is a local minimum of (P), then J"(@)v? > 0 Vv € Cy.
Conversely, if u € U,  satisfies the first order optimality conditions and
J"(u)v? > 0 Vv € Cy \ {0}, then there exist ¢ > 0 and x > 0 such
that

_ K _ _
Tw)+ Sl — al}} < () Yo € Usat g — gllimio) < &

Theorem Let 4 € U,y. Then J"(w)v* > 0 Vv € C; \ {0} if and only
if there exists & > 0 such that J"(u)v? > 5Hv||%2(m Vv € Cj.
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Approximation of the state equation

e We assume that € is a polygonal/polyhedral convex domain in R"
with n = 2 or 3.
o Let {7}, }1-0 be a quasi-uniform family of triangulations of ().

Yi={yn € C(Q) : ypr € PI(T) VT € Ty and yp, =0 on I'}.
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Approximation of the state equation

e We assume that € is a polygonal/polyhedral convex domain in R"
with n = 2 or 3.
o Let {7}, }1-0 be a quasi-uniform family of triangulations of ().

Vi ={un € C() : ypr € P(T) VT € Ty and y, =0 on I'}.

a(y1, y2) = (Ayi, 3/2> 1(Q),H}(Q)

/ ( Z ij(2)0r,y10:,y2 + [b(T) - Vyl]y2> dr.

1,7=1
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Approximation of the state equation

e We assume that € is a polygonal/polyhedral convex domain in R"
with n = 2 or 3.
o Let {7}, }1-0 be a quasi-uniform family of triangulations of ().

Vi ={un € C() : ypr € P(T) VT € Ty and y, =0 on I'}.

a(y1, y2) = (Ayi, y2> 1(Q),H}(Q)

/ ( Z ij(2)0r,y10:,y2 + [b(T) - Vyl]y2> dr.

1,7=1

Find y;, € Y}, such that
a(yn, zn) + / fz,yn(x))zn(x) doe = / uw(z)zp(x)de Yz, € Y.
0

Q
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Numerical Analysis of the Linear Equa-
tion

Theorem [Schatz, 1974]. Let ay € L*(f2) be a nonnegative function.
There exists hy > 0 depending on A and |[|agl|;2(q) such that the
variational problem

Find y;, € Y}, such that

a(yh,zh)—I—/an(a:)yh(a:)zh(x) d:vzfgu(zc)zh(x) dx Vz, €Yy

has a unique solution for every h < hy4 and for every u € L?*(Q).
Moreover, there exists a constant C 4 ,, such that

HthH&(Q) < CA,aOHA_lu”Hg(m Vh < hg.
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Numerical Analysis of the Semilinear Equ
tion
Theorem. Let us assume that

{ f(-,0) € L*(Q) and VM > 0 3Ly s such that
\f(z,y2) — flz,y1)] < Lyalya —yi| Viwi| < M, i =1,2.
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Numerical Analysis of the Semilinear Equ
tion
Theorem. Let us assume that

{ f(-,0) € L*(Q) and VM > 0 3Ly s such that
(@, y2) — f(z,y1)| < Lyalys — wn] Y|yl < M, i=1,2.

VM > 1+ ||yllc@@) Fhar > 0 such that for every h < hy the discrete
equation has a unique solution yj, satisfying ||y, lc) < M.
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Numerical Analysis of the Semilinear Equ
tion
Theorem. Let us assume that

{ f(-,0) € L*(Q) and VM > 0 3Ly s such that
(@, y2) — f(z,y1)| < Lyalys — wn] Y|yl < M, i=1,2.

VM > 1+ ||yllc@@) Fhar > 0 such that for every h < hy the discrete
equation has a unique solution y, satisfying ||y |cq) < M. Moreover,
there exist constants K and K js independent of u such that

Iy =yl 2oy + hlly = 9l gy < Ko (Jlullzo) + 1) 22

Iy = wnll <o <A@M0mm2-+0#—
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Numerical Analysis of the Semilinear Equ
tion
Theorem. Let us assume that

{ f(-,0) € L*(Q) and VM > 0 3Ly s such that
(@, y2) — f(z,y1)| < Lyalys — wn] Y|yl < M, i=1,2.

