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The Control Problem

(P) min
u∈Uad

J(u) :=
1

2

∫
Ω

(yu(x)−yd(x))2 dx+
ν

2

∫
Ω

u2(x) dx (ν > 0)

New Trends in PDE Constrained Optimization



2/28

UC
University

of Cantabria

JJ
II
J
I

Back

Close

The Control Problem

(P) min
u∈Uad

J(u) :=
1

2

∫
Ω

(yu(x)−yd(x))2 dx+
ν

2

∫
Ω

u2(x) dx (ν > 0)

Uad ={u ∈ L2(Ω) : α ≤ u(x) ≤ β a.e. in Ω}
(−∞ ≤ α < β ≤ +∞)
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The Control Problem

(P) min
u∈Uad

J(u) :=
1

2

∫
Ω

(yu(x)−yd(x))2 dx+
ν

2

∫
Ω

u2(x) dx (ν > 0)

Uad ={u ∈ L2(Ω) : α ≤ u(x) ≤ β a.e. in Ω}
(−∞ ≤ α < β ≤ +∞)

{
Ay + b(x) · ∇y + f (x, y) = u in Ω

y = 0 on Γ

New Trends in PDE Constrained Optimization
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Assumptions on the Linear Operator

• Ω is an open domain in Rn, n = 2 or 3, with Lipschitz boundary Γ
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Assumptions on the Linear Operator

• Ω is an open domain in Rn, n = 2 or 3, with Lipschitz boundary Γ

• Ay = −
n∑

i,j=1

∂xj(aij(x)∂xiy) with aij ∈ L∞(Ω),
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Assumptions on the Linear Operator

• Ω is an open domain in Rn, n = 2 or 3, with Lipschitz boundary Γ

• Ay = −
n∑

i,j=1

∂xj(aij(x)∂xiy) with aij ∈ L∞(Ω),

• ∃Λ > 0 such that
n∑

i,j=1

aij(x)ξiξj ≥ Λ|ξ|2 ∀ξ ∈ Rn and for a.a. x ∈ Ω
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Assumptions on the Linear Operator

• Ω is an open domain in Rn, n = 2 or 3, with Lipschitz boundary Γ

• Ay = −
n∑

i,j=1

∂xj(aij(x)∂xiy) with aij ∈ L∞(Ω),

• ∃Λ > 0 such that
n∑

i,j=1

aij(x)ξiξj ≥ Λ|ξ|2 ∀ξ ∈ Rn and for a.a. x ∈ Ω

• b ∈ Lp(Ω) for some p to be fixed later

New Trends in PDE Constrained Optimization
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Study of the Linear Operator

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

New Trends in PDE Constrained Optimization
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Study of the Linear Operator

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

Theorem. Let b ∈ Lp(Ω)n with p > n, a0 ∈ Lq(Ω) with q > 1 if

n = 2 and q ≥ 3
2 if n = 3. Then, A : H1

0(Ω) −→ H−1(Ω) is an

isomorphism.
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Study of the Linear Operator

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

Theorem. Let b ∈ Lp(Ω)n with p > n, a0 ∈ Lq(Ω) with q > 1 if

n = 2 and q ≥ 3
2 if n = 3. Then, A : H1

0(Ω) −→ H−1(Ω) is an

isomorphism.

• If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger)
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Study of the Linear Operator

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

Theorem. Let b ∈ Lp(Ω)n with p > n, a0 ∈ Lq(Ω) with q > 1 if

n = 2 and q ≥ 3
2 if n = 3. Then, A : H1

0(Ω) −→ H−1(Ω) is an

isomorphism.

• If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger)

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.
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Study of the Linear Operator

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

Theorem. Let b ∈ Lp(Ω)n with p > n, a0 ∈ Lq(Ω) with q > 1 if

n = 2 and q ≥ 3
2 if n = 3. Then, A : H1

0(Ω) −→ H−1(Ω) is an

isomorphism.

• If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger)

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

• Ωρ = {x ∈ Ω : ∇z(x) 6= 0}.
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Study of the Linear Operator

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

Theorem. Let b ∈ Lp(Ω)n with p > n, a0 ∈ Lq(Ω) with q > 1 if

n = 2 and q ≥ 3
2 if n = 3. Then, A : H1

0(Ω) −→ H−1(Ω) is an

isomorphism.

• If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger)

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

• Ωρ = {x ∈ Ω : ∇z(x) 6= 0}. |Ωρ| → 0 when ρ→ ess supx∈Ωy(x).
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Study of the Linear Operator

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

Theorem. Let b ∈ Lp(Ω)n with p > n, a0 ∈ Lq(Ω) with q > 1 if

n = 2 and q ≥ 3
2 if n = 3. Then, A : H1

0(Ω) −→ H−1(Ω) is an

isomorphism.

• If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger)

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

• Ωρ = {x ∈ Ω : ∇z(x) 6= 0}. |Ωρ| → 0 when ρ→ ess supx∈Ωy(x).

• 0 ≥ 〈Az, z〉 ≥ Λ‖∇z‖2
L2(Ω)3 − ‖b‖L3(Ωρ)3‖∇z‖L2(Ω)3‖z‖L6(Ω)
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Study of the Linear Operator

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

Theorem. Let b ∈ Lp(Ω)n with p > n, a0 ∈ Lq(Ω) with q > 1 if

n = 2 and q ≥ 3
2 if n = 3. Then, A : H1

0(Ω) −→ H−1(Ω) is an

isomorphism.

