Construction of covering arrays from m-sequences

Georgios Tzanakis ${ }^{1}$
Joint work with L. Moura ${ }^{2}$ and D. Panario ${ }^{1}$
Carleton University ${ }^{1}$
University of Ottawa ${ }^{2}$

December 5, 2013

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays
Definition
Research on CAs
Motivation

Sequences

Definition

m-sequences

Our work

In a nutshel
Our method
Current results
Future

WORK IN PROGRESS

Construction of

Outline of talk

Covering arrays
Definition
Research on covering arrays
Motivation
Linear recurrence sequences over finite fields
Definition
m -sequences

Our work
In a nutshell
Our method
Current results
Future

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays

Definition

Research on CAs Motivation

Sequences
Definition
m -sequences
Our work
In a nutshell
Our method
Current results
Future

Outline of talk

Covering arrays
Definition
Research on covering arrays
Motivation

Linear recurrence sequences over finite fields Definition
m-sequences

Our work
In a nutshell
Our method
Current results
Future

Construction of

Definition of covering arrays

A covering array $C A(N ; t, k, v)$ is a $N \times k$ array with entries from an alphabet of size v, with the property that any $N \times t$ sub-array has at least one row equal to every possible t-tuple.

Definition of covering arrays

A covering array $C A(N ; t, k, v)$ is a $N \times k$ array with entries from an alphabet of size v, with the property that any $N \times t$ sub-array has at least one row equal to every possible t-tuple.

0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	0	0	0	0	1
1	0	1	1	0	1	0	1	0	0
1	0	0	0	1	1	1	0	0	0
0	1	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	0	1	0	0	1
0	1	0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	1	1	1	0	1

Definition of covering arrays

A covering array $C A(N ; t, k, v)$ is a $N \times k$ array with entries from an alphabet of size v, with the property that any $N \times t$ sub-array has at least one row equal to every possible t-tuple.

0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	0	0	0	0	1
1	0	1	1	0	1	0	1	0	0
1	0	0	0	1	1	1	0	0	0
0	1	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	0	1	0	0	1
0	1	0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	1	1	1	0	1

Definition of covering arrays

A covering array $C A(N ; t, k, v)$ is a $N \times k$ array with entries from an alphabet of size v, with the property that any $N \times t$ sub-array has at least one row equal to every possible t-tuple.

	0	0	0	0
Example	0	1	2	2
A covering array	1	2	2	0
$C A(9 ; 2,4,3)$	2	2	0	2
	2	0	2	1
	0	2	1	1
2	1	1	0	
	1	1	0	1
	1	0	1	2

Construction of

Definition of covering arrays

A covering array $C A(N ; t, k, v)$ is a $N \times k$ array with entries from an alphabet of size v, with the property that any $N \times t$ sub-array has at least one row equal to every possible t-tuple.

0	0	0	0
0	1	2	2
1	2	2	0
2	2	0	2
2	0	2	1
0	2	1	1
2	1	1	0
1	1	0	1
1	0	1	2

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays
Definition
Research on CAs Motivation

Sequences
Definition
m-sequences
Our work
In a nutshell
Our method
Current results
Future

Outline of talk

Covering arrays
Definition
Research on covering arrays
Motivation

Linear recurrence sequences over finite fields Definition
m-sequences
Our work
In a nutshell
Our method
Current results
Future

Construction of

Research on covering arrays

1. Bounds on number of rows
2. Combinatorial and algebraic constructions
3. Computer-generated constructions
4. Recursive constructions

Construction of

Research on covering arrays

Outline

Covering arrays

Definition

Research on CAs Motivation

1. Bounds on number of rows
2. Combinatorial and algebraic constructions
3. Computer-generated constructions
4. Recursive constructions

Construction of

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number $\operatorname{CAN}(t, k, v)$ is the smallest possible N such that a $C A(N ; t, k, v)$ exists

Colbourn, '04
"Lower bounds are in general not well explored. . ."

