Georgios Tzanakis

Outlin

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current result Future

Construction of covering arrays from m-sequences

Georgios Tzanakis ¹

Joint work with L. Moura $^{\rm 2}$ and D. Panario $^{\rm 1}$

Carleton University 1

University of Ottawa²

December 5, 2013

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current result Future

WORK IN PROGRESS

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Outline of talk

Covering arrays

Definition Research on covering arrays Motivation

Linear recurrence sequences over finite fields Definition m-sequences

Our work

In a nutshell Our method Current results Future

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current result: Future

Outline of talk

Covering arrays Definition

Research on covering arrays Motivation

Linear recurrence sequences over finite fields Definition m-sequences

Our work

In a nutshell Our method Current results Future

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current result: Future

Definition of covering arrays

A covering array CA(N; t, k, v) is a $N \times k$ array with entries from an alphabet of size v, with the property that any $N \times t$ sub-array has at least one row equal to every possible *t*-tuple.

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Definition of covering arrays

A covering array CA(N; t, k, v) is a $N \times k$ array with entries from an alphabet of size v, with the property that any $N \times t$ sub-array has at least one row equal to every possible *t*-tuple.

Example

A covering array CA(13; 3, 10, 2)

0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	0	0	0	0	1
1	0	1	1	0	1	0	1	0	0
1	0	0	0	1	1	1	0	0	0
0	1	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	0	1	0	0	1
0	1	0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	1	1	1	0	1

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Definition of covering arrays

A covering array CA(N; t, k, v) is a $N \times k$ array with entries from an alphabet of size v, with the property that any $N \times t$ sub-array has at least one row equal to every possible *t*-tuple.

Example

A covering array CA(13; 3, 10, 2)

0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	0	0	0	0	1
1	0	1	1	0	1	0	1	0	0
1	0	0	0	1	1	1	0	0	0
0	1	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	0	1	0	0	1
0	1	0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	1	1	1	0	1

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Definition of covering arrays

A covering array CA(N; t, k, v) is a $N \times k$ array with entries from an alphabet of size v, with the property that any $N \times t$ sub-array has at least one row equal to every possible *t*-tuple.

Example

A covering array CA(9; 2, 4, 3)

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Definition of covering arrays

A covering array CA(N; t, k, v) is a $N \times k$ array with entries from an alphabet of size v, with the property that any $N \times t$ sub-array has at least one row equal to every possible *t*-tuple.

Example

A covering array CA(9; 2, 4, 3)

Georgios Tzanakis

Outline

Covering arrays

Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current result: Future

Outline of talk

Covering arrays

Definition

Research on covering arrays Motivation

Linear recurrence sequences over finite fields Definition m-sequences

Our work

In a nutshell Our method Current results Future

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 1. Bounds on number of rows
- 2. Combinatorial and algebraic constructions
- 3. Computer-generated constructions
- 4. Recursive constructions

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Research on covering arrays

1. Bounds on number of rows

- 2. Combinatorial and algebraic constructions
- 3. Computer-generated constructions
- 4. Recursive constructions

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number CAN(t, k, v) is the smallest possible N such that a CA(N; t, k, v) exists

Colbourn, '04

"Lower bounds are in general not well explored..."

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number CAN(t, k, v) is the smallest possible N such that a CA(N; t, k, v) exists

Elementary counting arguments

- ► $v^t \leq CAN(t, k, v) \leq v^k$
- $CAN(t-1, k-1, v) \leq \frac{1}{v}CAN(t, k, v)$
- If $k_1 < k_2$ then $CAN(t, k_1, v) < CAN(t, k_2, v)$
- ▶ ...

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number CAN(t, k, v) is the smallest possible N such that a CA(N; t, k, v) exists

Case t = 2, v = 2

Kleitman and Spencer '73; Katona '73

$$CAN(2, k, 2) = \min \left\{ N \in \mathbb{N}; \ k \leq \binom{N-1}{\left\lceil \frac{N}{2} \right\rceil} \right\}$$

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number CAN(t, k, v) is the smallest possible N such that a CA(N; t, k, v) exists

Case t = 2, v > 2

Gargano, Körner, Vacarro '90

$$CAN(2,k,v) = rac{v}{2}\log K(1+o(1))$$

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number CAN(t, k, v) is the smallest possible N such that a CA(N; t, k, v) exists

Recursive results

- $CAN(2, kq+1, q) \leq CAN(2, k, q) + q^2 q$
- $CAN(2, k(q+1), q) \le CAN(2, k, q) + q^2 1$
- $\blacktriangleright CAN(3,2k,v) \leq CAN(3,k,v) + (v-1)CAN(2,k,v)$

. . .

