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Problem (A)

Let Ω be a bounded domain,

Given numbers γ > 0, p > 1 and a measurable subset D of Ω.

Consider
−∆pu + γχD |u|p−2u = λ|u|p−2u in Ω,

u = 0 on ∂Ω.

(1.1)

∆pu := div
(
|∇u|p−2∇u

)
,

χD is characteristic function of D.
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Problem (A)

The first eigenvalue has variational form:

λ(γ,D) = inf

{∫
Ω |∇v |

p dx + γ
∫

Ω χD |u|p dx∫
Ω |v |p dx

, v ∈W 1,p
0 (Ω), v 6≡ 0

}
.

(1.2)

Fix A ∈ (0, |Ω|), and define

Λ(γ,D) := inf {λ(γ,D) : D ⊂ Ω, |D| = A}

Here |D|: Lebesgue measure of a subset D.

Any minimizer is called optimal configuration. The pair (u,D)
is said to be an optimal pair(optimal solution).

S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi, Symmetry breaking and other phenomena in the

optimization of eigenvalues for composite membranes, Commun. Math. Phys. 214 (2000) 315–337.

W. Pielichowski, The optimization of eigenvalue problems involving the p-Laplacian. Univ. Iagel. Acta

Math. 42 (2004) 109–122.
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Problem (B)


−∆pu = λ%|u|p−2u, in Ω,

u = 0 on ∂Ω.

(1.3)

The density function % belongs to

R = {% : %(x) = αχD + βχDc , D ⊂ Ω, |D| = A} ,

with A ∈ (0, |Ω|) and α > β > 0,

λ = λ% is the (principal) eigenvalue,

u = u(x) is a corresponding eigenfunction and p ∈ (1,+∞).

S.A. Mohammadi, F. Bozorgnia, H. Voss, Optimal shape design for the p-Laplacian eigenvalue problem, J.

Sci. Comput. 78, (2019) 1231–1249.
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Variational form of the first eigenvalue:

λ% = inf

{∫
Ω |∇v |

pdx∫
Ω %|v |pdx

, v ∈W 1,p
0 (Ω), v 6≡ 0

}
. (1.4)

The corresponding eigenfunction does not change the sign in
Ω. We may assume u(x) > 0.

u(x) ∈ C 1,δ(Ω) with δ ∈ (0, 1).

The first eigenfunction is unique up to a constant factor.
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Eigenvalue Optimization

Consider
inf
%∈R

λ%. (2.1)

where

R = {% : %(x) = αχD + βχDc , |D| = A} ≡ {D ⊂ Ω : |D| = A}.

We rewrite (2.1 ) as

inf
D⊂Ω, |D|=A

λ(D), (2.2)

The minimum in (2.2) is denoted by λ̂%̂.

The pair (û, %̂) is minimzer for problem (B) with parameters
(α, β) iff (û, D̂) is an optimal pair of problem (A) with

γ = (β − α)λ̂%̂
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The pair (û, %̂) is minimzer for problem (B) with parameters
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Physical Motivation

Let p = 2 and N = 2 and assume that we want to build a
membrane with fixed boundary of prescribed shape consisting of
given two different materials with densities α and β. The body has
prescribed mass M = αA + β(|Ω| − A). Our aim is to distribute
these materials in a such a way that the basic frequency of the
resulting membrane is as small as possible.
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Existence and Qualitative Properties of the Optimaizer

It has been proved that problem (2.1) admits a solution
[Cuccu, Emamizadeh, Porru, (2009)].

If Ω is a ball, then the optimal shape is also a ball [Cuccu,
Emamizadeh, Porru, (2009)].

Some qualitative properties such as Steiner symmetrization
and connectivity of the optimal domain have been
investigated [Anedda, Cuccu, (2009)-Pielichowski, (2004)].

For p = 2, Chanillo et al. have investigated a more general
problem and obtained several interesting geometric attributes
of the optimal shape [ Chanillo, Grieser, Imai, Kurata,
Ohnishi, (2000)].
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Assume %̂ = αχD̂ + βχD̂c is an optimal solution and λρ̂ and û are
the corresponding eigenvalue and eigenfunction.

