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Two motivating examples



Latin squares

Definition. A Latin square of order n is an n× n array on n symbols
such that no two symbols appear in the same row or column.

1 2 3 4 5 6

6 1 2 3 4 5

5 6 1 2 3 4

4 5 6 1 2 3

3 4 5 6 1 2

2 3 4 5 6 1

I The elements of a Latin square can be taken to represent
treatments to some (row) subject in some time sequence.

I However, if, e.g., treatment 2 is affected by treatment 1, every
row but the final row will show this.
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Better Latin squares

1 2 3 4 5 6

6 1 2 3 4 5

5 6 1 2 3 4

4 5 6 1 2 3

3 4 5 6 1 2

2 3 4 5 6 1

1 2 3 4 5 6

4 1 5 2 6 3

5 3 1 6 4 2

2 4 6 1 3 5

3 6 2 5 1 4

6 4 5 3 2 1

Good Latin squares should have few repeated digrams. Generally
speaking, the rows or columns of a Latin square should “resemble”
each other as little as possible.

Gilbert (1965) constructs Latin squares of even order with the
property that no diagrams a()kb are repeated either vertically or
horizontally, where ()k means there is a gap of k columns/rows.

In his construction, Gilbert places the symbol P1(i) + P2(j) in
position (i , j), where P1 And P2 permutations with distinct
differences.
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I On any diagonal shift, the array contains at most one
overlapping dot.

I This is the ideal autocorrelation property.
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every row/column) such that every vector (left-to-right)
joining the dots is distinct.
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Formalizing Costas arrays

Definition. Let [n] = {1, 2, . . . , n} and let f : [n]→ [n] be a
permutation, then f satisfies the distinct differences property if

f (i + k)− f (i) = f (j + k)− f (j)

if and only if either k = 0 or i = j for k = 1, 2, . . . , n − j .

1. If f is a permutation which satisfies the distinct differences
property, we say f is a Costas permutation.

2. If f is a Costas permutation and
f (1) = y1, f (2) = y2, . . . , f (n) = yn, then (y1, y2, . . . , yn) is a
Costas sequence.

3. The permutation array generated by by a Costas permutation
f (that is, with a dot in cell (x , y) if and only if f (x) = y) is a
Costas array.



Trivia about Costas arrays

I Discovered independently by Gilbert and Costas (1965)

I Two main constructions (and some variants)

1. Welch (1982), but originally due to Gilbert (1965) - order
p − 1, where p is prime

2. Lempel-Golomb (1984) - order q− 2, where q is a prime power.

I No non-finite fields constructions exist.

I Though exhaustive searches of order 28 do exist it is not
known whether Costas arrays of order 32 (any many larger
orders) exist.

I New Interest. Jedwab and Wodlinger (2013) - 2 nice papers
on periodic and structural properties, respectively.



Periodicity properties of Costas
arrays



Introducing periodicity

I Costas: the line segments joining any two dots are distinct.

I Domain-periodic: the line segments joining any two dots are
distinct when the array is wrapped horizontally.

I Range-periodic: the line segments joining any two dots are
distinct when the array is wrapped vertically.
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Introducing periodicity

NOT range-periodic Costas! (mod 6)



Combinatorial interpretation of periodicity I

The difference triangle is a useful tool to determine if a
permutation is Costas.

Example. Consider the
sequence

3 2 6 4 5 1

1 −4 2 −1 4
−3 −2 1 3

−1 −3 5
−2 1

2

Since the entries in each row
are distinct, the sequence is
Costas.

Modulo 7:

3 2 6 4 5 1
1 3 2 6 4

4 5 1 3
6 4 5

5 1
2

Since the entries in each row
are distinct modulo 7, the
sequence is range-periodic
Costas.
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Combinatorial interpretation of periodicity II

The difference square is a useful tool to determine if a permutation
is domain-periodic Costas.

Example. Consider the
sequence

3 2 6 4 5 1
−2 1 −4 2 −1 4
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1 3 −5 −1 −3 5
3 2 −1 −3 −2 1
−1 4 −2 1 −4 2

Since the entries in each row
are distinct, the sequence is
domain-periodic Costas.

Modulo 7:

3 2 6 4 5 1
5 1 3 2 6 4
2 6 4 5 1 3
1 3 2 6 4 5
3 2 6 4 5 1
6 4 5 1 3 2

Since the entries in each row
are distinct modulo 7, the
sequence is domain periodic
(mod 6) and range-periodic
Costas (mod 7).
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Domain periodic modulo 6, range periodic modulo 7

I Circular: the line segments joining any two dots are distinct
when the augmented array is wrapped around a torus.

Definition. (Following Jedwab and Wodlinger) The (wrapped)
vectors (x , y), with x ∈ Z6 and y ∈ Z7, are toroidal.