Construction of

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number $\operatorname{CAN}(t, k, v)$ is the smallest possible N such that a $C A(N ; t, k, v)$ exists

Elementary counting arguments

- $v^{t} \leq C A N(t, k, v) \leq v^{k}$
- $\operatorname{CAN}(t-1, k-1, v) \leq \frac{1}{v} \operatorname{CAN}(t, k, v)$
- If $k_{1}<k_{2}$ then $\operatorname{CAN}\left(t, k_{1}, v\right)<\operatorname{CAN}\left(t, k_{2}, v\right)$

Construction of

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number $\operatorname{CAN}(t, k, v)$ is the smallest possible N such that a $C A(N ; t, k, v)$ exists

Case $t=2, v=2$

- Kleitman and Spencer '73; Katona '73

$$
\operatorname{CAN}(2, k, 2)=\min \left\{N \in \mathbb{N} ; k \leq\binom{ N-1}{\left\lceil\frac{N}{2}\right\rceil}\right\}
$$

Construction of

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number $\operatorname{CAN}(t, k, v)$ is the smallest possible N such that a $C A(N ; t, k, v)$ exists

Case $t=2, v>2$

- Gargano, Körner, Vacarro '90

$$
\operatorname{CAN}(2, k, v)=\frac{v}{2} \log K(1+o(1))
$$

Construction of

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number $\operatorname{CAN}(t, k, v)$ is the smallest possible N such that a $C A(N ; t, k, v)$ exists

Recursive results

- $\operatorname{CAN}(2, k q+1, q) \leq \operatorname{CAN}(2, k, q)+q^{2}-q$
- $\operatorname{CAN}(2, k(q+1), q) \leq \operatorname{CAN}(2, k, q)+q^{2}-1$
- CAN $(3,2 k, v) \leq \operatorname{CAN}(3, k, v)+(v-1) \operatorname{CAN}(2, k, v)$
- ...

Construction of covering arrays from m-sequences

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number $\operatorname{CAN}(t, k, v)$ is the smallest possible N such that a $C A(N ; t, k, v)$ exists

Asymptotic results

- CAN $\leq \frac{(t-1) \log k}{\log \left(\frac{v^{t}}{v^{t}-1}\right)}(1+O(1))$
- CAN $(t, k, 2) \leq 2^{t} t^{O(\log t)} \log k$
- $\frac{\operatorname{CAN}(2, k, v)}{\log k} \longrightarrow \frac{1}{2} v$

Construction of

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number $\operatorname{CAN}(t, k, v)$ is the smallest possible N such that a $C A(N ; t, k, v)$ exists

Online repositories

- Colbourn
- NIST
- Torres-Jimenez
- Sherwood

Construction of covering arrays from m-sequences

```
Georgios Tzanakis
```


Research on covering arrays

Outline

1. Bounds on number of rows
2. Combinatorial and algebraic constructions
3. Computer-generated constructions
4. Recursive constructions

Construction of covering arrays from m-sequences

Research on covering arrays

2. Algebraic and combinatorial constructions

- Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields ...)
- Optimal CA($N ; 2, k, 2$)'s for all k (Kleitman, Spencer '73; Katona '73)
- Using groun divisible designs (Stevens, Ling, Mendelsohn '02)
- Using group actions - strength 3 (Chateauneuf, Colbourn, Kreher '02) - strength 2 (Meagher, Stevens '05)
- Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
- Using m-sequences (Raaphorst, Moura, Stevens '13) - Survey: Colbourn '04

Construction of covering arrays from m-sequences

Research on covering arrays

2. Algebraic and combinatorial constructions

- Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields ...)
- Optimal CA(N;2,k,2)'s for all k (Kleitman, Spencer '73; Katona '73)
- Using group divisible designs (Stevens, Ling, Mendelsohn '02)
- Using group actions
- strength 3 (Chateauneuf, Colbourn, Kreher '02) - strength 2 (Meagher, Stevens '05)
- Using trinomial coefficients (Martinez-Fena, Torres-Jimenez '10)
- Using m-sequences (Raaphorst, Moura, Stevens '13)
- Survey: Colbourn '04