Theorem

Let p ∈ (1,+∞) and A ∈ (0, |Ω|) , then

(a) there is a number t̂ > 0 such that D̂ = {x ∈ Ω : û(x) ≥ t̂},
and so D̂c contains a tubular neighborhood of the boundary
∂Ω,

(b) every connected component D0 of the interior of D̂c hits the
boundary, i.e., D̄0 ∩ ∂Ω 6= ∅. In particular, if Ω is simply
connected, then D̂ is connected.

(c) if Ω is Steiner symmetric with respect to a hyperplane T , then
every minimizer D̂ is Steiner symmetric relative to T .

F. Cuccu, B. Emamizadeh, G. Porru, Optimization of the first eigenvalue in problems involving the

p-Laplacian. Proc. Amer. Math. Soc. 137 (2009) 1677–1687.

C. Anedda, F. Cuccu, Steiner symmetry in the minimization of the first eigenvalue in problems involving the

p-Laplacian, Proc. Amer. Math. Soc. 144 (2016) 3431–3440.
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The following Lemma shows that spectrum is closed:

Lemma

Let {%n}∞1 be a sequence of functions in L∞(Ω) uniformly
bounded by a constant α0 and {λ%n}∞1 , {un}∞1 be the
corresponding principle eigenvalues and positive eigenfunctions of
(1.3) such that λ%n → λ̂ as n goes to infinity. Then, there exists a
function η in L∞(Ω) so that

−∆pû = λ̂ηûp−1, in Ω, û = 0 on ∂Ω,

and
lim
n→∞
‖un − û‖

W 1,p
0 (Ω)

= 0.
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Low Contrast regime

Assume that α and β are close. Let λ be the first eigenvalue of

−∆pu = λup−1, in Ω, u = 0 on ∂Ω, (3.1)

and ψ(x) be the corresponding eigenfunction such that
‖∇ψ(x)‖Lp = 1. For s > 0 the superlevel set of ψ

Es = {x ∈ Ω : ψ(x) ≥ s}.

Theorem

Let β = 1 and α = 1 + ε. Then, we have(
εA

|Ω|+ εA

)
λ ≤ λ− λ̂%̂ε ≤

(
ε

1 + ε

)
λ. (3.2)



Statements of Problems Eigenvalue Optimization Nearly Optimal Solutions Numerical Algorithm References

Low Contrast regime

Assume that α and β are close. Let λ be the first eigenvalue of

−∆pu = λup−1, in Ω, u = 0 on ∂Ω, (3.1)

and ψ(x) be the corresponding eigenfunction such that
‖∇ψ(x)‖Lp = 1. For s > 0 the superlevel set of ψ

Es = {x ∈ Ω : ψ(x) ≥ s}.

Theorem

Let β = 1 and α = 1 + ε. Then, we have(
εA

|Ω|+ εA

)
λ ≤ λ− λ̂%̂ε ≤

(
ε

1 + ε

)
λ. (3.2)



Statements of Problems Eigenvalue Optimization Nearly Optimal Solutions Numerical Algorithm References

Low Contrast regime

Assume that α and β are close. Let λ be the first eigenvalue of

−∆pu = λup−1, in Ω, u = 0 on ∂Ω, (3.1)

and ψ(x) be the corresponding eigenfunction such that
‖∇ψ(x)‖Lp = 1. For s > 0 the superlevel set of ψ

Es = {x ∈ Ω : ψ(x) ≥ s}.

Theorem

Let β = 1 and α = 1 + ε. Then, we have(
εA

|Ω|+ εA

)
λ ≤ λ− λ̂%̂ε ≤

(
ε

1 + ε

)
λ. (3.2)



Statements of Problems Eigenvalue Optimization Nearly Optimal Solutions Numerical Algorithm References

In the case of low contrast the optimal domain is squeezed
between two super level sets.

Theorem

Let β = 1 and α = 1 + ε, choose τ such that |Eτ | = A and assume
that p > N. Then for every δ > 0 there is ε0 such that whenever
ε < ε0 and

%̂ε = 1 + εχD̂ε
, D̂ε = {x ∈ Ω : ûε(x) ≥ t̂ε},

is an optimal solution, then |t̂ε − τ | < δ and

Eτ+δ ⊂ D̂ε ⊂ Eτ−δ.
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Asymptotic Case p →∞

Let Λ∞ be the reciprocal of the radius of the largest possible ball
inscribed in the domain Ω.