• If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger)

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

• Ωρ = {x ∈ Ω : ∇z(x) 6= 0}. |Ωρ| → 0 when ρ→ ess supx∈Ωy(x).

• 0 ≥ 〈Az, z〉 ≥ Λ‖∇z‖2
L2(Ω)3 − ‖b‖L3(Ωρ)3‖∇z‖L2(Ω)3‖z‖L6(Ω)

• ‖b‖L3(Ωρ)3 ≥ C
Λ > 0 ∀ρ
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Study of the Linear Operator

• Ay = Ay + b(x) · ∇y + a0(x)y, a0 ≥ 0

Theorem. Let b ∈ Lp(Ω)n with p > n, a0 ∈ Lq(Ω) with q > 1 if

n = 2 and q ≥ 3
2 if n = 3. Then, A : H1

0(Ω) −→ H−1(Ω) is an

isomorphism.

• If Ay ≤ 0⇒ y ≤ 0 (Gilbarg and Trudinger)

• We take 0 < ρ < ess supx∈Ωy(x), z(x) = (y(x)− ρ)+.

• Ωρ = {x ∈ Ω : ∇z(x) 6= 0}. |Ωρ| → 0 when ρ→ ess supx∈Ωy(x).

• 0 ≥ 〈Az, z〉 ≥ Λ‖∇z‖2
L2(Ω)3 − ‖b‖L3(Ωρ)3‖∇z‖L2(Ω)3‖z‖L6(Ω)

• ‖b‖L3(Ωρ)3 ≥ C
Λ > 0 ∀ρ

• Fredholm Alternative
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Regularity of the Solution

Theorem. Let b ∈ Lp(Ω)n with p > 2 if n = 2 and p > 6 if n = 3,

a0 ∈ Lq(Ω) with q > 1 if n = 2 and q > 2 if n = 3. Let y ∈ H1
0(Ω)

satisfy Ay = u for some u ∈ Lp̄(Ω) with p̄ > n
2 . Then, there exist

µ ∈ (0, 1) and CA,µ independent of u such that y ∈ C0,µ(Ω̄) and

‖y‖C0,µ(Ω̄) ≤ CA,µ‖u‖Lp̄(Ω).

New Trends in PDE Constrained Optimization
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Regularity of the Solution

Theorem. Let b ∈ Lp(Ω)n with p > 2 if n = 2 and p > 6 if n = 3,

a0 ∈ Lq(Ω) with q > 1 if n = 2 and q > 2 if n = 3. Let y ∈ H1
0(Ω)

satisfy Ay = u for some u ∈ Lp̄(Ω) with p̄ > n
2 . Then, there exist

µ ∈ (0, 1) and CA,µ independent of u such that y ∈ C0,µ(Ω̄) and

‖y‖C0,µ(Ω̄) ≤ CA,µ‖u‖Lp̄(Ω).

Theorem. Assume that aij ∈ C0,1(Ω̄) for 1 ≤ i, j ≤ n, b ∈ Lp(Ω)n

for some p > n, and a0 ∈ L2(Ω). We also suppose that Γ is of class

C1,1 or Ω is convex. Then, A : H2(Ω) ∩ H1
0(Ω) −→ L2(Ω) is an

isomorphism.

New Trends in PDE Constrained Optimization
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The Adjoint Equation

Corollary. The adjoint operator A∗ : H1
0(Ω) −→ H−1(Ω) given by

A∗ϕ = A∗ϕ− div[b(x)ϕ] + a0(x)ϕ

is an isomorphism.

New Trends in PDE Constrained Optimization
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The Adjoint Equation

Corollary. The adjoint operator A∗ : H1
0(Ω) −→ H−1(Ω) given by

A∗ϕ = A∗ϕ− div[b(x)ϕ] + a0(x)ϕ

is an isomorphism.

Corollary. Assume that aij ∈ C0,1(Ω̄) for 1 ≤ i, j ≤ n, b ∈ Lp(Ω)n

for some p > n, and a0 ∈ L2(Ω). We also suppose that div b ∈ L2(Ω),

Γ is of class C1,1 or Ω is convex. Then, A∗ : H2(Ω)∩H1
0 (Ω) −→ L2(Ω)

is an isomorphism.
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The Adjoint Equation

Corollary. The adjoint operator A∗ : H1
0(Ω) −→ H−1(Ω) given by

A∗ϕ = A∗ϕ− div[b(x)ϕ] + a0(x)ϕ

is an isomorphism.

Corollary. Assume that aij ∈ C0,1(Ω̄) for 1 ≤ i, j ≤ n, b ∈ Lp(Ω)n

for some p > n, and a0 ∈ L2(Ω). We also suppose that div b ∈ L2(Ω),

Γ is of class C1,1 or Ω is convex. Then, A∗ : H2(Ω)∩H1
0 (Ω) −→ L2(Ω)

is an isomorphism.