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Research on covering arrays

1. Bounds on number of rows

Definition

▶ ...

The covering array number CAN(t, k, v) is the smallest possible N such that a CA(N; t, k, v) exists

Asymptotic results

•
$$CAN \leq \frac{(t-1)\log k}{\log\left(\frac{\nu t}{\nu^t-1}\right)}(1+O(1))$$

► $CAN(t, k, 2) \le 2^t t^{O(\log t)} \log k$ ► $\frac{CAN(2, k, v)}{\log k} \longrightarrow \frac{1}{2}v$

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Research on covering arrays

1. Bounds on number of rows

Definition

The covering array number CAN(t, k, v) is the smallest possible N such that a CA(N; t, k, v) exists

Online repositories

- Colbourn
- NIST
- Torres-Jimenez
- Sherwood

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 1. Bounds on number of rows
- 2. Combinatorial and algebraic constructions
- 3. Computer-generated constructions
- 4. Recursive constructions

Georgios Tzanakis

Outline

Covering array

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current result: Future

- 2. Algebraic and combinatorial constructions
 - Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields . . .)
 - Optimal CA(N; 2, k, 2)'s for all k (Kleitman, Spencer '73; Katona '73)
 - Using group divisible designs (Stevens, Ling, Mendelsohn '02)
 - Using group actions
 - strength 3 (Chateauneuf, Colbourn, Kreher '02)
 - strength 2 (Meagher, Stevens '05)
 - Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
 - ▶ Using m-sequences (Raaphorst, Moura, Stevens '13)
 - Survey: Colbourn '04

Georgios Tzanakis

Outline

Covering array

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 2. Algebraic and combinatorial constructions
 - Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields . . .)
 - Optimal CA(N; 2, k, 2)'s for all k (Kleitman, Spencer '73; Katona '73)
 - Using group divisible designs (Stevens, Ling, Mendelsohn '02)
 - Using group actions
 - strength 3 (Chateauneuf, Colbourn, Kreher '02)
 - strength 2 (Meagher, Stevens '05)
 - Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
 - ▶ Using m-sequences (Raaphorst, Moura, Stevens '13)
 - Survey: Colbourn '04

Georgios Tzanakis

Outline

Covering array

Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 2. Algebraic and combinatorial constructions
 - Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields . . .)
 - Optimal CA(N; 2, k, 2)'s for all k (Kleitman, Spencer '73; Katona '73)
 - Using group divisible designs (Stevens, Ling, Mendelsohn '02)
 - Using group actions
 - strength 3 (Chateauneuf, Colbourn, Kreher '02)
 - strength 2 (Meagher, Stevens '05)
 - Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
 - ▶ Using m-sequences (Raaphorst, Moura, Stevens '13)
 - Survey: Colbourn '04

Georgios Tzanakis

Outline

Covering array

Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 2. Algebraic and combinatorial constructions
 - Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields . . .)
 - Optimal CA(N; 2, k, 2)'s for all k (Kleitman, Spencer '73; Katona '73)
 - Using group divisible designs (Stevens, Ling, Mendelsohn '02)
 - Using group actions
 - strength 3 (Chateauneuf, Colbourn, Kreher '02)
 - strength 2 (Meagher, Stevens '05)
 - Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
 - ▶ Using m-sequences (Raaphorst, Moura, Stevens '13)
 - Survey: Colbourn '04

Georgios Tzanakis

Outline

Covering array

Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 2. Algebraic and combinatorial constructions
 - Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields . . .)
 - Optimal CA(N; 2, k, 2)'s for all k (Kleitman, Spencer '73; Katona '73)
 - Using group divisible designs (Stevens, Ling, Mendelsohn '02)
 - Using group actions
 - strength 3 (Chateauneuf, Colbourn, Kreher '02)
 - strength 2 (Meagher, Stevens '05)
 - Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
 - ▶ Using m-sequences (Raaphorst, Moura, Stevens '13)
 - Survey: Colbourn '04