Assume that D̂p is an optimal domain
of (2.2) for p and λ̂p, ûp are the corresponding principle
eigenvalue and eigenfunction, respectively.

Theorem

lim
p→∞

λ̂
1
p
p = Λ∞.
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Theorem

A function u∞ obtained as a limit of a subsequence {ûp}∞1 is a
viscosity solution of the equation

min{|∇u| − Λ∞u, −∆∞u} = 0, (3.3)

where

−∆∞u =
n∑

i ,j=1

uxiuxjuxixj ,

is the ∞-Laplacian operator.
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For s > 0 we define

E∞s = {x ∈ Ω : u∞(x) ≥ s}.

Theorem

Choose τ such that |E∞τ | = A. Then for any δ > 0 there is p0 such
that whenever p > p0 and

%̂p = αχD̂p
+ βχD̂c

p
, D̂p = {x ∈ Ω : ûp(x) ≥ t̂p},

is an optimal solution, then |t̂p − τ | < δ and

E∞τ+δ ⊂ D̂p ⊂ E∞τ−δ.
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Example. When Ω = {x ∈ RN : 0 < a < |x | < a + R} then we
observe that

E∞τ = {x ∈ Ω :
R

2
− r < |x | < R

2
+ r},

where r = A
2πR since u∞ is the distance function δ(x) = d(x , ∂Ω)

[Y. Yu, 2007].

Figure: Approximate optimal domain in yellow while p is large.
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Numerical Algorithm to determine the optimal shape

Our numerical procedure is a modification of the method that
has been developed in [Kao, Su, (2013)].

Such rearrangement algorithms have been applied successfully
to optimize eigenvalues of biharmonic equations appearing in
frequency control based on the density distribution of
composite rods and thin plates [ Chen, Chou, Kao, (2016)-
Kang, Kao, (2017)], to derive stationary and stable flows of
an ideal fluid [Mohammadi, (2017)] and to obtain minimum
ground state energy in quantum dot nanostructures
[Mohammadi, Voss, (2016)], [Antunes, Mohammadi, Voss,
(2018)].
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Bathtub Principle

Lemma

Let f (x) be a nonnegative function in L1(Ω) such that its level sets
have measure zero. Then the maximization problem

sup
%∈R

∫
Ω
%f (x)dx ,

is uniquely solvable by (x)= αχD̂ + βχD̂c where |D̂| = A and

D̂ = {x ∈ Ω : f (x) ≥ t},

t = sup{s ∈ R : |{x ∈ Ω : f (x) ≥ s}| ≥ A}.
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Theorem

For every %0 ∈ R there exists a function %1 ∈ R such that

λ%0 ≥ λ%1 .

Particularly, we have
λ%0 > λ%1 ,

if ∫
Ω
%0u

p
0dx <

∫
Ω
%1u

p
0dx ,

where u0 is the eigenfunction of (1.3) corresponding to %0.
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Proof.

Set f (x) = up0 (x) in the bathtub principle (maximization), then
one can achieve function %1 uniquely in R such that∫

Ω
%0u

p
0dx ≤

∫
Ω
%1u

p
0 dx .

Hence, we observe that∫
Ω |∇u0|pdx∫

Ω %0u
p
0dx

≥
∫

Ω |∇u0|pdx∫
Ω %1u

p
0dx

,

and applying (1.4)
λ%0 ≥ λ%1 .
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Numerical Algorithm

Given %n ∈ P use the inverse power method to obtain λ%n and
un.

Based upon the level sets of the eigenfunction un we extract a
new density function %n+1 ∈ P such that λ%n ≥ λ%n+1 .

Identify %n+1 = αχDn+1 + βχDc
n+1

by setting f (x) = upn (x).