Proof. A∗ϕ = A∗ϕ− b(x)∇ϕ + (a0(x)− div b(x))ϕ

New Trends in PDE Constrained Optimization
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Assumptions on Semilinear Equation

• f : Ω× R→ R is a Carathéodory function, monotone nondecreasing

with respect to the second variable
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Assumptions on Semilinear Equation

• f : Ω× R→ R is a Carathéodory function, monotone nondecreasing

with respect to the second variable

• ∀M > 0 ∃φM ∈ Lp̄(Ω) with p̄ >
n

2
: |f (x, y)| ≤ φM(x)

for a.a. x ∈ Ω and ∀|y| ≤M

New Trends in PDE Constrained Optimization
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Assumptions on Semilinear Equation

• f : Ω× R→ R is a Carathéodory function, monotone nondecreasing

with respect to the second variable

• ∀M > 0 ∃φM ∈ Lp̄(Ω) with p̄ >
n

2
: |f (x, y)| ≤ φM(x)

for a.a. x ∈ Ω and ∀|y| ≤M

Theorem. Let b ∈ Lp(Ω)n with p > 2 if n = 2 and p > 6 if n = 3.

For every u ∈ Lp̄(Ω) the semilinear equation has a unique solution yu
in H1

0(Ω) ∩ C(Ω̄).
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Assumptions on Semilinear Equation

• f : Ω× R→ R is a Carathéodory function, monotone nondecreasing

with respect to the second variable

• ∀M > 0 ∃φM ∈ Lp̄(Ω) with p̄ >
n

2
: |f (x, y)| ≤ φM(x)

for a.a. x ∈ Ω and ∀|y| ≤M

Theorem. Let b ∈ Lp(Ω)n with p > 2 if n = 2 and p > 6 if n = 3.

For every u ∈ Lp̄(Ω) the semilinear equation has a unique solution yu
in H1

0(Ω) ∩ C(Ω̄). Moreover, there exists a constant Kf independent

of u such that

‖yu‖H1
0 (Ω) + ‖yu‖C(Ω̄) ≤ Kf

(
‖u‖Lp̄(Ω) + ‖f (·, 0)‖Lp̄(Ω) + 1

)

New Trends in PDE Constrained Optimization
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A Monotonicity Result

Lemma. Under the assumptions of the above theorem, if y1, y2 ∈
H1

0(Ω) ∩ C(Ω̄) are solutions of the equations

Ayi + b(x) · ∇yi + f (x, yi) = ui, i = 1, 2,

with u1, u2 ∈ Lp̄(Ω) and u1 ≤ u2 in Ω, then y1 ≤ y2 in Ω as well.

New Trends in PDE Constrained Optimization
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A Monotonicity Result

Lemma. Under the assumptions of the above theorem, if y1, y2 ∈
H1

0(Ω) ∩ C(Ω̄) are solutions of the equations

Ayi + b(x) · ∇yi + f (x, yi) = ui, i = 1, 2,

with u1, u2 ∈ Lp̄(Ω) and u1 ≤ u2 in Ω, then y1 ≤ y2 in Ω as well.

• The uniqueness of a solution of the state equation is consequence of

the above lemma.

New Trends in PDE Constrained Optimization
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Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp̄(Ω).

New Trends in PDE Constrained Optimization
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Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp̄(Ω).

• Step 1: ∃φ ∈ Lp̄(Ω) : |f (x, y)| ≤ φ(x) in Ω×R.

New Trends in PDE Constrained Optimization
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Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp̄(Ω).

• Step 1: ∃φ ∈ Lp̄(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.
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Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp̄(Ω).

• Step 1: ∃φ ∈ Lp̄(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp̄(Ω) such that f (x, y) ≥ φ(x) in Ω× R.
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Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp̄(Ω).

• Step 1: ∃φ ∈ Lp̄(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp̄(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,min{y, k})
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Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp̄(Ω).

• Step 1: ∃φ ∈ Lp̄(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp̄(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,min{y, k})⇒ φ(x) ≤ fk(x, y) ≤ φk(x)
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Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp̄(Ω).

• Step 1: ∃φ ∈ Lp̄(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp̄(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,min{y, k})⇒ φ(x) ≤ fk(x, y) ≤ φk(x)

Ayk + b(x) · ∇yk + fk(x, yk) = u

New Trends in PDE Constrained Optimization
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Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp̄(Ω).

• Step 1: ∃φ ∈ Lp̄(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp̄(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,min{y, k})⇒ φ(x) ≤ fk(x, y) ≤ φk(x)

Ayk + b(x) · ∇yk + fk(x, yk) = u

Ay + b(x) · ∇y = u− φ

New Trends in PDE Constrained Optimization
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Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp̄(Ω).

• Step 1: ∃φ ∈ Lp̄(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp̄(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,min{y, k})⇒ φ(x) ≤ fk(x, y) ≤ φk(x)

Ayk + b(x) · ∇yk + fk(x, yk) = u

Ay + b(x) · ∇y = u− φ
A(y − yk) + b(x) · ∇(y − yk) = fk(x, yk)− φ ≥ 0

New Trends in PDE Constrained Optimization
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Existence: Sketch of Proof

• We redefine f = f − f (·, 0) and u = u− f (·, 0) ∈ Lp̄(Ω).

• Step 1: ∃φ ∈ Lp̄(Ω) : |f (x, y)| ≤ φ(x) in Ω×R. We use Schauder’s

Theorem.

