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Codes in the Lee metric

A q-ary code of length n: C ⊆ Zn
q.

In 1958 C.Y.Lee propose the use of a metric in Zn
q (Lee metric),

appropriate to correct errors in certain types of channels.

For n = 1: d(x , y) = min{|x − y |, q − |x − y |} for x , y ∈ Zq

For example, for q = 9⇒ Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}:
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Codes in the Lee metric

A q-ary code of length n: C ⊆ Zn
q.

In 1958 C.Y.Lee propose the use of a metric in Zn
q (Lee metric),

appropriate to correct errors in certain types of channels.

For n = 1: d(x , y) = min{|x − y |, q − |x − y |} for x , y ∈ Zq

For example, for q = 9⇒ Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}:

If x = 7 e y = 2, |x-y|=5

(Qureshi - Campinas University, Brazil) December 2013 4 / 59



Codes in the Lee metric

A q-ary code of length n: C ⊆ Zn
q.

In 1958 C.Y.Lee propose the use of a metric in Zn
q (Lee metric),

appropriate to correct errors in certain types of channels.

For n = 1: d(x , y) = min{|x − y |, q − |x − y |} for x , y ∈ Zq

For example, for q = 9⇒ Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}:

If x = 7 e y = 2, |x-y|=5, q-|x-y|=4,

d(7, 2) =4 (metric in the graph).
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Codes in the Lee metric

Consider a q-ary code of length n: C ⊆ Zn
q.

In 1958 C. Y. Lee proposes the use of a metric in Zn
q (Lee metric),

appropriate to correct errors in certain types of channels.

For n = 1: d(x , y) = min{|x − y |, q − |x − y |} for x , y ∈ Zq

For any n, if x = (x1, . . . , xn) ∈ Zn
q e y = (y1, . . . , yn) ∈ Zn

q:

d(x , y) =
∑n

i=1 d(xi , yi ) (q = 2, 3⇒ Lee=Hamming).

Example: In Z2
9 we have d((2, 1), (7, 6)) = 4+ 4 = 8.
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Codes in the Lee metric

Lee metric as the distance in the graph (torus)

Example: In Z2
9 we have d((2, 1), (7, 6)) = 4+ 4 = 8.
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Codes in the Lee metric

The resurgence of Lee Codes

Engineering applications
Constrained and partial-response channels.
R. M. Roth and P. H. Siegel. Lee-metric BCH codes and their application to constrained and

partial-response channels. IEEE Trans. on Inform. Theory, vol. IT-40, pp.1083-1096, July 1994.

Interleaving schemes.
M. Blaum, J. Bruck and A. Vardy. Interleaving schemes for multidimensional cluster errors.

IEEE Trans. Inform. Theory, vol. IT-44, pp. 730-743, March 1998.

Multidimensional burst-error-correction.
T. Etzion and E. Yaakobi. Error-correction of multidimensional bursts. IEEE Trans. on Inform. Theory, vol.

IT-55, pp. 961-976, March 2009.

Error-correction for �ash memories.
A. Barg and A. Mazumdar. Codes in permutations and error correction for rank modulation.

IEEE Trans. Inf. Theory, vol. 56, no. 7, pp.3158-3165, Jul. 2010.
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Codes in the Lee metric

The resurgence of Lee Codes

Theoretical research
Enumerating and decoding perfect linear Lee codes.
B. AlBdaiwi, P. Horak, L. Milazzo. Enumerating and decoding perfect linear Lee codes.

Des. Codes. Crypt., vol. 52 no. 2, pp. 155-162, 2009.

Dense Lee Codes.
T. Etzion, A. Vardy, E. Yaakobi. Dense error-correcting codes in the Lee metric.

Information Theory Workshop (ITW), 2010 IEEE.

Special constructions for perfect Lee codes.
T. Etzion. Product constructions for perfect Lee codes.

IEEE Trans. Inform. Th.57(2011), no.11, 7473-7481.

Diameter perfect Lee codes.
P. Horak, B.F. AlBdaiwi. Diameter perfect Lee codes.

