Same combinatarial aspects of perfect cades.

Claudio Qureshi

State University of Campinas, Brazil
based on joint work with S.Costa

Special Days on Combinatorial Constructions using Finite Fields as part of

RذCAM
Special Semester on
Applications of Algebra and Number Theory
Linz, October 14 - December 13, 2013

Cades in the Lee metric

- A q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.

Cades in the Lee metric

- A q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C.Y.Lee propose the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.

Cades in the Lee metric

- A q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C.Y.Lee propose the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$

Cades in the lee metric

- A q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C.Y.Lee propose the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$

For example, for $q=9 \Rightarrow \mathbb{Z}_{9}=\{0,1,2,3,4,5,6,7,8\}$:

Cades in the lee metric

- A q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C.Y.Lee propose the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$

For example, for $q=9 \Rightarrow \mathbb{Z}_{9}=\{0,1,2,3,4,5,6,7,8\}$:

$$
\text { If } x=7 \text { e } y=2
$$

Cades in the lee metric

- A q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C.Y.Lee propose the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$

For example, for $q=9 \Rightarrow \mathbb{Z}_{9}=\{0,1,2,3,4,5,6,7,8\}$:

$$
\text { If } x=7 \text { e } y=2,|x-y|=5
$$

Cades in the see metric

- A q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C.Y.Lee propose the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$

For example, for $q=9 \Rightarrow \mathbb{Z}_{9}=\{0,1,2,3,4,5,6,7,8\}$:

$$
\text { If } x=7 \text { e } y=2,|x-y|=5, q-|x-y|=4
$$

Cades in the see metric

- A q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C.Y.Lee propose the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$

For example, for $q=9 \Rightarrow \mathbb{Z}_{9}=\{0,1,2,3,4,5,6,7,8\}$:

$$
\begin{aligned}
& \text { If } x=7 \text { e } y=2,|x-y|=5, q-|x-y|=4, \\
& d(7,2)=4 \text { (metric in the graph). }
\end{aligned}
$$

Cades in the Lee metric

- Consider a q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C. Y. Lee proposes the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$
- For any n, if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{q}^{n}$ e $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}_{q}^{n}$:

$$
d(x, y)=\sum_{i=1}^{n} d\left(x_{i}, y_{i}\right) \quad(q=2,3 \Rightarrow \text { Lee }=\text { Hamming }) .
$$

Cades in the Lee metric

- Consider a q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C. Y. Lee proposes the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$
- For any n, if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{q}^{n}$ e $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}_{q}^{n}$:

$$
d(x, y)=\sum_{i=1}^{n} d\left(x_{i}, y_{i}\right) \quad(q=2,3 \Rightarrow \text { Lee }=\text { Hamming }) .
$$

Example: $\operatorname{In} \mathbb{Z}_{9}^{2}$ we have $d((2,1),(7,6))=$

Cades in the bee metric

- Consider a q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C. Y. Lee proposes the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$
- For any n, if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{q}^{n}$ e $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}_{q}^{n}$:

$$
d(x, y)=\sum_{i=1}^{n} d\left(x_{i}, y_{i}\right) \quad(q=2,3 \Rightarrow \text { Lee }=\text { Hamming }) .
$$

Example: In \mathbb{Z}_{9}^{2} we have $d((2,1),(7,6))=4+$

Cades in the bee metric

- Consider a q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C. Y. Lee proposes the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$
- For any n, if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{q}^{n}$ e $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}_{q}^{n}$:

$$
d(x, y)=\sum_{i=1}^{n} d\left(x_{i}, y_{i}\right) \quad(q=2,3 \Rightarrow \text { Lee }=\text { Hamming }) .
$$

Example: $\operatorname{In} \mathbb{Z}_{9}^{2}$ we have $d((2,1),(7,6))=4+4$

Cades in the bee metric

- Consider a q-ary code of length $n: C \subseteq \mathbb{Z}_{q}^{n}$.
- In 1958 C. Y. Lee proposes the use of a metric in \mathbb{Z}_{q}^{n} (Lee metric), appropriate to correct errors in certain types of channels.
- For $n=1: d(x, y)=\min \{|x-y|, q-|x-y|\}$ for $x, y \in \mathbb{Z}_{q}$
- For any n, if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{q}^{n}$ e $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}_{q}^{n}$:

$$
d(x, y)=\sum_{i=1}^{n} d\left(x_{i}, y_{i}\right) \quad(q=2,3 \Rightarrow \text { Lee }=\text { Hamming }) .
$$

Example: In \mathbb{Z}_{9}^{2} we have $d((2,1),(7,6))=4+4=8$.