Construction of covering arrays from m-sequences

Research on covering arrays

2. Algebraic and combinatorial constructions

- Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields ...)
- Optimal CA(N;2,k,2)'s for all k (Kleitman, Spencer '73; Katona '73)
- Using group divisible designs (Stevens, Ling, Mendelsohn '02)
- Using group actions
- strength 3 (Chateauneuf, Colbourn, Kreher '02) - strength 2 (Meagher, Stevens '05)
- Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
- Using m-sequences (Raaphorst, Moura, Stevens'13)
- Survey: Colbourn '04

Construction of

Research on covering arrays

2. Algebraic and combinatorial constructions

- Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields ...)
- Optimal CA(N;2,k,2)'s for all k (Kleitman, Spencer '73; Katona '73)
- Using group divisible designs (Stevens, Ling, Mendelsohn '02)
- Using group actions
- strength 3 (Chateauneuf, Colbourn, Kreher '02)
- strength 2 (Meagher, Stevens '05)
- Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
- Using m-sequences (Raaphorst, Moura, Stevens '13) - Survey: Colbourn '04

Research on covering arrays

2. Algebraic and combinatorial constructions

- Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields ...)
- Optimal CA(N;2,k,2)'s for all k (Kleitman, Spencer '73; Katona '73)
- Using group divisible designs (Stevens, Ling, Mendelsohn '02)
- Using group actions
- strength 3 (Chateauneuf, Colbourn, Kreher '02)
- strength 2 (Meagher, Stevens '05)
- Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
- Using m-sequences (Raaphorst, Moura, Stevens '13) - Survey: Colbourn '04

Research on covering arrays

2. Algebraic and combinatorial constructions

- Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields ...)
- Optimal CA(N;2,k,2)'s for all k (Kleitman, Spencer '73; Katona '73)
- Using group divisible designs (Stevens, Ling, Mendelsohn '02)
- Using group actions
- strength 3 (Chateauneuf, Colbourn, Kreher '02)
- strength 2 (Meagher, Stevens '05)
- Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
- Using m-sequences (Raaphorst, Moura, Stevens '13)
- Survey: Colbourn '04

Research on covering arrays

2. Algebraic and combinatorial constructions

- Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields ...)
- Optimal CA(N;2,k,2)'s for all k (Kleitman, Spencer '73; Katona '73)
- Using group divisible designs (Stevens, Ling, Mendelsohn '02)
- Using group actions
- strength 3 (Chateauneuf, Colbourn, Kreher '02)
- strength 2 (Meagher, Stevens '05)
- Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
- Using m-sequences (Raaphorst, Moura, Stevens '13)
- Survey: Colbourn '04

Construction of

Research on covering arrays

Outline

Definition

Research on CAs Motivation

1. Bounds on number of rows
2. Combinatorial and algebraic constructions
3. Computer-generated constructions
4. Recursive constructions

Construction of

Research on covering arrays

1. Bounds on number of rows
2. Combinatorial and algebraic constructions
3. Computer-generated constructions

- Greedy algorithms
- Metaheurstic algorithms

4. Recursive constructions

Construction of

Research on covering arrays

Outline

Definition

Research on CAs Motivation

1. Bounds on number of rows
2. Combinatorial and algebraic constructions
3. Computer-generated constructions
4. Recursive constructions

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays
Definition
Research on CAs Motivation

Sequences
Definition
m -sequences
Our work
In a nutshell
Our method
Current results Future

Outline of talk

Covering arrays
Definition
Research on covering arrays

Motivation

Linear recurrence sequences over finite fields Definition
m-sequences

Our work
In a nutshell
Our method
Current results
Future

Construction of covering arrays from m-sequences

Georgios Tzanakis

- Elegant combinatorial object
- Software testing
- Hardware testing
- Biology
- Industrial processes

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays
Definition
Research on CAs Motivation