IEEE Trans. Inform. Th.58(2012), no.8, 5490-5499.
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Codes in the Lee metric

Let C ⊆ Zn
q be a q-ary code.

De�nitions

As in the case of the Hamming metric, C is a perfect Lee code when

Zn
q =

⊎
c∈C B(c , e), where e is the packing radius and the balls are

Lee-balls.

We denote by

PL(n, e, q) = {C ⊆ Zn
q : C is e-perfect}

LPL(n, e, q) = {C ∈ PL(n, e, q) : C is linear}

PL(n, e) = {C ⊆ Zn : C is e-perfect},
(
d(x , y) =

∑n

i=1
|xi − yi |

)
LPL(n, e) = {C ∈ PL(n, e) : C is linear}
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Existence of Perfect Lee Codes

Main problem

Characterize the triplets (n, e, q) for which PL(n, e, q) 6= ∅.

Golomb-Welch (1970)
S. W. Golomb, L. R. Welch. Perfect Codes in the Lee metric and the packing of polynominoes, SIAM Journal

Applied Math., vol. 18, pp. 302-317. 1970.

For e = 1 we have PL(n, 1) 6= ∅ for all n.

For n = 2 we have PL(2, e) 6= ∅ for all e.

For each n there exists en s.t. PL(n, e) = ∅ for all e ≥ en.

Conjecture: For n > 2 and e > 1 we have PL(n, e) = ∅.
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Existence of Perfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes De = 〈(e, e + 1)〉 ⊂ Z2
q for

q = 2e2 + 2e + 1 and prove that these codes are perfect, then

PL(2, e, q) 6= ∅ for q = 2e2 + 2e + 1 (⇒ PL(2, e) 6= ∅).

Example: D2 = 〈(2, 3)〉 ⊆ Z2
13
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Existence of Perfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes De = 〈(e, e + 1)〉 ⊂ Z2
q for

q = 2e2 + 2e + 1 and prove that these codes are perfect, then

PL(2, e, q) 6= ∅ for q = 2e2 + 2e + 1 (⇒ PL(2, e) 6= ∅).

Example: D2 = 〈(2, 3)〉 = {(0, 0), (2, 3), (4, 6), (6, 9)
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Existence of Perfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes De = 〈(e, e + 1)〉 ⊂ Z2
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q = 2e2 + 2e + 1 and prove that these codes are perfect, then

PL(2, e, q) 6= ∅ for q = 2e2 + 2e + 1 (⇒ PL(2, e) 6= ∅).

Example: D2 = 〈(2, 3)〉 = {(0, 0), (2, 3), (4, 6), (6, 9), . . . , (11, 10)
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Related questions.

For which (e, q) we have PL(2, e, q) 6= ∅? In that case, is it possible

to describe all these codes? (Remark: we are considering linear and

non-linear codes.)

What are the possible structures as abelian groups of these codes?

We can use the geometry of polyominoes and combinatorial arguments.

S.Costa and C.Qureshi. Classi�cation of the bidimensional codes in the Lee metric.

XXXI Brazilian Symposium of Telecommunications, 2013.
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Theorem

For e, q ∈ Z+ we de�ne: qe = e2 + (e + 1)2, ν1 = (e, e + 1),

ν2 = (−(e + 1), e), η1 = (1,−(2e + 1)), η2 = (0, qe) ∈ Z2
q,

De = ν1Z+ ν2Z and v = (−x , y) is the conjugate of v = (x , y).
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Theorem

For e, q ∈ Z+ we de�ne: qe = e2 + (e + 1)2, ν1 = (e, e + 1), ν2 = (−(e + 1), e), η1 =

(1,−(2e + 1)), η2 = (0, qe) ∈ Z2q ,De = ν1Z+ ν2Z and v = (−x , y) is the conj. of v = (x , y).

1 (Existence) PL(2, e, q) 6= ∅ ⇔ q ≡ 0 (mod qe).

2 (Characterization) C ∈ PL(2, e, q)⇔ C = c + De or C = c + De for any

c ∈ C (in particular C − c is a group).