Georgios Tzanakis

Outline

Covering array

Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 2. Algebraic and combinatorial constructions
 - Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields . . .)
 - Optimal CA(N; 2, k, 2)'s for all k (Kleitman, Spencer '73; Katona '73)
 - Using group divisible designs (Stevens, Ling, Mendelsohn '02)
 - Using group actions
 - strength 3 (Chateauneuf, Colbourn, Kreher '02)
 - strength 2 (Meagher, Stevens '05)
 - Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
 - Using m-sequences (Raaphorst, Moura, Stevens '13)
 - Survey: Colbourn '04

Georgios Tzanakis

Outline

Covering array

Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 2. Algebraic and combinatorial constructions
 - Results on orthogonal arrays (using MOLS, Hadamard matrices, finite fields . . .)
 - Optimal CA(N; 2, k, 2)'s for all k (Kleitman, Spencer '73; Katona '73)
 - Using group divisible designs (Stevens, Ling, Mendelsohn '02)
 - Using group actions
 - strength 3 (Chateauneuf, Colbourn, Kreher '02)
 - strength 2 (Meagher, Stevens '05)
 - Using trinomial coefficients (Martinez-Pena, Torres-Jimenez '10)
 - ▶ Using m-sequences (Raaphorst, Moura, Stevens '13)
 - Survey: Colbourn '04

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 1. Bounds on number of rows
- 2. Combinatorial and algebraic constructions
- 3. Computer-generated constructions
- 4. Recursive constructions

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 1. Bounds on number of rows
- 2. Combinatorial and algebraic constructions
- 3. Computer-generated constructions
 - Greedy algorithms
 - Metaheurstic algorithms
- 4. Recursive constructions

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

- 1. Bounds on number of rows
- 2. Combinatorial and algebraic constructions
- 3. Computer-generated constructions
- 4. Recursive constructions

Georgios Tzanakis

Outline

Covering arrays Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current result Future

Outline of talk

Covering arrays

Definition Research on covering arrays Motivation

Linear recurrence sequences over finite fields Definition m-sequences

Our work

In a nutshell Our method Current results Future

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Motivation

- Elegant combinatorial object
- Software testing
- Hardware testing
- Biology
- Industrial processes

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current result: Future

Outline of talk

Covering array

Definition Research on covering arrays Motivation

Linear recurrence sequences over finite fields Definition

m-sequences

Our work

In a nutshell Our method Current results Future

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition

Our work

In a nutshell Our method Current results Future

Definition of linear recurrence sequences

Definition

A sequence a_i , i = 0, 1, 2, ... is a linear recurrence sequence of order *n* over \mathbb{F}_q if it satisfies

$$a_{i+n} = \sum_{j=0}^{n-1} c_j a_{i+j}, \ i \ge 0$$

for some $c_j \in \mathbb{F}_q$ and initial values a_0, \ldots, a_{n-1}

Example

00101211201110020212210222 0010121 . . . over \mathbb{F}_3 is produced by

$$a_{i+3} = a_{i+1} + 2a_i$$

and initial conditions $a_0 = 0, a_1 = 0, a_2 = 1$

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition

Our work

In a nutshell Our method Current results Future

Definition of linear recurrence sequences

Definition

A sequence a_i , i = 0, 1, 2, ... is a linear recurrence sequence of order *n* over \mathbb{F}_q if it satisfies

$$a_{i+n} = \sum_{j=0}^{n-1} c_j a_{i+j}, \ i \ge 0$$

for some $c_j \in \mathbb{F}_q$ and initial values a_0, \ldots, a_{n-1}

Example

00101211201110020212210222 0010121 \ldots over \mathbb{F}_3 is produced by

$$a_{i+3}=a_{i+1}+2a_i$$

and initial conditions $a_0 = 0, a_1 = 0, a_2 = 1$

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Outline of talk

Covering array

Definition Research on covering arrays Motivation

Linear recurrence sequences over finite fields

m-sequences

Our work

In a nutshell Our method Current results Future

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current result Future

m-sequences and primitive elements

Definition

A linear recurrence sequence of order n over \mathbb{F}_q and period $q^n - 1$ is called an m-sequence

m-sequences correspond to primitive polynomials

where α is a fixed primitive element of \mathbb{F}_{q^n}

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current result Future

m-sequences and primitive elements

Definition

A linear recurrence sequence of order n over \mathbb{F}_q and period $q^n - 1$ is called an m-sequence