Sequences

Definition

m-sequences
Our work
In a nutshell
Our method
Current results
Future

Outline of talk

Covering arrays
Definition
Research on covering arrays
Motivation

Linear recurrence sequences over finite fields
Definition
m-sequences

Our work
In a nutshell
Our method
Current results
Future

Construction of covering arrays from m-sequences

Definition of linear recurrence sequences

Definition
A sequence $a_{i}, i=0,1,2, \ldots$ is a linear recurrence sequence of order n over \mathbb{F}_{q} if it satisfies

$$
a_{i+n}=\sum_{j=0}^{n-1} c_{j} a_{i+j}, i \geq 0
$$

for some $c_{j} \in \mathbb{F}_{q}$ and initial values a_{0}, \ldots, a_{n-1}

Example
$001012112011100202122102220010121 \ldots$ over \mathbb{F}_{3} is produced by

$$
a_{i+3}=a_{i+1}+2 a_{i}
$$

and initial conditions $a_{0}=0, a_{1}=0, a_{2}=1$

Definition of linear recurrence sequences
Definition
A sequence $a_{i}, i=0,1,2, \ldots$ is a linear recurrence sequence of order n over \mathbb{F}_{q} if it satisfies

$$
a_{i+n}=\sum_{j=0}^{n-1} c_{j} a_{i+j}, i \geq 0
$$

for some $c_{j} \in \mathbb{F}_{q}$ and initial values a_{0}, \ldots, a_{n-1}

Example
$001012112011100202122102220010121 \ldots$ over \mathbb{F}_{3} is produced by

$$
a_{i+3}=a_{i+1}+2 a_{i}
$$

and initial conditions $a_{0}=0, a_{1}=0, a_{2}=1$

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays
Definition
Research on CAs Motivation

Sequences
Definition m-sequences

Our work
In a nutshell
Our method
Current results
Future

Outline of talk

Covering arrays
Definition
Research on covering arrays
Motivation

Linear recurrence sequences over finite fields
Definition
m-sequences

Our work
In a nutshell
Our method
Current results
Future

Construction of covering arrays from m-sequences

Georgios Tzanakis

m-sequences and primitive elements

Definition
A linear recurrence sequence of order n over \mathbb{F}_{q} and period $q^{n}-1$ is called an m-sequence
m-sequences correspond to primitive polynomials
where α is a fixed primitive element of $\mathbb{F}_{q^{n}}$

Construction of
m-sequences and primitive elements

Definition

A linear recurrence sequence of order n over \mathbb{F}_{q} and period $q^{n}-1$ is called an m-sequence
m-sequences correspond to primitive polynomials

where α is a fixed primitive element of $\mathbb{F}_{q^{n}}$

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays
Definition
Research on CAs Motivation

Sequences
Definition
m-sequences
Our work
In a nutshell
Our method
Current results
Future

Outline of talk

Covering arrays
Definition
Research on covering arrays
Motivation

Linear recurrence sequences over finite fields Definition
m-sequences

Our work
In a nutshell
Our method
Current results
Future

Construction of covering arrays from m-sequences

Georgios Tzanakis

Our work in a nutshell

Outline

- Long term goal: give an algebraic construction for covering arrays $C A(N ; t, k, q)$ for general strength t and prime powers q

```
> Short term goal: give an algebraic construction when
    * strength t=4
    rows }N=2(\mp@subsup{q}{}{n}-1)+
    * any q
- What we have:
- A method ancl a backtracking algorithm in SAGE
* Hints about an algebraic construction
```

Construction of

Our work in a nutshell

- Long term goal: give an algebraic construction for covering arrays $C A(N ; t, k, q)$ for general strength t and prime powers q
- Short term goal: give an algebraic construction when
- strength $t=4$
- rows $N=2\left(q^{n}-1\right)+1$
- any q
- What we have:
- A method and a backtracking algorithm in SAGE
- Hints about an algebraic construction

Construction of

Our work in a nutshell

- Long term goal: give an algebraic construction for covering arrays $C A(N ; t, k, q)$ for general strength t and prime powers q
- Short term goal: give an algebraic construction when
- strength $t=4$
- rows $N=2\left(q^{n}-1\right)+1$
- any q
- What we have:
- A method and a backtracking algorithm in SAGE
- Hints about an algebraic construction

Our method

1. Choose a prime power q for the alphabet
2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_{q} of degree t
3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^{n}-1}{q-1}$ columns
4. Form the same kind of array using g
5. Concatenate vertically the two arrays and a row of zeros
6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Our method

