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A ”hot” topic with a lot of room for new ideas in modeling...

Sofia project: Add-Up, Michelin, Safran, ESI, etc.
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I - Introduction: shape and topology optimization

Minimize an objective function J(Ω) over a set Uad of admissibles
shapes Ω (including possible topology changes)

inf
Ω∈Uad ,P(Ω)≤0

J(Ω)

with one or several constraints P(Ω)

J(Ω) =

∫
Ω
j(uΩ) dx , P(Ω) =

∫
Ω
c(uΩ) dx

where uΩ is the solution of a partial differential equation (state
equation)

PDE (uΩ) = 0 in Ω

Here, the PDE is the system of linearized elasticity, J(Ω) is the
compliance and one first constraint is the weight.
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Level set method (Osher and Sethian)

A shape Ω ⊂ D is parametrized by a level set function

ψ(x) < 0⇔ x ∈ Ω, ψ(x) > 0⇔ x ∈ (D \ Ω)

Assume that the shape Ω(t) evolves in time t with a normal
velocity V (t, x). Then its motion is governed by the following
Hamilton Jacobi equation

∂ψ

∂t
+ V |∇xψ| = 0 in D.
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Advection velocity = shape gradient

The velocity V is deduced from the shape gradient of the objective
function.
To compute shape gradients we rely on Hadamard’s method.
Let Ω0 be a reference domain. Shapes are parametrized by a
vector field θ:

Ω = ( Id + θ)Ω0 with θ ∈ C 1(Rd ;Rd ).
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Shape derivative

Definition: the shape derivative of J(Ω) at Ω0 is the Fréchet
differential of θ → J

(
( Id + θ)Ω0

)
at 0.

Hadamard structure theorem: the shape derivative of J(Ω) can
always be written (in a distributional sense)

J ′(Ω0)(θ) =

∫
∂Ω0

θ(x) · n(x) j(x) ds

where j(x) is an integrand depending on the state u and an adjoint
p.

The normal velocity V = θ · n is chosen so that J ′(Ω0)(θ) ≤ 0.
Simplest choice: V = θ · n = −j (but other ones are possible).
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Numerical algorithm

1 Initialization of the level set function ψ0 (including holes).
2 Iteration until convergence for k ≥ 1:

1 Compute the elastic displacement uk for the shape ψk .
Deduce the shape gradient = normal velocity = Vk

2 Advect the shape with Vk (solving the Hamilton Jacobi
equation) to obtain a new shape ψk+1.

————————————————————————–

Optimization algorithms:

1 Lagrangian (possibly augmented) algorithm,

2 SLP (sequential linear programming).
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Complex optimal topologies

? compliance minimization with a weight constraint

dome L-beam motor-support

? very hard to manufacture !
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Molding constraints

The molds and cast part should not be broken under removal:
castable (left), non-castable (right).

Delicate to implement in an optimization algorithm...
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No mold (top), 1 mold (left b.) 2 molds (right b.)
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II - Additive Manufacturing

Structures built layer by layer

No topological constraints on the built structures
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Metallic additive manufacturing

Metallic powder melted by a laser or an electron beam.
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Metallic additive manufacturing
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Some failures...
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Overhang limitation

The angle between the structural boundary and the build direction
has an impact on the quality of the processed shape.
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Overhang limitation

Example of a bad 3-d printing due to overhangs.
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Additive Manufacturing: Difficulties

→ no constraints related to topology, but...
→ constraints related to the fabrication process !

almost horizontal overhang surfaces cannot be built

metal melting → large temperatures → thermal residual
stresses and thermal deformations

deformations of the structure may stop the powder deposition
system

adding (and removing) supports,

preferred orientation of thin and slender structures,

minimal time (or energy) for completion,

removing the powder (no closed holes).
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III - Mechanical constraints for overhangs

Why a mechanical constraint ?
Because geometrical constraint fail most of the time !
A naive idea: geometric constraint on the normal angle

To avoid bad 3-d printing due to overhangs, small angles of the
normal to the shape with the build direction d are forbidden.
For a given angle φ, our pointwise criterion reads

n(x) · d ≤ cosφ, ∀x ∈ ∂Ω.