m-sequences correspond to primitive polynomials

where α is a fixed primitive element of \mathbb{F}_{q^n}

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

Outline of talk

Covering array

Definition Research on covering arrays Motivation

Linear recurrence sequences over finite fields Definition m-sequences

Our work In a nutshell Our method Current results Future

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell

Our method Current result Future

Our work in a nutshell

- Long term goal: give an algebraic construction for covering arrays CA(N; t, k, q) for general strength t and prime powers q
- Short term goal: give an algebraic construction when
 - strength t = 4
 - rows $N = 2(q^n 1) + 1$
 - ▶ any q

► What we have:

- A method and a backtracking algorithm in SAGE
- Hints about an algebraic construction

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell

Our method Current result Future

- Long term goal: give an algebraic construction for covering arrays CA(N; t, k, q) for general strength t and prime powers q
- Short term goal: give an algebraic construction when
 - strength t = 4

Our work in a nutshell

- rows $N = 2(q^n 1) + 1$
- any q

► What we have:

- A method and a backtracking algorithm in SAGE
- Hints about an algebraic construction

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell

Our method Current result Future

Our work in a nutshell

- Long term goal: give an algebraic construction for covering arrays CA(N; t, k, q) for general strength t and prime powers q
- Short term goal: give an algebraic construction when
 - strength t = 4
 - rows $N = 2(q^n 1) + 1$
 - any q
- ► What we have:
 - A method and a backtracking algorithm in SAGE
 - Hints about an algebraic construction

Our method

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

1. Choose a prime power q for the alphabet

- 2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_q of degree t
- 3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^n-1}{q-1}$ columns
- 4. Form the same kind of array using g
- 5. Concatenate vertically the two arrays and a row of zeros
- 6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

Our method

- 1. Choose a prime power q for the alphabet
- 2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_q of degree t
- 3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^n-1}{q-1}$ columns
- 4. Form the same kind of array using g
- 5. Concatenate vertically the two arrays and a row of zeros
- 6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Construction of
covering arrays
from m-sequences

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2
0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0
1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0
1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1
0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1
1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0
0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1
2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0
1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2
2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1
2	2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2
2	1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2
1	0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2
0	0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1
0	2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0
2	2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0
2	0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2
0	2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2
2	0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0
0	1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2
1	2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0
2	1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1
1	1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2
1	1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1
1	2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1
2	0	0	1	1	0	1	0	2	1	2	2	2	1	0	0	2	2	0	2	0	1	2	1	1	1

 $q = 3, t = 3, f(x) = x^3 + 2x + 1$

Construction of covering arrays					q	= 3	3, t	=	3, †	r(x)) =	x ³	+2x + 1
from m-sequences	0	0	1	1	0	1	0	2	1	2	2	2	1
Georgios Tzanakis	0	1	1	0	1	0	2	1	2	2	2	1	0
8	1	1	0	1	0	2	1	2	2	2	1	0	0
	1	0	1	0	2	1	2	2	2	1	0	0	2
	0	1	0	2	1	2	2	2	1	0	0	2	2
	1	0	2	1	2	2	2	1	0	0	2	2	0
Definition Research on CAs	0	2	1	2	2	2	1	0	0	2	2	0	2
Motivation	2	1	2	2	2	1	0	0	2	2	0	2	0
	1	2	2	2	1	0	0	2	2	0	2	0	1
Definition	2	2	2	1	0	0	2	2	0	2	0	1	2
m-sequences	2	2	1	0	0	2	2	0	2	0	1	2	1
	2	1	0	0	2	2	0	2	0	1	2	1	1
In a nutshell	1	0	0	2	2	0	2	0	1	2	1	1	1
Our method	0	0	2	2	0	2	0	1	2	1	1	1	2
Current results	0	2	2	0	2	0	1	2	1	1	1	2	0
Tuture	2	2	0	2	0	1	2	1	1	1	2	0	0
	2	0	2	0	1	2	1	1	1	2	0	0	1
	0	2	0	1	2	1	1	1	2	0	0	1	1
	2	0	1	2	1	1	1	2	0	0	1	1	0
	0	1	2	1	1	1	2	0	0	1	1	0	1
	1	2	1	1	1	2	0	0	1	1	0	1	0
	2	1	1	1	2	0	0	1	1	0	1	0	2
	1	1	1	2	0	0	1	1	0	1	0	2	1
	1	1	2	0	0	1	1	0	1	0	2	1	2
	1	2	0	0	1	1	0	1	0	2	1	2	2
	2	0	0	1	1	0	1	0	2	1	2	2	2