1. Choose a prime power q for the alphabet
2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_{q} of degree t
3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^{n}-1}{q-1}$ columns
4. Form the same kind of array using g
5. Concatenate vertically the two arrays and a row of zeros
6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Construction of covering arrays from m-sequences

Georgios Tzanakis

Definition

Research on CAs

 MotivationSequences
Definition
m-sequences
Our work

In a nutshell

Our method

Current results Future
$q=3, t=3, f(x)=x^{3}+2 x+1$

0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2
0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0
1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0
1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1
0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1
1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0
0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1
2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0
1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2
2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1
2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2
2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2
1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2
0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1
0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0
2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0
2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2
0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2
2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0
0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2
1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0
2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1
1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2
1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1
1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1
2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1

Construction of covering arrays from m-sequences	0	0	1	1	0	1	0	2	1	2	2	2	1
Georgios Tzanakis	0	1	1	0	1	0	2	1	2	2	2	1	0
	1	1	0	1	0	2	1	2	2	2	1	0	0
Outline	1	0	1	0	2	1	2	2	2	1	0	0	2
Covering arrays	0	1	0	2	1	2	2	2	1	0	0	2	2
Definition	1	0	2	1	2	2	2	1	0	0	2	2	0
Reseach on CAs	0	2	1	2	2	2	1	0	0	2	2	0	2
Motivation	2	1	2	2	2	1	0	0	2	2	0	2	0
Sequences	1	2	2	2	1	0	0	2	2	0	2	0	1
Definition	2	2	2	1	0	0	2	2	0	2	0	1	2
m-sequences	2	2	1	0	0	2	2	0	2	0	1	2	1
Our work	2	1	0	0	2	2	0	2	0	1	2	1	1
In a nutshell	1	0	0	2	2	0	2	0	1	2	1	1	1
Our method	0	0	2	2	0	2	0	1	2	1	1	1	2
Current results	0	2	2	0	2	0	1	2	1	1	1	2	0
Future	2	2	0	2	0	1	2	1	1	1	2	0	0
	2	0	2	0	1	2	1	1	1	2	0	0	1
	0	2	0	1	2	1	1	1	2	0	0	1	1
	2	0	1	2	1	1	1	2	0	0	1	1	0
	0	1	2	1	1	1	2	0	0	1	1	0	1
	1	2	1	1	1	2	0	0	1	1	0	1	0
	2	1	1	1	2	0	0	1	1	0	1	0	2
	1	1	1	2	0	0	1	1	0	1	0	2	1
	1	1	2	0	0	1	1	0	1	0	2	1	2
	1	2	0	0	1	1	0	1	0	2	1	2	2
2	0	0	1	1	0	1	0	2	1	2	2	2	

Construction of covering arrays from m-sequences

Georgios Tzanakis

Motivation

Definition

sequences

In a nutshell

Our method

Current results Future
$q=3, t=3, f(x)=x^{3}+2 x+1$

Our method

1. Choose a prime power q for the alphabet
2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_{q} of degree t
3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^{n}-1}{q-1}$ columns
4. Form the same kind of array using g
5. Concatenate vertically the two arrays and a row of zeros
6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Construction of covering arrays from m-sequences

 Motivation

Definition
m-sequences

Our method
Current results Future
$q=3, t=3, g(x)=x^{3}+x^{2}+2 x+1$

0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2
0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0
1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0
1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1
1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1
0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1
2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0
1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2
1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1
2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1
1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2
0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1
1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0
0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1
0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0
2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0
2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2
2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2
0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2
1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0
2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1
2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2
1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2
2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1
0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2
2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0