Cades in the Lee metric

Lee metric as the distance in the graph (torus)

Example: In \mathbb{Z}_{9}^{2} we have $d((2,1),(7,6))=4+4=8$.

Cades in the Lee metric

Lee metric as the distance in the graph (torus)

Example: In \mathbb{Z}_{9}^{2} we have $d((2,1),(7,6))=4+4=8$.

Cades in the Lee metric

Lee metric as the distance in the graph (torus)

Example: $\ln \mathbb{Z}_{9}^{2}$ we have $d((2,1),(7,6))=4+4=8$.

Cades in the lee metric

The resurgence of Lee Codes

Engineering applications

- Constrained and partial-response channels.
R. M. Roth and P. H. Siegel. Lee-metric BCH codes and their application to constrained and partial-response channels. IEEE Trans. on Inform. Theory, vol. IT-40, pp.1083-1096, July 1994.
- Interleaving schemes.
M. Blaum, J. Bruck and A. Vardy. Interleaving schemes for multidimensional cluster errors. IEEE Trans. Inform. Theory, vol. IT-44, pp. 730-743, March 1998.
- Multidimensional burst-error-correction.
T. Etzion and E. Yaakobi. Error-correction of multidimensional bursts. IEEE Trans. on Inform. Theory, vol. IT-55, pp. 961-976, March 2009.
- Error-correction for flash memories.
A. Barg and A. Mazumdar. Codes in permutations and error correction for rank modulation. IEEE Trans. Inf. Theory, vol. 56, no. 7, pp.3158-3165, Jul. 2010.

Cades in the lee metric

The resurgence of Lee Codes

Theoretical research

- Enumerating and decoding perfect linear Lee codes.
B. AlBdaiwi, P. Horak, L. Milazzo. Enumerating and decoding perfect linear Lee codes.

Des. Codes. Crypt., vol. 52 no. 2, pp. 155-162, 2009.

- Dense Lee Codes.
T. Etzion, A. Vardy, E. Yaakobi. Dense error-correcting codes in the Lee metric.

Information Theory Workshop (ITW), 2010 IEEE.

- Special constructions for perfect Lee codes.
T. Etzion. Product constructions for perfect Lee codes.

IEEE Trans. Inform. Th.57(2011), no.11, 7473-7481.

- Diameter perfect Lee codes.
P. Horak, B.F. AlBdaiwi. Diameter perfect Lee codes.

IEEE Trans. Inform. Th.58(2012), no.8, 5490-5499.

Cades in the Lee wetric

Let $C \subseteq \mathbb{Z}_{q}^{n}$ be a q-ary code.

Definitions

- As in the case of the Hamming metric, C is a perfect Lee code when $\mathbb{Z}_{q}^{n}=\biguplus_{c \in C} B(c, e)$, where e is the packing radius and the balls are Lee-balls.

Cades in the Lee metric

Let $C \subseteq \mathbb{Z}_{q}^{n}$ be a q-ary code.

Definitions

- As in the case of the Hamming metric, C is a perfect Lee code when $\mathbb{Z}_{q}^{n}=\biguplus_{c \in C} B(c, e)$, where e is the packing radius and the balls are Lee-balls.
- We denote by
- $P L(n, e, q)=\left\{C \subseteq \mathbb{Z}_{q}^{n}: C\right.$ is e-perfect $\}$
- $\operatorname{LPL}(n, e, q)=\{C \in P L(n, e, q): C$ is linear $\}$

Cades in the lee metric

Let $C \subseteq \mathbb{Z}_{q}^{n}$ be a q-ary code.

Definitions

- As in the case of the Hamming metric, C is a perfect Lee code when $\mathbb{Z}_{q}^{n}=\biguplus_{c \in C} B(c, e)$, where e is the packing radius and the balls are Lee-balls.
- We denote by
- $P L(n, e, q)=\left\{C \subseteq \mathbb{Z}_{q}^{n}: C\right.$ is e-perfect $\}$
- $\operatorname{LPL}(n, e, q)=\{C \in P L(n, e, q): C$ is linear $\}$
- $P L(n, e)=\left\{C \subseteq \mathbb{Z}^{n}: C\right.$ is e-perfect $\},\left(d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|\right)$
- $\operatorname{LPL}(n, e)=\{C \in P L(n, e): C$ is linear $\}$

Existerce of Perfect Lee Codes

Main problem

Characterize the triplets (n, e, q) for which $P L(n, e, q) \neq \emptyset$.