Our method

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

1. Choose a prime power q for the alphabet

- 2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_q of degree t
- 3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^n-1}{q-1}$ columns
- 4. Form the same kind of array using g
- 5. Concatenate vertically the two arrays and a row of zeros
- 6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2
0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0
1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0
1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1
1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1
0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1
2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0
1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2
1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1
2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1
1	0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2
0	1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1
1	0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0
0	0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1
0	2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0
2	2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0
2	2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2
2	0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2
0	1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2
1	2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0
2	2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1
2	1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2
1	2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2
2	0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1
0	2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2
2	0	0	1	1	1	0	2	1	1	2	1	0	1	0	0	2	2	2	0	1	2	2	1	2	0

Construction of covering arrays				q	=	3, 1	t =	3,	g(x	:) =	x ³	+ >	x ² +	-2x + 1
from m-sequences	0	0	1	1	1	0	2	1	1	2	1	0	1	
Georgios Tzanakis	0	1	1	1	0	2	1	1	2	1	0	1	0	
	1	1	1	0	2	1	1	2	1	0	1	0	0	
	1	1	0	2	1	1	2	1	0	1	0	0	2	
	1	0	2	1	1	2	1	0	1	0	0	2	2	
	0	2	1	1	2	1	0	1	0	0	2	2	2	
Definition Recepted on CAs	2	1	1	2	1	0	1	0	0	2	2	2	0	
Motivation	1	1	2	1	0	1	0	0	2	2	2	0	1	
	1	2	1	0	1	0	0	2	2	2	0	1	2	
Definition	2	1	0	1	0	0	2	2	2	0	1	2	2	
m-sequences	1	0	1	0	0	2	2	2	0	1	2	2	1	
	0	1	0	0	2	2	2	0	1	2	2	1	2	
In a nutshell	1	0	0	2	2	2	0	1	2	2	1	2	0	
Our method	0	0	2	2	2	0	1	2	2	1	2	0	2	
Current results	0	2	2	2	0	1	2	2	1	2	0	2	0	
Tuture	2	2	2	0	1	2	2	1	2	0	2	0	0	
	2	2	0	1	2	2	1	2	0	2	0	0	1	
	2	0	1	2	2	1	2	0	2	0	0	1	1	
	0	1	2	2	1	2	0	2	0	0	1	1	1	
	1	2	2	1	2	0	2	0	0	1	1	1	0	
	2	2	1	2	0	2	0	0	1	1	1	0	2	
	2	1	2	0	2	0	0	1	1	1	0	2	1	
	1	2	0	2	0	0	1	1	1	0	2	1	1	
	2	0	2	0	0	1	1	1	0	2	1	1	2	
	0	2	0	0	1	1	1	0	2	1	1	2	1	
	2	0	0	1	1	1	0	2	1	1	2	1	0	

Our method

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

1. Choose a prime power q for the alphabet

- 2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_q of degree t
- 3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^n-1}{q-1}$ columns
- 4. Form the same kind of array using g
- 5. Concatenate vertically the two arrays and a row of zeros
- 6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

iction of
rays
ences
Tranakia
JS I ZdildKIS
cong arrays
nition
search on CAS
efinition
sequences
method
rent results
iture