• Step 2: ∃φ ∈ Lp̄(Ω) such that f (x, y) ≥ φ(x) in Ω× R.

fk(x, y) = f (x,min{y, k})⇒ φ(x) ≤ fk(x, y) ≤ φk(x)

Ayk + b(x) · ∇yk + fk(x, yk) = u

Ay + b(x) · ∇y = u− φ
A(y − yk) + b(x) · ∇(y − yk) = fk(x, yk)− φ ≥ 0

⇒ yk ≤ y ⇒ fk(x, yk) = f (x, yk) if k ≥ ‖y‖∞

New Trends in PDE Constrained Optimization
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• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

New Trends in PDE Constrained Optimization
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• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u
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• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f (x, z+
1 ) = u

New Trends in PDE Constrained Optimization
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• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f (x, z+
1 ) = u

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+
1 ) ≤ u
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• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f (x, z+
1 ) = u

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+
1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

New Trends in PDE Constrained Optimization



10/28

UC
University

of Cantabria

JJ
II
J
I

Back

Close

• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f (x, z+
1 ) = u

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+
1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Az2 + b(x) · ∇z2 = u− f (x,−‖z1‖C(Ω̄))
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• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f (x, z+
1 ) = u

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+
1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Az2 + b(x) · ∇z2 = u− f (x,−‖z1‖C(Ω̄))

A(z2 − yk) + b(x) · ∇(z2 − yk) = fk(x, yk)− f (x,−‖z1‖C(Ω̄)) ≥ 0
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• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f (x, z+
1 ) = u

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+
1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Az2 + b(x) · ∇z2 = u− f (x,−‖z1‖C(Ω̄))

A(z2 − yk) + b(x) · ∇(z2 − yk) = fk(x, yk)− f (x,−‖z1‖C(Ω̄)) ≥ 0

⇒ yk ≤ z2
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• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f (x, z+
1 ) = u

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+
1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Az2 + b(x) · ∇z2 = u− f (x,−‖z1‖C(Ω̄))

A(z2 − yk) + b(x) · ∇(z2 − yk) = fk(x, yk)− f (x,−‖z1‖C(Ω̄)) ≥ 0

⇒ yk ≤ z2 ⇒ ‖yk‖C(Ω̄) ≤ max{‖z1‖C(Ω̄), ‖z2‖C(Ω̄)}
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• Step 3: The general case.

fk(x, y) = f (x, proj[−k,+k](y))

Ayk + b(x) · ∇yk + fk(x, yk) = u

Az1 + b(x) · ∇z1 + f (x, z+
1 ) = u

Az1 + b(x) · ∇z1 + fk(x, z1) = u + fk(x, z1)− f (x, z+
1 ) ≤ u

⇒ z1 ≤ yk ∀k ≥ 1

Az2 + b(x) · ∇z2 = u− f (x,−‖z1‖C(Ω̄))

A(z2 − yk) + b(x) · ∇(z2 − yk) = fk(x, yk)− f (x,−‖z1‖C(Ω̄)) ≥ 0

⇒ yk ≤ z2 ⇒ ‖yk‖C(Ω̄) ≤ max{‖z1‖C(Ω̄), ‖z2‖C(Ω̄)}
fk(x, yk) = f (x, yk) ∀k ≥ max{‖z1‖C(Ω̄), ‖z2‖C(Ω̄)}
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Continuity of u→ y and regularity of y
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Continuity of u→ y and regularity of y

Theorem. Let {uk}∞k=1 ⊂ Lp̄(Ω) with p̄ > n
2 be a sequence weakly

converging to u in Lp̄(Ω). Then, yuk → yu strongly in H1
0(Ω) ∩ C(Ω̄),

where yuk is the solution of the semilinear equation associated to uk.
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Continuity of u→ y and regularity of y

Theorem. Let {uk}∞k=1 ⊂ Lp̄(Ω) with p̄ > n
2 be a sequence weakly

converging to u in Lp̄(Ω). Then, yuk → yu strongly in H1
0(Ω) ∩ C(Ω̄),

where yuk is the solution of the semilinear equation associated to uk.

Theorem. Suppose that assumption on f holds with p̄ = 2, aij ∈
C0,1(Ω̄) for 1 ≤ i, j ≤ n, and b ∈ Lp(Ω)n with p > 2 if n = 2 and

p > 6 if n = 3. We also suppose that Γ is of class C1,1 or Ω is convex.

Then, for every u ∈ L2(Ω) the state equation has a unique solution

yu ∈ H2(Ω) ∩H1
0(Ω).
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Existence of solution of (P)

• We recall that

(P) min
u∈Uad

J(u) :=
1

2

∫
Ω

(yu(x)−yd(x))2 dx+
ν

2

∫
Ω

u2(x) dx (ν > 0)
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Existence of solution of (P)

• We recall that

(P) min
u∈Uad

J(u) :=
1

2

∫
Ω

(yu(x)−yd(x))2 dx+
ν

2

∫
Ω

u2(x) dx (ν > 0)

Theorem. The control problem (P) has at least one solution ū.
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Differentiability Assumptions on f
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Differentiability Assumptions on f

• f : Ω× R −→ R is of class C2 w.r.t. the second variable
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Differentiability Assumptions on f

• f : Ω× R −→ R is of class C2 w.r.t. the second variable

• f (·, 0) ∈ Lp̄(Ω) with p̄ >
n

2
and

∂f

∂y
(x, y) ≥ 0 a.e. in Ω and ∀y ∈ R
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Differentiability Assumptions on f

• f : Ω× R −→ R is of class C2 w.r.t. the second variable

• f (·, 0) ∈ Lp̄(Ω) with p̄ >
n

2
and

∂f

∂y
(x, y) ≥ 0 a.e. in Ω and ∀y ∈ R

• ∀M > 0 ∃Cf,M :