Existence of Perfect Lee Cades

Main problem

Characterize the triplets (n, e, q) for which $P L(n, e, q) \neq \emptyset$.

Golomb-Welch (1970)

S. W. Golomb, L. R. Welch. Perfect Codes in the Lee metric and the packing of polynominoes, SIAM Journal Applied Math., vol. 18, pp. 302-317. 1970.

- For $e=1$ we have $\operatorname{PL}(n, 1) \neq \emptyset$ for all n.
- For $n=2$ we have $P L(2, e) \neq \emptyset$ for all e.
- For each n there exists e_{n} s.t. $P L(n, e)=\emptyset$ for all $e \geq e_{n}$.

Existence of Perfect Lee Cades

Main problem

Characterize the triplets (n, e, q) for which $P L(n, e, q) \neq \emptyset$.

Golomb-Welch (1970)

S. W. Golomb, L. R. Welch. Perfect Codes in the Lee metric and the packing of polynominoes, SIAM Journal Applied Math., vol. 18, pp. 302-317. 1970.

- For $e=1$ we have $\operatorname{PL}(n, 1) \neq \emptyset$ for all n.
- For $n=2$ we have $P L(2, e) \neq \emptyset$ for all e.
- For each n there exists e_{n} s.t. $P L(n, e)=\emptyset$ for all $e \geq e_{n}$.
- Conjecture: For $n>2$ and $e>1$ we have $P L(n, e)=\emptyset$.

Existence of Perfect Lee Cades

Main problem

Characterize the triplets (n, e, q) for which $P L(n, e, q) \neq \emptyset$.

Golomb-Welch (1970)

S. W. Golomb, L. R. Welch. Perfect Codes in the Lee metric and the packing of polynominoes, SIAM Journal Applied Math., vol. 18, pp. 302-317. 1970.

- For $e=1$ we have $\operatorname{PL}(n, 1) \neq \emptyset$ for all n.
- For $n=2$ we have $P L(2, e) \neq \emptyset$ for all e.
- For each n there exists e_{n} s.t. $P L(n, e)=\emptyset$ for all $e \geq e_{n}$.
- Conjecture: For $n>2$ and $e>1$ we have $P L(n, e)=\emptyset$.

Existence of Perfect Lee Cades

Proof of Golomb and Welch for the bidimensional case:
Golomb and Welch present the codes $D_{e}=\langle(e, e+1)\rangle \subset \mathbb{Z}_{q}^{2}$ for $q=2 e^{2}+2 e+1$ and prove that these codes are perfect, then $P L(2, e, q) \neq \emptyset$ for $q=2 e^{2}+2 e+1(\Rightarrow P L(2, e) \neq \emptyset)$.

Existence of Perfect Lee Cades

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes $D_{e}=\langle(e, e+1)\rangle \subset \mathbb{Z}_{q}^{2}$ for $q=2 e^{2}+2 e+1$ and prove that these codes are perfect, then $P L(2, e, q) \neq \emptyset$ for $q=2 e^{2}+2 e+1(\Rightarrow P L(2, e) \neq \emptyset)$.

Example: $D_{2}=\langle(2,3)\rangle \subseteq \mathbb{Z}_{13}^{2}$

Existence of Penfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes $D_{e}=\langle(e, e+1)\rangle \subset \mathbb{Z}_{q}^{2}$ for $q=2 e^{2}+2 e+1$ and prove that these codes are perfect, then $P L(2, e, q) \neq \emptyset$ for $q=2 e^{2}+2 e+1(\Rightarrow P L(2, e) \neq \emptyset)$.

Example: $D_{2}=\langle(2,3)\rangle=\{(0,0)$,

Existence of Penfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes $D_{e}=\langle(e, e+1)\rangle \subset \mathbb{Z}_{q}^{2}$ for $q=2 e^{2}+2 e+1$ and prove that these codes are perfect, then $P L(2, e, q) \neq \emptyset$ for $q=2 e^{2}+2 e+1(\Rightarrow P L(2, e) \neq \emptyset)$.