Construction of	0	0	1		1	1 0	1 0 1	1 0 1 0	1 0 1 0 2	1 0 1 0 2 1	1 0 1 0 2 1 2	1 0 1 0 2 1 2 2	1 0 1 0 2 1 2 2 2
covering arrays	0	1	1		0	0 1	0 1 0	0 1 0 2	0 1 0 2 1	0 1 0 2 1 2	0 1 0 2 1 2 2	0 1 0 2 1 2 2 2	0 1 0 2 1 2 2 2 1
m m-sequences	1	1	0		1	1 0	1 0 2	1 0 2 1	1 0 2 1 2	1 0 2 1 2 2	1 0 2 1 2 2 2	1 0 2 1 2 2 2 1	1 0 2 1 2 2 2 1 0
i-o Tlio	1	0	1	0		2	2 1	2 1 2	2 1 2 2	2 1 2 2 2	2 1 2 2 2 1	2 1 2 2 2 1 0	2 1 2 2 2 1 0 0
orgios i zariakis	0	1	0	2		1	1 2	1 2 2	1 2 2 2	1 2 2 2 1	1 2 2 2 1 0	1 2 2 2 1 0 0	1 2 2 2 1 0 0 2
	1	0	2	1		2	2 2	2 2 2	2 2 2 1	2 2 2 1 0	2 2 2 1 0 0	2 2 2 1 0 0 2	2 2 2 1 0 0 2 2
			7			7	7 7						
	:	1	:	1		1							
Overing arrays	0	1	2	1	1			12	120	1 2 0 0			
Perinition	1	2	1	1	1		2	2 0	200	2001	20011	200110	2 0 0 1 1 0 1
Motivation	2	1	1	1	2		0	0 υ	0 0 1	0 0 1 1	0 0 1 1 0	0 0 1 1 0 1	0 0 1 1 0 1 0
	1	1	1	2	0		0	0 1	0 1 1	0 1 1 0	0 1 1 0 1	0 1 1 0 1 0	0 1 1 0 1 0 2
	1	1	2	0	0	1		1	1 0	1 0 1	1 0 1 0	1 0 1 0 2	1 0 1 0 2 1
Definition	1	2	0	0	1	1		0	0 1	0 1 0	0 1 0 2	0 1 0 2 1	0 1 0 2 1 2
m-sequences	2	0	0	1	1	0		1	1 0	1 0 2	1 0 2 1	1 0 2 1 2	1 0 2 1 2 2
Dur work	0	0	1	1	1	0		2	2 1	$2 \ 1 \ 1$	2 1 1 2	2 1 1 2 1	$2 \ 1 \ 1 \ 2 \ 1 \ 0$
In a nutshell	0	1	1	1	0	2		1	1 1	1 1 2	1 1 2 1	1 1 2 1 0	1 1 2 1 0 1
Our method	1	1	1	0	2	1		1	1 2	1 2 1	1 2 1 0	1 2 1 0 1	1 2 1 0 1 0
Current results	1	1	0	2	1	1		2	2 1	2 1 0	2 1 0 1	2 1 0 1 0	2 1 0 1 0 0
Future	1	0	2	1	1	2		1	1 0	1 0 1	1 0 1 0	1 0 1 0 0	1 0 1 0 0 2
	0	2	1	1	2	1	Ċ)	1	1 0	1 0 0		1 0 0 2 2
	2	1	1	2	1	0	1		0	0 0	0 0 2	0 0 2 2	0 0 2 2 2
	:	÷	÷	:	÷	÷	÷		÷	: :			
	1	2	2	÷.	2	0	2		0	0 0	0 0 1	0 0 1 1	0 0 1 1 1
	2	2	1	2	2	2	2		0	0 0	0 1 1	0 0 1 1	0 0 1 1 1
	2	2	1	2	2	2	0		1	0 1	0 1 1		
	2	1	2	0	2	0	1		1	1 1	1 1 1	1 1 1 0	1 1 1 0 2
	1	2	0	2	0	1	1		1	1 1	1 1 0	1 1 0 2	
	2	0	2	0	0	1	1		1	1 0	102	1021	10211
	0	2	0	0	1	1	1		0	0 2	0 2 1	0 2 1 1	02112
	2	0	U	1	1	1	U		2	2 1	2 1 1	2 1 1 2	2 1 1 2 1
	0	0	0	0	0	0	0		0	00	0 0 0	0 0 0 0	0 0 0 0 0