See: Leary et al. (2014), Gaynor and Guest (2016), Langelaar
(2016, 2017), Allaire et al. (JCP 2017).
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Dripping effect
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New approach: layer by layer modeling

Additive manufacturing involves a layer by layer process.
We model this process with a mechanical approach.
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Layer by layer modeling

For a final shape Ω, define intermediate shapes Ωi of increasing
height hi

Ωi = {x ∈ Ω such that xd ≤ hi} 1 ≤ i ≤ n.

Two different state equations:

1 for the objective function of the final shape Ω,

2 for the additive manufacturing constraint on each Ωi .
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1st state equation for the final shape

For a given applied load f : ΓN → Rd ,
−div (A e(u)) = 0 in Ω
u = 0 on ΓD(
A e(u)

)
n = f on ΓN(

A e(u)
)
n = 0 on Γ

Objective function: compliance

J(Ω) =

∫
ΓN

f · u dx ,
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2nd state equation for the intermediate shapes

Apply self-weight (gravity g) to the top layer of intermediate
shapes Ωi : 

−div (A e(ui )) = ρgδ in Ωi ,
ui = 0 on ΓD ,(

A e(ui )
)
n = 0 on Γi ,

with gδ(x) =

{
g if hi − δ < xd < hi ,
0 otherwise,

The boundary conditions are different from the first state equation.
Total self-weight compliance constraint:

P(Ω) =
n∑

i=1

∫
Ωi

Ae(ui ) : e(ui ) dx =
n∑

i=1

∫
Ωi

ρgδ · ui dx

G. Allaire, B. Bogosel, C. Dapogny, L. Jakabcin Additive manufacturing & topology optimization



Self-weight compliance constraint

We solve the optimization problem:

min
Ω⊂D

J(Ω)

s.t. V (Ω) ≤ 0.20|D|
P(Ω) ≤ αP(Ωref )

where Ωref is the optimal design without constraint and α ∈ (0, 1)
is a parameter of the method.

Recall that J(Ω) is the compliance for the final shape, V (Ω) is the
volume and P(Ω) is the self-weight constraint for the intermediate
shapes.

Some subtle issues in the shape derivation of P(Ω)...
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Overhang constraint

More details can be found in:

G. Allaire, Ch. Dapogny, A. Faure, G. Michailidis, Shape
optimization of a layer by layer mechanical constraint for additive
manufacturing, C. R. Math. Acad. Sci. Paris, 355, no. 6, 699-717
(2017).

G. Allaire, C. Dapogny, R. Estevez, A. Faure and G. Michailidis,
Structural optimization under overhang constraints imposed by
additive manufacturing technologies, J. Comput. Phys. 351,
pp.295-328 (2017).
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Self-weight compliance constraint (varying α)
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Self-weight compliance constraint in 3-d

G. Allaire, B. Bogosel, C. Dapogny, L. Jakabcin Additive manufacturing & topology optimization



IV - Thermal residual stresses

Same idea with a more involved model:

Keep intermediate ”layer by layer” shapes (Ωi )i=1,...,n.

Each layer i is built between time ti−1 and ti .

Holes are now filled by a metallic powder.

Thermal residual stress computed by a model as in
L. Van Belle, J.-C. Boyer, G. Vansteenkiste, Investigation of
residual stresses induced during the selective laser melting
process, Key Engineering Materials, 1828-2834 (2013).
M. Megahed, H.-W. Mindt, N. NâDri, H. Duan, O.
Desmaison, Metal additive-manufacturing process and residual
stress modeling, Integrating Materials and Manufacturing
Innovation, 5:4, (2016).
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Notations

1 Each layer i is built between time ti−1 and ti , 1 ≤ i ≤ n.

2 Build chamber D, vertical build direction ed .

3 Intermediate domains Di = {x ∈ D such that xd ≤ hi}.
4 Final shape Ω and intermediate shapes Ωi = Ω ∩ Di .

5 Mixture Di = Ωi ∪ Pi of solid and powder.
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Thermo-mechanical model

Heat equation:
ρ
∂T

∂t
− div(λ∇T ) = Q(t) in (ti−1, ti )× Di

T = Tinit on (ti−1, ti )× Γbase

λ∇T · n = −He(T − Tinit) on (ti−1, ti )× (∂Di \ Γbase)
T (t = ti−1) = Tinit in Di \ Di−1