3 (Structure) Let C ∈ PL(2, e, q) and GC = C − c the group assoc. with C .

i) GC is cyclic i� q = qe . In this case GC ' Zq with generator

ν1 = (e, e + 1) if GC = De or ν1 if GC = De .

ii) If q = hqe com h > 1 then GC ' Zq × Zh.

Moreover, GC = η1Z⊕ η2Z if GC = De or GC = η1Z⊕ η2Z if GC = De .
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Sketch of the proof

Impossible con�guration

Let I = {(−1,−1), (−1, 0), (−1, 1), (−1, 2), (0,−1), (0, 2)} ⊆ Z2
q.

If C ∈ PL(2, e, q) and c , c ′ ∈ C ⇒ @ x ∈ Z2
q such that

x ∈ B(c , e) ∪ B(c ′, e).

x + C ⊆ B(c , e) ∪ B(c ′, e)
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Sketch of the proof

Decoding of special points

If C ∈ PL(2, e, q) and c ∈ C , the point c + (0, e + 1) can only be decoded

in two ways. These possibilities are c + (−e, e + 1) and c + (e, e + 1).
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Sketch of the proof

De�nition

For C ∈ PL(2, e, q) and c ∈ C we de�ne the set ω(c) = {v1, . . . , vτ}

where the adjacent balls of B(c, e) are exactly B(c + vi , e) for 1 ≤ i ≤ τ .

D2 = 〈(2, 3)〉 ⊆ Z2
13

c = (3, 11)
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Sketch of the proof

Kissing Lemma

If C ∈ PL(2, e, q) the set ω(c) does not depend on c. Moreover we have only two

possibilities: ω(c) = {±ν1,±ν2} (type 1) or ω(c) = {±ν1,±ν2} (type 2),

where ν1 = (e, e + 1), ν2 = (−(e + 1), e).
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Sketch of the proof

For e, q ∈ Z+ we de�ne: qe = e2 + (e + 1)2, ν1 = (e, e + 1), ν2 = (−(e + 1), e), η1 =

(1,−(2e + 1)), η2 = (0, qe) ∈ Z2q ,De = ν1Z+ ν2Z and v = (−x , y) is the conj. of v = (x , y).

1 (Existence) PL(2, e, q) 6= ∅ ⇔ q ≡ 0 (mod qe).

2 (Characterization) C ∈ PL(2, e, q)⇔ C = c + De or C = c + De where

c ∈ C any (in particular C − c is a group).

3 (Structure) Let C ∈ PL(2, e, q) and GC = C − c the group assoc. with C .

i) GC is cyclic i� q = qe . In this case GC ' Zq with generator

ν1 = (e, e + 1) if GC = De or ν1 if GC = De .

ii) If q = hqe com h > 1 then GC ' Zq × Zh.

Moreover, GC = η1Z⊕ η2Z if GC = De or GC = η1Z⊕ η2Z if GC = De .
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Sketch of the proof

For the second part...

Let C ∈ PL(2, q, e) and �x any c ∈ C .

For the kissing lemma; c + ν1Z+ ν2Z ⊆ C .

For the other inclusion, if c ′ ∈ C it is su�cient to consider a chain of

adjacent balls from B(c ′, e) to B(c , e) and use kissing lemma again.
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Sketch of the proof

For the �rst part...

(⇒)Let C ∈ PL(2, q, e) and �x any c ∈ C . We can suppose

C = c + ν1Z+ ν2Z where ν1 = (e, e + 1), ν2 = (−(e + 1), e) ∈ Z2
q.

As gcd(e, e + 1) = 1⇒ |ν1Z| = q. Using Lagrange Theorem

q = |ν1Z| | |ν1Z+ ν2Z| = #C ⇒ #C = qh for some h ∈ Z+.

By the sphere packing condition:

#B(0, e) ·#C = q2 ⇔ qe · qh = q2 ⇔ q = qeh and so q ≡ 0 (mod qe).

(⇐) Golomb and Welch.
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Sketch of the proof

For the last part...