Construction of covering arrays from m-sequences

Definition

Research on CAs

 MotivationSequences
Definition m -sequences

Our work

Our method Current results Future
$q=3, t=3, g(x)=x^{3}+x^{2}+2 x+1$

0	0	1	1	1	0	2	1	1	2	1	0	1
0	1	1	1	0	2	1	1	2	1	0	1	0
1	1	1	0	2	1	1	2	1	0	1	0	0
1	1	0	2	1	1	2	1	0	1	0	0	2
1	0	2	1	1	2	1	0	1	0	0	2	2
0	2	1	1	2	1	0	1	0	0	2	2	2
2	1	1	2	1	0	1	0	0	2	2	2	0
1	1	2	1	0	1	0	0	2	2	2	0	1
1	2	1	0	1	0	0	2	2	2	0	1	2
2	1	0	1	0	0	2	2	2	0	1	2	2
1	0	1	0	0	2	2	2	0	1	2	2	1
0	1	0	0	2	2	2	0	1	2	2	1	2
1	0	0	2	2	2	0	1	2	2	1	2	0
0	0	2	2	2	0	1	2	2	1	2	0	2
0	2	2	2	0	1	2	2	1	2	0	2	0
2	2	2	0	1	2	2	1	2	0	2	0	0
2	2	0	1	2	2	1	2	0	2	0	0	1
2	0	1	2	2	1	2	0	2	0	0	1	1
0	1	2	2	1	2	0	2	0	0	1	1	1
1	2	2	1	2	0	2	0	0	1	1	1	0
2	2	1	2	0	2	0	0	1	1	1	0	2
2	1	2	0	2	0	0	1	1	1	0	2	1
1	2	0	2	0	0	1	1	1	0	2	1	1
2	0	2	0	0	1	1	1	0	2	1	1	2
0	2	0	0	1	1	1	0	2	1	1	2	1
2	0	0	1	1	1	0	2	1	1	2	1	0

Our method

1. Choose a prime power q for the alphabet
2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_{q} of degree t
3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^{n}-1}{q-1}$ columns
4. Form the same kind of array using g
5. Concatenate vertically the two arrays and a row of zeros
6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays
Definition
Research on CAs Motivation
Sequences
Definition
m-sequences
Our work
In a nutshell

Our method

Current results Future

0	0	1	1	0	1	0	2	1	2	2	2	1
0	1	1	0	1	0	2	1	2	2	2	1	0
1	1	0	1	0	2	1	2	2	2	1	0	0
1	0	1	0	2	1	2	2	2	1	0	0	2
0	1	0	2	1	2	2	2	1	0	0	2	2
1	0	2	1	2	2	2	1	0	0	2	2	0
\vdots												
0	1	2	1	1	1	2	0	0	1	1	0	1
1	2	1	1	1	2	0	0	1	1	0	1	0
2	1	1	1	2	0	0	1	1	0	1	0	2
1	1	1	2	0	0	1	1	0	1	0	2	1
1	1	2	0	0	1	1	0	1	0	2	1	2
1	2	0	0	1	1	0	1	0	2	1	2	2
2	0	0	1	1	0	1	0	2	1	2	2	2
0	0	1	1	1	0	2	1	1	2	1	0	1
0	1	1	1	0	2	1	1	2	1	0	1	0
1	1	1	0	2	1	1	2	1	0	1	0	0
1	1	0	2	1	1	2	1	0	1	0	0	2
1	0	2	1	1	2	1	0	1	0	0	2	2
0	2	1	1	2	1	0	1	0	0	2	2	2
2	1	1	2	1	0	1	0	0	2	2	2	0
\vdots												
1	2	2	1	2	0	2	0	0	1	1	1	0
2	2	1	2	0	2	0	0	1	1	1	0	2
2	1	2	0	2	0	0	1	1	1	0	2	1
1	2	0	2	0	0	1	1	1	0	2	1	1
2	0	2	0	0	1	1	1	0	2	1	1	2
0	2	0	0	1	1	1	0	2	1	1	2	1
2	0	0	1	1	1	0	2	1	1	2	1	0