∣∣∣∣∂f∂y (x, y)

∣∣∣∣ +

∣∣∣∣∂2f

∂y2
(x, y)

∣∣∣∣ ≤ Cf,M ∀|y| ≤M

New Trends in PDE Constrained Optimization



13/28

UC
University

of Cantabria

JJ
II
J
I

Back

Close

Differentiability Assumptions on f

• f : Ω× R −→ R is of class C2 w.r.t. the second variable

• f (·, 0) ∈ Lp̄(Ω) with p̄ >
n

2
and

∂f

∂y
(x, y) ≥ 0 a.e. in Ω and ∀y ∈ R

• ∀M > 0 ∃Cf,M :

∣∣∣∣∂f∂y (x, y)

∣∣∣∣ +

∣∣∣∣∂2f

∂y2
(x, y)

∣∣∣∣ ≤ Cf,M ∀|y| ≤M

•

 ∀M > 0 and ∀ε > 0 ∃δ > 0 such that∣∣∣∣∂2f

∂y2
(x, y2)− ∂2f

∂y2
(x, y1)

∣∣∣∣ < ε if |y1|, |y2| ≤M, |y2 − y1| ≤ δ
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Differentiability of the Mapping u→ yu
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Differentiability of the Mapping u→ yu

Given p̂ > n
2 , let us denote G : Lp̂(Ω) −→ Y = H1

0(Ω) ∩ C(Ω̄) the

mapping associating with each control the state G(u) = yu.
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Differentiability of the Mapping u→ yu

Given p̂ > n
2 , let us denote G : Lp̂(Ω) −→ Y = H1

0(Ω) ∩ C(Ω̄) the

mapping associating with each control the state G(u) = yu.

Theorem. The control-to-state mapping G is of class C2
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Differentiability of the Mapping u→ yu

Given p̂ > n
2 , let us denote G : Lp̂(Ω) −→ Y = H1

0(Ω) ∩ C(Ω̄) the

mapping associating with each control the state G(u) = yu.

Theorem. The control-to-state mapping G is of class C2 and for every

u, v ∈ Lp̂(Ω), we have that zv = G′(u)v is the solution of Az + b(x) · ∇z +
∂f

∂y
(x, yu)z = v in Ω

z = 0 on Γ
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Differentiability of the Mapping u→ yu

Given p̂ > n
2 , let us denote G : Lp̂(Ω) −→ Y = H1

0(Ω) ∩ C(Ω̄) the

mapping associating with each control the state G(u) = yu.

Theorem. The control-to-state mapping G is of class C2 and for every

u, v ∈ Lp̂(Ω), we have that zv = G′(u)v is the solution of Az + b(x) · ∇z +
∂f

∂y
(x, yu)z = v in Ω

z = 0 on Γ

and for v, w ∈ Lp̂(Ω), zv,w = G′′(u)(v, w) solves the equation Az + b(x) · ∇z +
∂f

∂y
(x, yu)z +

∂2f

∂y2
(x, yu)zvzw = 0 in Ω

z = 0 on Γ
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Analysis of the Cost Functional
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Analysis of the Cost Functional

Theorem. The functional J : L2(Ω) −→ R is of class C2.
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Analysis of the Cost Functional

Theorem. The functional J : L2(Ω) −→ R is of class C2. Moreover,

given u, v, v1, v2 ∈ L2(Ω) we have

J ′(u)v =

∫
Ω

(ϕu + νu)v dx

J ′′(u)(v1, v2) =

∫
Ω

[
1− ϕu

∂2f

∂y2
(x, yu)

]
zv1zv2 dx + ν

∫
Ω

v1v2 dx

where ϕu ∈ H1
0(Ω)∩C(Ω̄) is the unique solution of the adjoint equation A∗ϕ− div[b(x)ϕ] +

∂f

∂y
(x, yu)ϕ = yu − yd in Ω,

ϕ = 0 on Γ.
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Local Solutions
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Local Solutions

Definition. We say that ū ∈ Uad is an Lr(Ω)-weak local minimum of

(P), with r ∈ [1,+∞], if there exists some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖ū− u‖Lr(Ω) ≤ ε.
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Local Solutions

Definition. We say that ū ∈ Uad is an Lr(Ω)-weak local minimum of

(P), with r ∈ [1,+∞], if there exists some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖ū− u‖Lr(Ω) ≤ ε.

An element ū ∈ Uad is said a strong local minimum of (P) if there exists

some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖yū − yu‖L∞(Ω) ≤ ε.
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Local Solutions

Definition. We say that ū ∈ Uad is an Lr(Ω)-weak local minimum of

(P), with r ∈ [1,+∞], if there exists some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖ū− u‖Lr(Ω) ≤ ε.

An element ū ∈ Uad is said a strong local minimum of (P) if there exists

some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖yū − yu‖L∞(Ω) ≤ ε.

We say that ū ∈ Uad is a strict (weak or strong) local minimum if the

above inequalities are strict for u 6= ū.
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I - Relationships among these Notions
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I - Relationships among these Notions

• If Uad is bounded in L2(Ω), then
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I - Relationships among these Notions

• If Uad is bounded in L2(Ω), then

1. ū is an L1(Ω)-weak local minimum of (P) if and only if it is an

Lr(Ω)-weak local minimum of (P) for every r ∈ (1,+∞).
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I - Relationships among these Notions

• If Uad is bounded in L2(Ω), then

1. ū is an L1(Ω)-weak local minimum of (P) if and only if it is an

Lr(Ω)-weak local minimum of (P) for every r ∈ (1,+∞).