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

Our method

- 1. Choose a prime power q for the alphabet
- 2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_q of degree t
- 3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^n-1}{q-1}$ columns
- 4. Form the same kind of array using g
- 5. Concatenate vertically the two arrays and a row of zeros
- 6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Construction of	0	0	1		1	1 0	1 0 1	1 0 1 0	1 0 1 0 2	1 0 1 0 2 1	1 0 1 0 2 1 2	1 0 1 0 2 1 2 2	1 0 1 0 2 1 2 2 2
covering arrays	0	1	1		0	0 1	0 1 0	0 1 0 2	0 1 0 2 1	0 1 0 2 1 2	0 1 0 2 1 2 2	0 1 0 2 1 2 2 2	0 1 0 2 1 2 2 2 1
m m-sequences	1	1	0		1	1 0	1 0 2	1 0 2 1	1 0 2 1 2	1 0 2 1 2 2	1 0 2 1 2 2 2	1 0 2 1 2 2 2 1	1 0 2 1 2 2 2 1 0
i-o Tlio	1	0	1	0		2	2 1	2 1 2	2 1 2 2	2 1 2 2 2	2 1 2 2 2 1	2 1 2 2 2 1 0	2 1 2 2 2 1 0 0
orgios i zariakis	0	1	0	2		1	1 2	1 2 2	1 2 2 2	1 2 2 2 1	1 2 2 2 1 0	1 2 2 2 1 0 0	1 2 2 2 1 0 0 2
	1	0	2	1		2	2 2	2 2 2	2 2 2 1	2 2 2 1 0	2 2 2 1 0 0	2 2 2 1 0 0 2	2 2 2 1 0 0 2 2
			7			7	7 7						
	:	1	:	1		1							
Overing arrays	0	1	2	1	1			12	120	1 2 0 0			
Perinition	1	2	1	1	1		2	2 0	200	2001	20011	200110	2 0 0 1 1 0 1
Motivation	2	1	1	1	2		0	0 υ	0 0 1	0 0 1 1	0 0 1 1 0	0 0 1 1 0 1	0 0 1 1 0 1 0
	1	1	1	2	0		0	0 1	0 1 1	0 1 1 0	0 1 1 0 1	0 1 1 0 1 0	0 1 1 0 1 0 2
	1	1	2	0	0	1		1	1 0	1 0 1	1 0 1 0	1 0 1 0 2	1 0 1 0 2 1
Definition	1	2	0	0	1	1		0	0 1	0 1 0	0 1 0 2	0 1 0 2 1	0 1 0 2 1 2
m-sequences	2	0	0	1	1	0		1	1 0	1 0 2	1 0 2 1	1 0 2 1 2	1 0 2 1 2 2
Dur work	0	0	1	1	1	0		2	2 1	$2 \ 1 \ 1$	2 1 1 2	2 1 1 2 1	$2 \ 1 \ 1 \ 2 \ 1 \ 0$
In a nutshell	0	1	1	1	0	2		1	1 1	1 1 2	1 1 2 1	1 1 2 1 0	1 1 2 1 0 1
Our method	1	1	1	0	2	1		1	1 2	1 2 1	1 2 1 0	1 2 1 0 1	1 2 1 0 1 0
Current results	1	1	0	2	1	1		2	2 1	2 1 0	2 1 0 1	2 1 0 1 0	2 1 0 1 0 0
Future	1	0	2	1	1	2		1	1 0	1 0 1	1 0 1 0	1 0 1 0 0	1 0 1 0 0 2
	0	2	1	1	2	1	Ċ)	1	1 0	1 0 0		1 0 0 2 2
	2	1	1	2	1	0	1		0	0 0	0 0 2	0 0 2 2	0 0 2 2 2
	:	÷	÷	:	÷	÷	÷		÷	: :			
	1	2	2	÷.	2	0	2		0	0 0	0 0 1	0 0 1 1	0 0 1 1 1
	2	2	1	2	2	2	2		0	0 0	0 1 1	0 0 1 1	0 0 1 1 1
	2	2	1	2	2	2	0		1	0 1	0 1 1		
	2	1	2	0	2	0	1		1	1 1	1 1 1	1 1 1 0	1 1 1 0 2
	1	2	0	2	0	1	1		1	1 1	1 1 0	1 1 0 2	
	2	0	2	0	0	1	1		1	1 0	102	1021	10211
	0	2	0	0	1	1	1		0	0 2	0 2 1	0 2 1 1	02112
	2	0	U	1	1	1	U		2	2 1	2 1 1	2 1 1 2	2 1 1 2 1
	0	0	0	0	0	0	0		0	00	0 0 0	0 0 0 0	0 0 0 0 0