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays

Definition

Motivation

Sequences
Definition
m -sequences
Our work
In a nutshell

Our method

Current results Future

0	0	1	1	0	1	0	2	1	2	2	2	1
0	1	1	0	1	0	2	1	2	2	2	1	0
1	1	0	1	0	2	1	2	2	2	1	0	0
1	0	1	0	2	1	2	2	2	1	0	0	2
0	1	0	2	1	2	2	2	1	0	0	2	2
1	0	2	1	2	2	2	1	0	0	2	2	0
\vdots												
0	1	2	1	1	1	2	0	0	1	1	0	1
1	2	1	1	1	2	0	0	1	1	0	1	0
2	1	1	1	2	0	0	1	1	0	1	0	2
1	1	1	2	0	0	1	1	0	1	0	2	1
1	1	2	0	0	1	1	0	1	0	2	1	2
1	2	0	0	1	1	0	1	0	2	1	2	2
2	0	0	1	1	0	1	0	2	1	2	2	2
0	0	1	1	1	0	2	1	1	2	1	0	1
0	1	1	1	0	2	1	1	2	1	0	1	0
1	1	1	0	2	1	1	2	1	0	1	0	0
1	1	0	2	1	1	2	1	0	1	0	0	2
1	0	2	1	1	2	1	0	1	0	0	2	2
0	2	1	1	2	1	0	1	0	0	2	2	2
2	1	1	2	1	0	1	0	0	2	2	2	0
\vdots												
1	2	2	1	2	0	2	0	0	1	1	1	0
2	2	1	2	0	2	0	0	1	1	1	0	2
2	1	2	0	2	0	0	1	1	1	0	2	1
1	2	0	2	0	0	1	1	1	0	2	1	1
2	0	2	0	0	1	1	1	0	2	1	1	2
0	2	0	0	1	1	1	0	2	1	1	2	1
2	0	0	1	1	1	0	2	1	1	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0

Our method

1. Choose a prime power q for the alphabet
2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_{q} of degree t
3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^{n}-1}{q-1}$ columns
4. Form the same kind of array using g
5. Concatenate vertically the two arrays and a row of zeros
6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays

Definition

Motivation

Sequences
Definition
m -sequences
Our work
In a nutshell

Our method

Current results Future

0	0	1	1	0	1	0	2	1	2	2	2	1
0	1	1	0	1	0	2	1	2	2	2	1	0
1	1	0	1	0	2	1	2	2	2	1	0	0
1	0	1	0	2	1	2	2	2	1	0	0	2
0	1	0	2	1	2	2	2	1	0	0	2	2
1	0	2	1	2	2	2	1	0	0	2	2	0
\vdots												
0	1	2	1	1	1	2	0	0	1	1	0	1
1	2	1	1	1	2	0	0	1	1	0	1	0
2	1	1	1	2	0	0	1	1	0	1	0	2
1	1	1	2	0	0	1	1	0	1	0	2	1
1	1	2	0	0	1	1	0	1	0	2	1	2
1	2	0	0	1	1	0	1	0	2	1	2	2
2	0	0	1	1	0	1	0	2	1	2	2	2
0	0	1	1	1	0	2	1	1	2	1	0	1
0	1	1	1	0	2	1	1	2	1	0	1	0
1	1	1	0	2	1	1	2	1	0	1	0	0
1	1	0	2	1	1	2	1	0	1	0	0	2
1	0	2	1	1	2	1	0	1	0	0	2	2
0	2	1	1	2	1	0	1	0	0	2	2	2
2	1	1	2	1	0	1	0	0	2	2	2	0
\vdots												
1	2	2	1	2	0	2	0	0	1	1	1	0
2	2	1	2	0	2	0	0	1	1	1	0	2
2	1	2	0	2	0	0	1	1	1	0	2	1
1	2	0	2	0	0	1	1	1	0	2	1	1
2	0	2	0	0	1	1	1	0	2	1	1	2
0	2	0	0	1	1	1	0	2	1	1	2	1
2	0	0	1	1	1	0	2	1	1	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0