2. If ū is an Lr(Ω)-weak local minimum of (P) for some r < +∞,

then it is an L∞(Ω)-weak local minimum of (P).
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I - Relationships among these Notions

• If Uad is bounded in L2(Ω), then

1. ū is an L1(Ω)-weak local minimum of (P) if and only if it is an

Lr(Ω)-weak local minimum of (P) for every r ∈ (1,+∞).

2. If ū is an Lr(Ω)-weak local minimum of (P) for some r < +∞,

then it is an L∞(Ω)-weak local minimum of (P).

3. ū is a strong local minimum of (P) if and only if it is an Lr(Ω)-weak

local minimum of (P) for all r ∈ [1,∞).
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II - Relationships among these Notions
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II - Relationships among these Notions

• If Uad is not bounded in L2(Ω), then
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II - Relationships among these Notions

• If Uad is not bounded in L2(Ω), then

1. If ū is an L2(Ω)-weak local solution, then ū is an L1(Ω)-weak local

solution.
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II - Relationships among these Notions

• If Uad is not bounded in L2(Ω), then

1. If ū is an L2(Ω)-weak local solution, then ū is an L1(Ω)-weak local

solution.

2. If ū is an Lp(Ω)-weak local solution, then ū is an Lq(Ω)-weak local

solution for every p < q ≤ ∞.
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II - Relationships among these Notions

• If Uad is not bounded in L2(Ω), then

1. If ū is an L2(Ω)-weak local solution, then ū is an L1(Ω)-weak local

solution.

2. If ū is an Lp(Ω)-weak local solution, then ū is an Lq(Ω)-weak local

solution for every p < q ≤ ∞.

3. ū is an L2(Ω)-weak local solution if and only if it is a strong local

solution.
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First Order Optimality Conditions
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First Order Optimality Conditions

Theorem. Let ū be a local solution of (P) in any of the previous senses,

then there exist two unique elements ȳ, ϕ̄ ∈ H1
0(Ω) ∩ C(Ω̄) such that{

Aȳ + b(x) · ∇ȳ + f (x, ȳ) = ū in Ω,

ȳ = 0 on Γ, A∗ϕ̄− div[b(x)ϕ̄] +
∂f

∂y
(x, ȳ)ϕ̄ = ȳ − yd in Ω,

ϕ̄ = 0 on Γ,∫
Ω

(ϕ̄ + νū)(u− ū) dx ≥ 0 ∀u ∈ Uad
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First Order Optimality Conditions

Theorem. Let ū be a local solution of (P) in any of the previous senses,

then there exist two unique elements ȳ, ϕ̄ ∈ H1
0(Ω) ∩ C(Ω̄) such that{

Aȳ + b(x) · ∇ȳ + f (x, ȳ) = ū in Ω,

ȳ = 0 on Γ, A∗ϕ̄− div[b(x)ϕ̄] +
∂f

∂y
(x, ȳ)ϕ̄ = ȳ − yd in Ω,

ϕ̄ = 0 on Γ,∫
Ω

(ϕ̄ + νū)(u− ū) dx ≥ 0 ∀u ∈ Uad

Moreover, ū ∈ H1(Ω) ∩ C(Ω̄) holds.

New Trends in PDE Constrained Optimization



20/28

UC
University

of Cantabria

JJ
II
J
I

Back

Close

Second Order Conditions
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Second Order Conditions

•Cone of critical directions:

Cū =

{
v ∈ L2(Ω) : J ′(ū)v = 0 and v(x)

{
≥ 0 if ū(x) = α

≤ 0 if ū(x) = β

}
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Second Order Conditions

•Cone of critical directions:

Cū =

{
v ∈ L2(Ω) : J ′(ū)v = 0 and v(x)

{
≥ 0 if ū(x) = α

≤ 0 if ū(x) = β

}
Theorem If ū is a local minimum of (P), then J ′′(ū)v2 ≥ 0 ∀v ∈ Cū.

New Trends in PDE Constrained Optimization



20/28

UC
University

of Cantabria

JJ
II
J
I

Back

Close

Second Order Conditions

•Cone of critical directions:

Cū =

{
v ∈ L2(Ω) : J ′(ū)v = 0 and v(x)

{
≥ 0 if ū(x) = α

≤ 0 if ū(x) = β

}
Theorem If ū is a local minimum of (P), then J ′′(ū)v2 ≥ 0 ∀v ∈ Cū.

Conversely, if ū ∈ Uad satisfies the first order optimality conditions and

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, then there exist ε > 0 and κ > 0 such

that

J(ū) +
κ

2
‖u− ū‖2

2 ≤ J(u) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Q) ≤ ε.
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Second Order Conditions

•Cone of critical directions:

Cū =

{
v ∈ L2(Ω) : J ′(ū)v = 0 and v(x)

{
≥ 0 if ū(x) = α

≤ 0 if ū(x) = β

}
Theorem If ū is a local minimum of (P), then J ′′(ū)v2 ≥ 0 ∀v ∈ Cū.

Conversely, if ū ∈ Uad satisfies the first order optimality conditions and

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, then there exist ε > 0 and κ > 0 such

that

J(ū) +
κ

2
‖u− ū‖2

2 ≤ J(u) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Q) ≤ ε.