The exponential-Welch construction

Exponential-Welch Construction. Let p be prime and let α be a
primitive element of Fp. Then αi (α, α2, . . . , αp−1) is a Costas
sequence.

Let f (i) = αi , then f is domain-periodic modulo p − 1 (since
αp−1 = 1) and range-periodic modulo p.

(Re)-Definition. A Costas sequence is circular if it is
domain-periodic (mod m) and range periodic (mod m + 1).

Conjecture. (Golomb and Moreno, 1996) A Costas sequence is
circular if and only if it is exponential-Welch.



Costas polynomials



Fixing some notation

Definition. Let G1 and G2 be finite (Abelian) groups and let
f : G1 → G2. The difference map of f at a ∈ G ∗1 is denoted

∆f ,a(x) = f (x + a)− f (x) ∈ G2.

Definition. Let λa,b(f ) = |∆−1f ,a(b)|. The row-a-deficiency of f is

Dr=a(f ) =
∑
b∈G2

(1− δλa,b(f )),

where δi = 0 if i = 0 and δi = 1 otherwise. The deficiency of f is

D(f ) =
∑
a∈G∗

1

Dr=a(f ).
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Deficiency and Costas arrays

If f : Zm → Zm generates a permutation array which is domain and
range-periodic, then its toroidal vectors are given by (d ,∆f ,d(x)).

Proposition. If f generates a permutation array of order m, the
number of missing toroidal vectors of f is given by the deficiency
of f , D(f ).

Theorem. (Panario et al., 2011) If f is a permutation of Zm, then

D(f ) ≥

{
(m − 1) + (m − 1) m is odd,

(m − 1) + (m − 3) m is even.

Corollary. (Jedwab and Wodlinger) A square permutation array of
order m never contains every toroidal vector (non-horizontal,
non-vertical).

Thus, a circular Costas array is the smallest variant of a Costas
array containing every toroidal vector.
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Difference maps for circular Costas sequences

A circular Costas sequence is given by a map f : Zm → Zm+1 such
that f (0) = 0 and ∆f ,d(x) = f (x + d)− f (x) is injective for all d .

Hence, ∑
x

∆f ,d(x) = γ2 = 0,

where γ2 is the sum of the order 2 elements of Zm+1. Therefore
m + 1 is odd.



Permutation polynomials from circular Costas arrays

Moreover, using a special kind of symmetry of the difference
square:

Theorem. (Etzion, Golomb and Taylor, 1989) If f : Zm → Zm+1

defines a circular Costas sequence, then m + 1 is prime.

Thus, if f is any circular Costas permutation, without loss of
generality, view f : F∗p → Fp, where ∆f ,d(x) = f (xd)− f (x) is an
injection for all d 6= 1.

Let f : F∗p → Fp be circular Costas. Then by defining f (0) = 0, f
can be given (by Lagrange Interpolation) by a permutation
polynomial of degree at most p − 1.
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Costas polynomials over prime fields

Definition. Let f ∈ Fq[x ], with f (0) = 0 and

∆f ,d(x) = f (xd)− f (x)

is a permutation polynomial of Fq, for all d 6= 1, then f is a Costas
polynomial.

Conjecture. (Golomb and Moreno, 1996) If f ∈ Fp[x ] is a
Costas polynomial, then f (x) = x s , where gcd(s, p − 1) = 1.



Equivalent Conjectures

Proposition. The Golomb-Moreno conjectures are equivalent.

Proof. Let (yi )
q−1
i=1 be a circular Costas sequence. Hence yi+k − yi

are distinct for all i , k 6= 0.

Let α be primitive in Fp and set f (αi ) = yi for all i . The Costas
property states f (αi+k)− f (αi ) permutes the elements of F∗p.
That is, f (xd)− f (x) permutes the elements of F∗p for d 6= 1.

Moreover, if (yi ) is exponential-Welch, then yi = βi for some
primitive β. Thus, yi = αsi with gcd(s, p − 1) = 1 and so
f (x) = x s .

The remainder of this talk is to prove and extend the conjecture:
Joint work with A. Muratović-Ribić (Sarajevo), A. Pott
(Magdeburg) and S. Wang (Carleton).
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Proof of a conjecture of
Golomb and Moreno



Direct product difference sets

Definition. Let G be a finite group, |G | = n2 − n and let
G = H × E , where |E | = n = |H|+ 1. A subset R of G with the
property that the non-identity quotients consist of every element of
G \ {H,E} exactly once and no element of H or E appears as a
quotient is a direct product difference set.

Example. Let E = Fq and H = F∗q. Now, let f : F∗q → Fq and
consider R = {(x , f (x)) : x ∈ F∗q} ⊆ F∗q × Fq.