Construction of covering arrays from m-sequences	0	1	0	2	1	2	1
Georgios Tzanakis	0	1	1	1	2	2	0
	1	0	0	2	2	2	0
Outline	1	1	2	2	2	1	2
Covering arrays	0	0	1	2	1	0	2
Definition on CAs	1	2	2	1	0	0	0
Research on	\vdots						
Motivation	0	2	1	0	0	1	1
Sequences	1	1	1	0	1	1	0
Definition	2	1	2	1	1	0	2
m-sequences	1	1	0	1	0	1	1
Our work	1	2	0	0	1	0	2
In a nutshell	1	0	1	1	0	2	2
Our method	2	0	1	0	2	1	2
Current results	0	1	1	1	1	2	1
Future	0	1	0	1	2	1	0
	1	1	2	2	1	0	0
	1	0	1	1	0	1	2
	1	2	1	0	1	0	2
	0	1	2	1	0	0	2
	2	1	1	0	0	2	0
	\vdots						
	1	2	2	0	0	1	0
	2	1	0	0	1	1	2
	2	2	2	1	1	1	1
	1	0	0	1	1	0	1
	2	2	0	1	0	2	2
	0	0	1	0	2	1	1
	2	0	1	2	1	1	0
	0	0	0	0	0	0	0

Our method

1. Choose a prime power q for the alphabet
2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_{q} of degree t
3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^{n}-1}{q-1}$ columns
4. Form the same kind of array using g
5. Concatenate vertically the two arrays and a row of zeros.
6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Our method

1. Choose a prime power q for the alphabet
2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_{q} of degree t
3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^{n}-1}{q-1}$ columns
4. Form the same kind of array using g
5. Concatenate vertically the two arrays and a row of zeros.
6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays
Definition
Research on CAs Motivation

Sequences
Definition m -sequences

Our work
In a nutshell
Our method
Current results
Future

Outline of talk

Covering arrays
Definition
Research on covering arrays
Motivation

Linear recurrence sequences over finite fields Definition
m-sequences

Our work
In a nutshell
Our method
Current results
Future

Construction of

Some obtained covering arrays

 and interesting pointsCA(161; 4, 10, 3)

- Comparison with Colbourn's tables:

	N	t	k	v
Best known	159	4	10	3
Us	161	4	10	3
Best known	183	4	11	3

- Choice of columns: [$0,8,16,24,32$] along with [1,9,17,25,33] or [3,11,19,27,35]
- Columns are the multiples of $2(q+1)$ and shifts

Construction of

Some obtained covering arrays

 and interesting points$C A(511 ; 4,17,4)$

- Comparison with Colbourn's tables:

	N	t	k	v
Best known	508	4	13	4
Us	511	4	17	4
Best known	760	4	20	4

- Has a place in Colbourn's tables
- Choice of columns: $[0,5,10,15,20,25, \ldots, 70,75,80]$
- Columns are the multiples of $q+1$

Construction of

Some obtained covering arrays

 and interesting points$C A(1249 ; 4,15,5)$

- Comparison with Colbourn's tables:

	N	t	k	v
Best known	1245	4	15	5
Us	1249	4	15	5
Best known	1865	4	24	5

- Search not complete
- Choice of columns: $[0,12,24,36, \ldots, 132,144]+2$ other
- Most columns are the multiples of $2(q+1)$

Construction of

Some obtained covering arrays

and interesting points

Choice of columns
Connection with multiples of $q+1$
Pairs f, g of primitive polynomials for $q=4$

- Fix primitive $\alpha \in \mathbb{F}_{q^{n}}$.
- Find k, m such that $f\left(\alpha^{k}\right)=0, g\left(\alpha^{m}\right)=0$
- Let $H=Z_{255}^{*} /<4>$
- f, g work in our construction iff $\operatorname{ord}_{H}(k)=8$ and $\operatorname{ord}_{H}(m) \neq 8$.

Construction of covering arrays from m-sequences

Georgios Tzanakis

Outline

Covering arrays
Definition
Research on CAs Motivation

Sequences
Definition m-sequences

Our work
In a nutshell
Our method
Current results
Future

Outline of talk

Covering arrays
Definition
Research on covering arrays
Motivation

Linear recurrence sequences over finite fields Definition
m-sequences

Our work
In a nutshell
Our method
Current results

Future

Future work

Ongoing

- Improve our backtracking algorithm
- Characterize the choices for the pairs of primitive polynomials
- Understand the choice of columns

Long term

- Generalize the construction as much as possible