We can suppose that C is linear and type 1, that is C = ν1Z+ ν2Z where

ν1 = (e, e + 1), ν2 = (−(e + 1), e).

As

 −1 −1

e + 1 e

 ν1

ν2

 =

 η1

η2

 and det

 −1 −1

e + 1 e

 = 1,

then C = η1Z+ η2Z where η1 = (1,−(2e + 1)) and η2 = (0, qe) (in Z2
q).

Clearly η1Z ∩ η2Z = (0) (therefore C = η1Z⊕ η2Z)) and |η1Z| = q e

|η2Z| = q
qe

= h from where we can conclude that

C = η1Z⊕ η2Z ' Zq × Zh.

As h|q, it is clear that C is cyclic i� h = 1.
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Example

Example

For q = 1105. There are exactly 5 codes in Z1105 × Z1105 up to

translations and conjugation (1105 = 5 · 13 · 17). One of these codes is

cyclic and the others are non-cyclic. These codes are given by:

C1 = (1,−3)Z1105 ⊕ (0, 5)Z1105 (e = 1)

C2 = (1,−5)Z1105 ⊕ (0, 13)Z1105 (e = 2)

C3 = (1,−13)Z1105 ⊕ (0, 85)Z1105 (e = 6)

C4 = (1,−21)Z1105 ⊕ (0, 221)Z1105 (e = 10)

C5 = (23, 24)Z1105 (e = 23)
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More relevant results related to the Golomb-Welch conjecture

PL(2, e, qe) 6= ∅, PL(n, 1, 2n + 1) 6= ∅, PL(3, 2) = ∅, PL(n, e) = ∅ for e ≥ en.

S. W. Golomb, L. R. Welch. Perfect Codes in the Lee metric and the packing of polynominoes, SIAM

Journal Applied Math., vol. 18, pp. 302-317. 1970.

PL(n, e, q) = ∅ for 3 ≤ n ≤ 5, e ≥ n − 1, q ≥ 2e + 1 and for n ≥ 6, e ≥ 2n−3
2
√
2
− 1

2

K.A.Post. Nonexistence theorem on perfect Lee codes over large alphabets. Inf. and control 29, 369-380.

1975.

PL(n, 2, q) = ∅ for q = 13, q not divisible by a prime 4̇+ 1, and q = pk with p

prime, p 6= 13 and p <
√
n2 + (n + 1)2.

J.Astola. On perfect codes in the Lee metric. Ann. Univ. Turku (A) 176 (1), 56. 1978.

PL(3, e) = ∅ for e ≥ 2.

S.Gravier, M.Mollard, C.Payan. On the Non-existence of 3-dimensional tiling in the Lee metric. Europ. J.

Combinatorics 19. pp.567-572. 1998.

PL(4, e) = ∅ for e ≥ 2.

S.Spacapan. A complete proof of the nonexistence of regular four dimensional tilings in the Lee metric.

Preprint Series, vol.42(993). 2004
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More relevant results related to the Golomb-Welch conjecture

PL(n, 2) = ∅ for 5 ≤ n ≤ 12 for linear codes

P.Horak. On perfect Lee codes. Discr. Math. 309. 5551-5561. 2009.

P.Horak, O.Grosek. A new approach towards the Golomb-Welch conjecture. preprint

arxiv.org/pdf/1205.4875v3.pdf. 2013.
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Future work

Approach the classi�cation of n-dimensional perfect single-error-correcting Lee

codes using the geometry of polyominoes and combinatorial arguments.

Prove the non-existence of e-perfect Lee codes in some dimension n > 3 using

these techniques.

Construct quasi-perfect Lee codes and dense codes using this approach.
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codes using the geometry of polyominoes and combinatorial arguments.

Prove the non-existence of e-perfect Lee codes in some dimension n > 3 using

these techniques.

Construct quasi-perfect Lee codes and dense codes using this approach.

Is it possible to use combinatorial designs to obtain non-trivial condition on the

parameters (n, e, q) of perfect Lee codes, like in the Hamming case?
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Thanks for your attention!
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