Thermoelastic quasi-static equation:{
−div(σ) = 0 and σ = σel + σth in (ti−1, ti )× Di ,
σel = Ae(u) and σth = K (T − Tinit) Id,

Material parameters ρ, λ,A,K are different for solid or powder.
Source term Q(t) = beam spot, traveling on the upper layer.
Weak coupling: first, solve the heat equation, second,
thermoelasticity.
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Path of the source term Q(t)

path

G. Allaire, B. Bogosel, C. Dapogny, L. Jakabcin Additive manufacturing & topology optimization

file:///Users/allaire/Pictures/science/optforme/additive/anim_temperature_08092017.ogv


Thermo-mechanical objective

The objective (or constraint) function is

J(Ω) =
n∑

i=1

∫ ti

ti−1

∫
Di

j(u, σ,T ) dx dt

where (u, σ,T ) is the displacement, stress and temperature fields
for the intermediate shapes. A constraint on the compliance of
the final shape is imposed

C (Ω) =

∫
Ω
f · ufinal dx ≤ C (Ωref ),

where ufinal is the elastic displacement for the final shape, solution
of

−div (A e(ufinal )) = f in Ω

The shape derivative of J(Ω) is computed by an adjoint method.
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Adjoint problems

Example for an objective j(u) (without T and σ for simplicity).
Elasticity adjoint equation: no ”backward effect”

−div (e(η)) = −j ′(u) in (ti−1, ti )× Di

Adjoint heat equation: backward in time, from i = n to 1,
ρ
∂p

∂t
+ div(λ∇p) = K divη in (ti−1, ti )× Di

p = 0 on (ti−1, ti )× Γbase

λ∇p · n = −Hep on (ti−1, ti )× (∂Di \ Γbase)
p(t = tn) = 0 in Dn

Reversed order of coupling: first, solve the adjoint elasticity,
second, the adjoint heat equation.
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Two objective functions

1 Minimize the deviatoric part of the stress σD = 2µe(u)D

J1(Ω) =
n∑

i=1

∫ ti

ti−1

∫
Di

|σD |2 dx dt

2 Minimize the top vertical displacement (to allow the rake or
roller to coat a new powder layer)

J2(Ω) =
n∑

i=1

∫ ti

ti−1

∫
Di\Di−1

|max(0, u · ed − umax )|2 dx dt

G. Allaire, B. Bogosel, C. Dapogny, L. Jakabcin Additive manufacturing & topology optimization



Simplified model

Ideas:

1 forget the layer by layer construction,

2 forget the moving source term.

Consequences:

apply the thermo-mechanical model only at the final shape Ω,

take a source term Q(t, x) constant in time and in the solid
(zero in the powder),

perform just a few time steps,

simpler and faster ! (More simplification are possible...)
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Test case 1

Half MBB beam (2-d).

Simplified model with 5 time steps.

Minimize the vertical displacement (to allow the rake or roller
to coat a new powder layer)

J2(Ω) =
n∑

i=1

∫ ti

ti−1

∫
D
|max(0, u · ed − umax )|2 dx dt

The value umax is guessed from the initial design.

Constraints on volume (fixed) and compliance.

Initial design: optimal design for compliance minimization.
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Initial (top) and final (bottom) shape
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Initial and final constraint on the vertical displacement

initial

final
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Test case 2

Half MBB beam (3-d).

Simplified model with 10 time steps.

Minimize the vertical displacement (to allow the rake or roller
to coat a new powder layer)

J2(Ω) =
n∑

i=1

∫ ti

ti−1

∫
D
|max(0, u · ed − umax )|2 dx dt

Constraints on volume (fixed) and compliance.

Initial design: optimal design for compliance minimization.
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Initial (left) and final (right) shapes
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Vertical cut of the vertical displacement

initial

final
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Test case 3

Half MBB beam (2-d).