Construction of	0	1	0	2	1	2	1
covering arrays	0	1	1	1	2	2	0
from m-sequences	1	0	0	2	2	2	0
Georgios Tzanakis	1	1	2	2	2	1	2
Georgios Tzanakis	0	0	1	2	1	0	2
	1	2	2	1	0	0	0
	:	:	1	÷	1	:	:
	0	2	1	0	0	1	1
Definition	1	1	1	ñ	1	1	0
Research on CAs	2	1	2	1	1	0	2
Motivation	1	1	0	1	0	1	1
	1	2	0	0	1	0	2
Definition	1	0	1	1	0	2	2
m-sequences	2	0	1	1	2	1	2
	0	1	1	1	1	2	1
	0	1	0	1	2	1	0
Our method	1	1	2	2	1	0	0
Current results	1	1	1	2	1	1	2
Future	1	0	1	1	1	1	2
	1	2	1	1	1	0	2
	0	1	2	1	0	0	2
	2	1	1	0	0	2	0
	1	1	11	÷	1	1	1
	1	2	2	0	0	1	0
	2	1	0	0	1	1	2
	2	2	2	1	1	1	1
	1	0	0	1	1	0	1
	2	2	0	1	0	2	2
	0	0	1	0	2	1	1
	2	0	1	2	1	1	0
	0	0	0	0	0	0	0

Our method

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

1. Choose a prime power q for the alphabet

- 2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_q of degree t
- 3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^n-1}{a-1}$ columns
- 4. Form the same kind of array using g
- 5. Concatenate vertically the two arrays and a row of zeros.
- 6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Our method

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

1. Choose a prime power q for the alphabet

- 2. Choose a strength t and pick two primitive polynomials f, g over \mathbb{F}_q of degree t
- 3. Form an array by taking all the shifts of the m-sequence associated to f as rows and then only consider the first $\frac{q^n-1}{a-1}$ columns
- 4. Form the same kind of array using g
- 5. Concatenate vertically the two arrays and a row of zeros.
- 6. Choose appropriate columns from the resulting array so that the subarray they form is a covering array

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

Outline of talk

Covering array

Definition Research on covering arrays Motivation

Linear recurrence sequences over finite fields Definition m-sequences

Our work

In a nutshel

Our method

Current results

Future

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

Some obtained covering arrays and interesting points

CA(161; 4, 10, 3)

Comparison with Colbourn's tables:

	Ν	t	k	V
Best known	159	4	10	3
Us	161	4	10	3
Best known	183	4	11	3

- Choice of columns: [0,8,16,24,32] along with [1,9,17,25,33] or [3,11,19,27,35]
- ▶ Columns are the multiples of 2(q + 1) and shifts

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

Some obtained covering arrays and interesting points

CA(511; 4, 17, 4)

Comparison with Colbourn's tables:

	Ν	t	k	V
Best known	508	4	13	4
Us	511	4	17	4
Best known	760	4	20	4

- Has a place in Colbourn's tables
- ► Choice of columns: [0,5,10,15,20,25,...,70,75,80]
- Columns are the multiples of q + 1

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

Some obtained covering arrays and interesting points

CA(1249; 4, 15, 5)

Comparison with Colbourn's tables:

	Ν	t	k	V
Best known	1245	4	15	5
Us	1249	4	15	5
Best known	1865	4	24	5

- Search not complete
- ▶ Choice of columns: [0,12,24,36,...,132,144] + 2 other
- Most columns are the multiples of 2(q + 1)

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current results Future

Some obtained covering arrays and interesting points

Choice of columns

Connection with multiples of q + 1

Pairs f, g of primitive polynomials for q = 4

- Fix primitive $\alpha \in \mathbb{F}_{q^n}$.
- Find k, m such that $f(\alpha^k) = 0$, $g(\alpha^m) = 0$
- Let $H = Z_{255}^* / < 4 >$
- ▶ f, g work in our construction iff $\operatorname{ord}_H(k) = 8$ and $\operatorname{ord}_H(m) \neq 8$.

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CA Motivation

Sequences

Definition m-sequence

Our work

In a nutshell Our method Current result: Future

Outline of talk

Covering array

Definition Research on covering arrays Motivation

Linear recurrence sequences over finite fields Definition m-sequences

Our work

In a nutshell Our method Current results Future

Georgios Tzanakis

Outline

Covering arrays

Definition Research on CAs Motivation

Sequences

Definition m-sequences

Our work

In a nutshell Our method Current results Future

Future work

Ongoing

- Improve our backtracking algorithm
- Characterize the choices for the pairs of primitive polynomials
- Understand the choice of columns

Long term

Generalize the construction as much as possible