Recall that Dn+1 = {x ∈ Ω : f (x) ≥ t}, and the problem is to
determine the parameter t

introduce the function F (s) = |{x ∈ Ω : f (x) ≥ s}| for all
s ≥ 0. Applying the idea of the bisection method for F (s)
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Algorithm 1. Eigenvalue minimization

Data: An initial density function %0

Result: Densities {%n}∞1 and decreasing eigenvalues {λ%n}∞1
1. Set n = 0;
2. Insert %n in (1.3) and compute un and λ%n invoking the algorithm
in [F. Bozorgnia, (2016)];
3. Compute %n+1 applying bathtub principle (maximization);
4. If (λ%n − λ%n+1) < TOL then stop;

else
Set n = n + 1;
Go to step 2;
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Theorem

Consider the sequence of eigenvalues {λ%n}∞1 generated by
Algorithm 1. We have

lim
n→∞

λ%n = λ%̂, and lim
n→∞
‖%n − %̂‖Lp(Ω) = 0,

where %̂ is a step function in R. Moreover, %̂ is a local minimizer
of the function λ% with respect to R.
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Example

Let Ω = {(x1, x2) ∈ R2 : 0 < x1 < 2, 0 < x2 < 2}, A = 2,

%0 =

{
2 0 < x1 < 1,
1 1 < x1 < 2,

TOL = 5× 10−3, α = 2 and β = 1.
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(a) p = 1.1, λ̂ = 1.40 (b) p = 2, λ̂ = 2.55

Figure: The minimizer sets corresponding to different values of p are in
yellow and λ̂ is the associated optimal eigenvalue.
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(a) p = 1.1 (b) p = 2

Figure: The eigenfunctions û corresponding to the optimal sets for
different values of p.
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(a) p = 5, λ̂ = 7.25 (b) p = 10, λ̂ = 17.48

Figure: The minimizer sets corresponding to different values of p are in
yellow and λ̂ is the associated optimal eigenvalue.
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(a) p = 5 (b) p = 10

Figure: The eigenfunctions û corresponding to the optimal sets for
different values of p.
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Example

Let Ω be a stadium which is defined as the set of points at
distance less than 1 from the line segment joining points (−1, 0)
and (0, 1). We know that |Ω| = π + 4 and we set A = 4. The
initial guess for our algorithm is chosen as follows

%0 =

{
2 D0,
1 Dc

0 ,

where D0 = {(x1, x2) ∈ R2 : −1 < x1 < 1, −1 < x2 < 1}.
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(a) p = 1.1, λ̂ = 1.02 (b) p = 2, λ̂ = 1.63

Figure: The minimizer sets corresponding to different values of p are in
yellow and λ̂ is the associated optimal eigenvalue.
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(a) p = 1.1 (b) p = 2

Figure: The eigenfunctions û corresponding to the optimal sets for
different values of p.
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(a) p = 5, λ̂ = 3.31 (b) p = 10, λ̂ = 5.41

Figure: The minimizer sets corresponding to different values of p are in
yellow and λ̂ is the associated optimal eigenvalue.
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(a) p = 5 (b) p = 10

Figure: The eigenfunctions û corresponding to the optimal sets for
different values of p.
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Example

Let O = (0, 0) and Ω be the annulus B(O, 3) \ B(O, 1). Note that
|Ω| = 8π and we set A = 1.62π. Consider q1 = (2, 0) and
q2 = (0, 2), two points in Ω. Algorithm 1 is started with the
following density function

%0 =

{
2 x ∈ B(q1, 0.9) ∪ B(q2, 0.9),
1 otherwise.
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(a) p = 1.1, λ̂ = 0.90 (b) p = 2, λ̂ = 1.40

Figure: The compliment of the minimizer sets, D̂c , corresponding to
different values of p are in red and λ̂ is the associated optimal eigenvalue.
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(a) p = 1.1 (b) p = 2

Figure: The eigenfunctions û corresponding to the optimal sets for
different values of p.
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(a)
p = 10, λ̂ = 5.20

(b) p = 15, λ̂ = 8.17

Figure: The minimizer sets, D̂c , corresponding to different values of p are
in red and λ̂ is the associated optimal eigenvalue.
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(a) p = 10 (b) p = 15

Figure: The eigenfunctions û corresponding to the optimal sets for
different values of p.
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Thanks for your attention
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