Full model with 20 layers and 5 time steps per layer.

Minimize the deviatoric part of the stress σD = 2µe(u)D

J1(Ω) =
n∑

i=1

∫ ti

ti−1

∫
D
|σD |2 dx dt

The value umax is guessed from the initial design.

Constraints on volume (fixed) and compliance.

Initial design: optimal design for compliance minimization.
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Initial (top) and final (bottom) shape
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Convergence history (thermal stress)
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Plot of thermal stress
√∫ T

0 |σD |2(x) dt

initial

final
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Thermal constraints in additive manufacturing

More details in :

G. Allaire, L. Jakabcin, Taking into account thermal residual
stresses in topology optimization of structures built by additive
manufacturing, M3AS 28(12), 2313-2366 (2018).
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V - Support optimization

Support are scaffolds for inclined surfaces.

Supports fix the shape to the baseplate.

Drawbacks

Impression time, additional material consumption, post-processing
(removal)
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V - Support optimization

Support are scaffolds for inclined surfaces.

Supports fix the shape to the baseplate.

Optimization goals

Given a certain design, to insure its successful 3D printing,
optimize the topology of supports with minimal volume.
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Bibliography on support optimization

Many works !
Allaire et al., C. R. Math. Acad. Sci. Paris (2017), Cacace et al.,
Appl. Math. Model. (2017), Calignano, Materials & Design
(2014), Dumas et al., ACM Trans. Graph. (2014), Gaynor and
Guest, SMO (2016), Hu et al., Computer-Aided Design (2015),
Kuo et al., SMO (2018), Langelaar, Additive Manufacturing
(2016), Leary et al., Materials & Design (2014), Mirzendehdel and
Suresh, Computer-Aided Design (2016), Qian, J. Num. Meth.
Eng. (2017), Strano et al., Int. J. Adv. Manufact. Techn. (2013),
Vanek et al., Computer Graphics Forum (2014), etc.

Support optimization or self-supported structure optimization.
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Topology optimization of supports

design domain D

given structure ω ⊂ D (to be printed and non-optimizable)

supports are denoted by S ⊂ D

ω

S S

S
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Equations

Linearized elasticity with gravity loads in ω and S :

gf

ω

Simple model to mimick the effect of overhangs.
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Equations

Linearized elasticity with gravity loads in ω and S :

e(u) =
1

2
(∇u +∇tu) and σ = 2µe(u) + λtr(e(u))

µ and λ may be different in ω and S (which can be some
homogenized lattice material)

− div σ = g(ρωχω + ρSχS ) ω ∪ S
u = 0 ΓD

σ.n = 0 ΓN

Compliance minimization (with volume constraint):

minF(S) =

∫
ω∪S

g(ρωχω + ρSχS ) · u
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MBB beam in 2D (supports in grey)
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Supports for a 3D chair

Rotation Optimization
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Simultaneous optimization: structure and support

at every iteration we solve two state equations : one for the
final loads on the structure ω alone and another for the
building loads on the supported structure S ∪ ω
evolve the two shapes simultaneously using two level set
functions for the parametrization

different shape derivatives on ∂ω \ S , ∂S \ ω and ∂ω ∩ ∂S

The MBB example: video

G. Allaire, B. Bogosel, C. Dapogny, L. Jakabcin Additive manufacturing & topology optimization

file:///Users/allaire/Documents/textes/transptex/pic-support/2LvLAnim.gif


VI - Conclusions and perspectives

No limits for modeling ! Many possible variants...

Ongoing work on support optimization
G. Allaire, B. Bogosel, Optimizing supports for additive
manufacturing, SMO 58(6), 2493-2515 (2018).
G. Allaire, M. Bihr, B. Bogosel, Support optimization in
additive manufacturing for geometric and thermo-mechanical
constraints, submitted.

Real experiments on building such structures.
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VI - Conclusions and perspectives

Other topics in additive manufaturing

optimal control of the laser path (Mathilde Boissier)

lattice materials (Perle Geoffroy-Donders, Alex Ferrer)

multi-physics optimization (Florian Feppon)
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