Theorem Let ū ∈ Uad. Then J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0} if and only

if there exists δ > 0 such that J ′′(ū)v2 ≥ δ‖v‖2
L2(Ω)

∀v ∈ Cū.
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Approximation of the state equation

• We assume that Ω is a polygonal/polyhedral convex domain in Rn

with n = 2 or 3.
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Approximation of the state equation

• We assume that Ω is a polygonal/polyhedral convex domain in Rn

with n = 2 or 3.

• Let {Th}h>0 be a quasi-uniform family of triangulations of Ω̄.
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Approximation of the state equation

• We assume that Ω is a polygonal/polyhedral convex domain in Rn

with n = 2 or 3.

• Let {Th}h>0 be a quasi-uniform family of triangulations of Ω̄.

Yh = {yh ∈ C(Ω̄) : yh|T ∈ P1(T ) ∀T ∈ Th and yh ≡ 0 on Γ}.
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Approximation of the state equation

• We assume that Ω is a polygonal/polyhedral convex domain in Rn

with n = 2 or 3.

• Let {Th}h>0 be a quasi-uniform family of triangulations of Ω̄.

Yh = {yh ∈ C(Ω̄) : yh|T ∈ P1(T ) ∀T ∈ Th and yh ≡ 0 on Γ}.

a(y1, y2) = 〈Ay1, y2〉H−1(Ω),H1
0 (Ω)

=

∫
Ω

( n∑
i,j=1

aij(x)∂xiy1∂xjy2 + [b(x) · ∇y1]y2

)
dx.
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Approximation of the state equation

• We assume that Ω is a polygonal/polyhedral convex domain in Rn

with n = 2 or 3.

• Let {Th}h>0 be a quasi-uniform family of triangulations of Ω̄.

Yh = {yh ∈ C(Ω̄) : yh|T ∈ P1(T ) ∀T ∈ Th and yh ≡ 0 on Γ}.

a(y1, y2) = 〈Ay1, y2〉H−1(Ω),H1
0 (Ω)

=

∫
Ω

( n∑
i,j=1

aij(x)∂xiy1∂xjy2 + [b(x) · ∇y1]y2

)
dx.

 Find yh ∈ Yh such that

a(yh, zh) +

∫
Ω

f (x, yh(x))zh(x) dx =

∫
Ω

u(x)zh(x) dx ∀zh ∈ Yh.
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Numerical Analysis of the Linear Equa-
tion

Theorem [Schatz, 1974]. Let a0 ∈ L2(Ω) be a nonnegative function.

There exists hA > 0 depending on A and ‖a0‖L2(Ω) such that the

variational problem Find yh ∈ Yh such that

a(yh, zh) +

∫
Ω

a0(x)yh(x)zh(x) dx =

∫
Ω

u(x)zh(x) dx ∀zh ∈ Yh

has a unique solution for every h ≤ hA and for every u ∈ L2(Ω).

Moreover, there exists a constant CA,a0 such that

‖yh‖H1
0 (Ω) ≤ CA,a0‖A

−1u‖H1
0 (Ω) ∀h ≤ hA.
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Numerical Analysis of the Semilinear Equa-
tion
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Numerical Analysis of the Semilinear Equa-
tion
Theorem. Let us assume that{

f (·, 0) ∈ L2(Ω) and ∀M > 0 ∃Lf,M such that

|f (x, y2)− f (x, y1)| ≤ Lf,M |y2 − y1| ∀|yi| ≤M, i = 1, 2.
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Numerical Analysis of the Semilinear Equa-
tion
Theorem. Let us assume that{

f (·, 0) ∈ L2(Ω) and ∀M > 0 ∃Lf,M such that

|f (x, y2)− f (x, y1)| ≤ Lf,M |y2 − y1| ∀|yi| ≤M, i = 1, 2.

∀M ≥ 1 + ‖y‖C(Ω̄) ∃hM > 0 such that for every h < hM the discrete

equation has a unique solution yh satisfying ‖yh‖C(Ω̄) ≤M .
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Numerical Analysis of the Semilinear Equa-
tion
Theorem. Let us assume that{

f (·, 0) ∈ L2(Ω) and ∀M > 0 ∃Lf,M such that

|f (x, y2)− f (x, y1)| ≤ Lf,M |y2 − y1| ∀|yi| ≤M, i = 1, 2.

∀M ≥ 1 + ‖y‖C(Ω̄) ∃hM > 0 such that for every h < hM the discrete

equation has a unique solution yh satisfying ‖yh‖C(Ω̄) ≤M . Moreover,

there exist constants KM and K∞,M independent of u such that

‖y − yh‖L2(Ω) + h‖y − yh‖H1
0 (Ω) ≤ KM

(
‖u‖L2(Ω) + 1

)
h2

‖y − yh‖L∞(Ω) ≤ K∞,M

(
‖u‖L2(Ω) + 1

)
h2−n2
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Numerical Analysis of the Semilinear Equa-
tion
Theorem. Let us assume that{

f (·, 0) ∈ L2(Ω) and ∀M > 0 ∃Lf,M such that

|f (x, y2)− f (x, y1)| ≤ Lf,M |y2 − y1| ∀|yi| ≤M, i = 1, 2.