To avoid H, the map f (x) 6= 0. Moreover, if R is a d.p.d.s, then
f (F∗q) = Fq \ {0}. Here, f is the associated function of R.

By a counting argument, all quotients must be distinct, thus, if
xy−1 = x ′y ′−1, then

f (x)− f (y) = f (x ′)− f (y ′).
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Sketch

Heavily relying on [Section 5.3, Pott]:

Theorem. If R is a direct product difference set, then G acts as a
quasiregular collineation group on a Type (f) projective plane Π of
order n.

Theorem. If n = q = p and H = F∗p, then Π is Desarguesian.

Theorem. The plane Π is Desarguesian if and only if H is cyclic
and R is equivalent to a direct product difference set whose
associated function is an isomorphism (up to equivalence).

Lemma. If f is an automorphism of F∗p, then
f : x 7→ x s , gcd(s, p − 1) = 1.



Tying up the proof

Theorem. Let f be a Costas polynomial over Fp, then f is a
monomial.

Let f be a Costas polynomial and consider the restriction of f to
F∗p (we abuse notation slightly by still using the symbol f ). Thus f
is an injection and f (xd)− f (x) permutes the elements of F∗p for
all d 6= 1.

Let
xy−1 = x ′y ′−1 = d−1

for d 6= 0, 1. Then

f (xd)− f (x) = f (x ′d)− f (x ′),

and we have x = x ′ and so y = y ′. Thus, R = {(x , f (x)) : x ∈ F∗p}
is a direct product difference set.

Since f (0) = 0, by the previous slide f (x) = x s , gcd(s, p − 1).



Connection to planar functions

Definition. A planar function over Fq is a map f : Fq → Fq such
that f (x + a)− f (x) is a permutation for all a 6= 0.

1. (Hiramine, 1989 / Gluck, 1990 / Ronyai and Szonyi, 1989):
Planar functions over Fp, p > 3, are quadratic.

2. (Coulter, 2006): Characterize planar monomials over Fp2 .

3. (Zieve, 2013): Characterize planar monomials over Fq.

Costas polynomials are a semi-multiplicative analogue of planar
functions.

Two questions:

1. Can we characterize Costas polynomials over small extensions?

2. Can we characterize special classes of Costas polynomials for
general finite fields?
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Costas polynomials over
general finite fields



Costas polynomials over non-prime fields

Let q = pe and let L(x) =
∑e−1

i=0 aix
pi . Then L is a linearized

polynomial.

Linearized polynomials are linear operators on finite fields. We have

∆L,d(x) = L(xd)− L(x) =
e−1∑
i=0

ai (xd)p
i −

e−1∑
i=0

aix
pi

=
e−1∑
i=0

ai (d − 1)p
i
xp

i

= L(x(d − 1))

Proposition. A linearized polynomial L is Costas if and only if L is
a permutation polynomial.
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Compositions of Costas polynomials

Proposition. Let f be a Costas polynomial and g is a linearized
permutation polynomial, then g ◦ f is a Costas polynomial.

Proof. We have

(g ◦ f )(xd)− (g ◦ f )(x) = g(f (xd))− g(f (x))

= g(f (xd)− f (x))

= g(y),

where y = ∆f ,d(x), which is a permutation for all d 6= 1.



Equivalent d.p.d.s

Recall. We saw previously that Type (f) Desarguesian planes over
Fq are characterized by direct product difference sets whose
associated function was equivalent to an automorphism of F∗q.

Definition. Two d.p.d.s R1 and R2 are equivalent if R1 = ψ(R2),
where ψ = (ψH , ψE ) and ψH is an automorphism of H and ψE is
an automorphism of E which fixes 0. If H = F∗q and E = Fq, then
these automorphisms agree with the above proposition.

Corollary. If other direct product difference sets in F∗q × Fq exist,
then G = F∗q × Fq acts as a quasiregular collineation group of a
non-Desarguesian plane over Fq.



Some corollaries and conjectures

Remark. Jungnickel and de Resmini (2002) - “Indeed, it seems
quite reasonable to conjecture that a plane with an abelian group
of type (f) must be Desarguesian.”

Conjecture. If q = pn for some n, the only Costas polynomials of
Fq are of the form

f (x) =
n−1∑
i=0

aix
s·pi ,

where
∑n−1

i=0 aix
pi is a permutation polynomial and

gcd(s, q − 1) = 1.



And don’t try to find circular Costas maps of other sizes...

Theorem. (Prime Power Conjecture for planes of Type (f))
Jungnickel and de Resmini (2002) - Let G be an Abelian
collineation group of order n(n − 1) of a projective plane of order
n. Then n must be a power of a prime p and the p-part of G is
elementary Abelian.

Corollary. Let f : G1 → G2 be a Costas “polynomial” with G1

cyclic, then G1
∼= F∗q.
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