VM > 1+ ||yllc@@) Fhar > 0 such that for every h < hy the discrete
equation has a unique solution y, satisfying ||y |cq) < M. Moreover,
there exist constants K and K js independent of u such that

Iy =yl 2oy + hlly = 9l gy < Ko (Jlullzo) + 1) 22
|y — thLOO <KooM<||U||L2 -|-1>h2_

Further, if there exist other solutions {g}x<n,, with y; # g, for all A,
then limy, o || Fn[| o) = oo
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A Discrete Mapping u;, — vy,

Theorem. Let y € Y be the solution of state equation corresponding
to the control u € L*(2). Given p > 0 arbitrary, there exist p* > 0 and

ho > 0 such that the discrete equation has a unique solution yj(u) €
B).(y) for every u € B,(u) C L*(2) and for all h < hg, where

BL(y)={yeY :|ly—ylly <o}

Furthermore, there exist constants K and K, such that

I = 90 2200 + Pl = ) gy < K (N1l oy + o+ 1) 2
I = ()l iy < Koo (1l 20y + p+ 1) B35 Vu € Bp(a)
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Numerical Approximation of (P)

o Let us define 7 : L?(Q2) x L*()) — R given by

J(y,u) = %/Q(y(:c) — yq(2))? d + g / u? dx

Q
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Numerical Approximation of (P)

o Let us define 7 : L?(Q2) x L*()) — R given by

J(y,u) = %/Q(y(a:) — yq(2))? d + g/chﬂ dx

e Let us denote by U}, one of the following two spaces:
U, = ul(z) = {’U,h S L2<Q) D Up|T € P()(T) VT € 77;}
Uh = Z/[% = {uh - C(Q) D oUpT - Pl(T> YT € 77L}
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Numerical Approximation of (P)

o Let us define 7 : L?(Q2) x L*()) — R given by

J(y,u) = %/Q(y(a:) — yq(2))? d + g/chﬂ dx

e Let us denote by U}, one of the following two spaces:
U, =Uy) = {uy € L*(Q) - upr € Py(T) VT € Ty}

Uh = Z/[% = {uh - C(Q) D oUpT - Pl(T) YT € 77L}

o We set U}, 4qa = Uy N U4
e We approximate Problem (P) by the problem

(Pp) min{ T (yn, un) : (yn, un) € Y XU qq satisfies the discrete equation
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Convergence of (P;,) to (P)

Theorem.  There exists hy > 0 such that problem (P}) has at
least one solution (g, uy) for all A < hy.
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Convergence of (P;,) to (P)

Theorem.  There exists hy > 0 such that problem (P}) has at
least one solution (g, @) for all h < hy. Moreover, if {(yp,@n)}n<n,
is a sequence of solutions of problems (P,), then it is bounded in
H}(Q) x L*(€) and there exist subsequences converging weakly in
Hi(Q) x L*(9).
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Convergence of (P;,) to (P)

Theorem.  There exists hy > 0 such that problem (P}) has at
least one solution (g, @) for all h < hy. Moreover, if {(yp,@n)}n<n,
is a sequence of solutions of problems (P,), then it is bounded in
H}(Q) x L*(€) and there exist subsequences converging weakly in
Hi(Q) x L*(€). In addition, if a subsequence, denoted in the same
way, satisfies that (7, up) — (7, ) in H3(Q2) x L*(Q) as h — 0, then
(y,u) € Y X Uyq, u is a solution of (P) with associated stated g, and
(Y, un) — (g, u) strongly in H3(Q) x L*(Q).
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Error Estimates

Theorem. Let u € L*(Q) be a local minimizer of (P) satisfying the suf-
ficient second order optimality conditions and let {u} be the sequence
of minimizers of the problems (P;) described in the above theorem.
Then, there exists hg > 0 such that

o If Uy C L*(1), then

||ﬂ — ﬂh”L?(Q) < Ch. Yh < hy
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Error Estimates

Theorem. Let u € L*(Q) be a local minimizer of (P) satisfying the suf-
ficient second order optimality conditions and let {u} be the sequence
of minimizers of the problems (P;) described in the above theorem.
Then, there exists hg > 0 such that

o If Uy C L*(1), then

[u — upll 2 < Ch. Vh < hg
o If Upg=L*(Q2) and Uy, = U, i =0, 1, then
|4 — pll p2(0) < Ch*™ Vh < hy
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