∀M ≥ 1 + ‖y‖C(Ω̄) ∃hM > 0 such that for every h < hM the discrete

equation has a unique solution yh satisfying ‖yh‖C(Ω̄) ≤M . Moreover,

there exist constants KM and K∞,M independent of u such that

‖y − yh‖L2(Ω) + h‖y − yh‖H1
0 (Ω) ≤ KM

(
‖u‖L2(Ω) + 1

)
h2

‖y − yh‖L∞(Ω) ≤ K∞,M

(
‖u‖L2(Ω) + 1

)
h2−n2

Further, if there exist other solutions {ỹh}h<hM with yh 6= ỹh for all h,

then limh→0 ‖ỹh‖C(Ω̄) =∞.
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A Discrete Mapping uh→ yh

Theorem. Let ȳ ∈ Y be the solution of state equation corresponding

to the control ū ∈ L2(Ω). Given ρ > 0 arbitrary, there exist ρ∗ > 0 and

h0 > 0 such that the discrete equation has a unique solution yh(u) ∈
B̄Y
ρ∗(ȳ) for every u ∈ B̄ρ(ū) ⊂ L2(Ω) and for all h < h0, where

BY
ρ∗(ȳ) = {y ∈ Y : ‖y − ȳ‖Y ≤ ρ∗}.

Furthermore, there exist constants K and K∞ such that

‖yu − yh(u)‖L2(Ω) + h‖yu − yh(u)‖H1
0 (Ω) ≤ K

(
‖ū‖L2(Ω) + ρ + 1

)
h2

‖yu − yh(u)‖L∞(Ω) ≤ K∞

(
‖ū‖L2(Ω) + ρ + 1

)
h2−n2 ∀u ∈ B̄ρ(ū)
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Numerical Approximation of (P)

• Let us define J : L2(Ω)× L2(Ω)→ R given by

J (y, u) =
1

2

∫
Ω

(y(x)− yd(x))2 dx +
ν

2

∫
Ω

u2 dx
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Numerical Approximation of (P)

• Let us define J : L2(Ω)× L2(Ω)→ R given by

J (y, u) =
1

2

∫
Ω

(y(x)− yd(x))2 dx +
ν

2

∫
Ω

u2 dx

• Let us denote by Uh one of the following two spaces:

Uh = U0
h := {uh ∈ L2(Ω) : uh|T ∈ P0(T ) ∀T ∈ Th}

Uh = U1
h := {uh ∈ C(Ω̄) : uh|T ∈ P1(T ) ∀T ∈ Th}
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Numerical Approximation of (P)

• Let us define J : L2(Ω)× L2(Ω)→ R given by

J (y, u) =
1

2

∫
Ω

(y(x)− yd(x))2 dx +
ν

2

∫
Ω

u2 dx

• Let us denote by Uh one of the following two spaces:

Uh = U0
h := {uh ∈ L2(Ω) : uh|T ∈ P0(T ) ∀T ∈ Th}

Uh = U1
h := {uh ∈ C(Ω̄) : uh|T ∈ P1(T ) ∀T ∈ Th}

• We set Uh,ad = Uh ∩ Uad.
• We approximate Problem (P) by the problem

(Ph) min{J (yh, uh) : (yh, uh) ∈ Yh×Uh,ad satisfies the discrete equation}.
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Convergence of (Ph) to (P)

Theorem. There exists h0 > 0 such that problem (Ph) has at

least one solution (ȳh, ūh) for all h < h0.
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Convergence of (Ph) to (P)

Theorem. There exists h0 > 0 such that problem (Ph) has at

least one solution (ȳh, ūh) for all h < h0. Moreover, if {(ȳh, ūh)}h<h0

is a sequence of solutions of problems (Ph), then it is bounded in

H1
0(Ω) × L2(Ω) and there exist subsequences converging weakly in

H1
0(Ω) × L2(Ω).
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Convergence of (Ph) to (P)

Theorem. There exists h0 > 0 such that problem (Ph) has at

least one solution (ȳh, ūh) for all h < h0. Moreover, if {(ȳh, ūh)}h<h0

is a sequence of solutions of problems (Ph), then it is bounded in

H1
0(Ω) × L2(Ω) and there exist subsequences converging weakly in

H1
0(Ω) × L2(Ω). In addition, if a subsequence, denoted in the same

way, satisfies that (ȳh, ūh) ⇀ (ȳ, ū) in H1
0(Ω)× L2(Ω) as h→ 0, then

(ȳ, ū) ∈ Y × Uad, ū is a solution of (P) with associated stated ȳ, and

(ȳh, ūh)→ (ȳ, ū) strongly in H1
0 (Ω)× L2(Ω).
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Error Estimates

Theorem. Let ū ∈ L2(Ω) be a local minimizer of (P) satisfying the suf-

ficient second order optimality conditions and let {ūh} be the sequence

of minimizers of the problems (Ph) described in the above theorem.

Then, there exists h0 > 0 such that

• If Uad ( L2(Ω), then

‖ū− ūh‖L2(Ω) ≤ Ch. ∀h < h0
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Error Estimates

Theorem. Let ū ∈ L2(Ω) be a local minimizer of (P) satisfying the suf-

ficient second order optimality conditions and let {ūh} be the sequence

of minimizers of the problems (Ph) described in the above theorem.

Then, there exists h0 > 0 such that

• If Uad ( L2(Ω), then

‖ū− ūh‖L2(Ω) ≤ Ch. ∀h < h0

• If Uad = L2(Ω) and Uh = U ih, i = 0, 1, then

‖ū− ūh‖L2(Ω) ≤ Ch1+i ∀h < h0
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