Example: $D_{2}=\langle(2,3)\rangle=\{(0,0),(2,3)$,

Existence of Penfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes $D_{e}=\langle(e, e+1)\rangle \subset \mathbb{Z}_{q}^{2}$ for $q=2 e^{2}+2 e+1$ and prove that these codes are perfect, then $P L(2, e, q) \neq \emptyset$ for $q=2 e^{2}+2 e+1(\Rightarrow P L(2, e) \neq \emptyset)$.

Example: $D_{2}=\langle(2,3)\rangle=\{(0,0),(2,3),(4,6)$,

Existence of Perfect Lee Cades

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes $D_{e}=\langle(e, e+1)\rangle \subset \mathbb{Z}_{q}^{2}$ for $q=2 e^{2}+2 e+1$ and prove that these codes are perfect, then $P L(2, e, q) \neq \emptyset$ for $q=2 e^{2}+2 e+1(\Rightarrow P L(2, e) \neq \emptyset)$.

Example: $D_{2}=\langle(2,3)\rangle=\{(0,0),(2,3),(4,6),(6,9)$

Existence of Perfect Lee Cades

Proof of Golomb and Welch for the bidimensional case:
Golomb and Welch present the codes $D_{e}=\langle(e, e+1)\rangle \subset \mathbb{Z}_{q}^{2}$ for $q=2 e^{2}+2 e+1$ and prove that these codes are perfect, then $P L(2, e, q) \neq \emptyset$ for $q=2 e^{2}+2 e+1(\Rightarrow P L(2, e) \neq \emptyset)$.

Example: $D_{2}=\langle(2,3)\rangle=\{(0,0),(2,3),(4,6),(6,9), \ldots,(11,10)$

Existence of Penfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:
Golomb and Welch present the codes $D_{e}=\langle(e, e+1)\rangle \subset \mathbb{Z}_{q}^{2}$ for $q=2 e^{2}+2 e+1$ and prove that these codes are perfect, then $P L(2, e, q) \neq \emptyset$ for $q=2 e^{2}+2 e+1(\Rightarrow P L(2, e) \neq \emptyset)$.

Example: $D_{2}=\langle(2,3)\rangle=\{(0,0),(2,3),(4,6),(6,9), \ldots,(11,10)$

Related questions.

- For which (e, q) we have $P L(2, e, q) \neq \emptyset$? In that case, is it possible to describe all these codes? (Remark: we are considering linear and non-linear codes.)
- What are the possible structures as abelian groups of these codes?

Related questions.

- For which (e, q) we have $P L(2, e, q) \neq \emptyset$? In that case, is it possible to describe all these codes? (Remark: we are considering linear and non-linear codes.)
- What are the possible structures as abelian groups of these codes?

We can use the geometry of polyominoes and combinatorial arguments.
S.Costa and C.Qureshi. Classification of the bidimensional codes in the Lee metric.

XXXI Brazilian Symposium of Telecommunications, 2013.

Thearew

For $e, q \in \mathbb{Z}^{+}$we define: $q_{e}=e^{2}+(e+1)^{2}, \nu_{1}=(e, e+1)$,
$\nu_{2}=(-(e+1), e), \eta_{1}=(1,-(2 e+1)), \eta_{2}=\left(0, q_{e}\right) \in \mathbb{Z}_{q}^{2}$,
$D_{e}=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ and $\bar{v}=(-x, y)$ is the conjugate of $v=(x, y)$.

Thearem

For $e, q \in \mathbb{Z}^{+}$we define: $q_{e}=e^{2}+(e+1)^{2}, \nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e), \eta_{1}=$ $(1,-(2 e+1)), \eta_{2}=\left(0, q_{e}\right) \in \mathbb{Z}_{q}^{2}, D_{e}=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ and $\bar{v}=(-x, y)$ is the conj. of $v=(x, y)$.
(1) (Existence) $P L(2, e, q) \neq \emptyset \Leftrightarrow q \equiv 0\left(\bmod q_{e}\right)$.

Thearem

For $e, q \in \mathbb{Z}^{+}$we define: $q_{e}=e^{2}+(e+1)^{2}, \nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e), \eta_{1}=$ $(1,-(2 e+1)), \eta_{2}=\left(0, q_{e}\right) \in \mathbb{Z}_{q}^{2}, D_{e}=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ and $\bar{v}=(-x, y)$ is the conj. of $v=(x, y)$.
(1) (Existence) $P L(2, e, q) \neq \emptyset \Leftrightarrow q \equiv 0\left(\bmod q_{e}\right)$.
(2) (Characterization) $C \in P L(2, e, q) \Leftrightarrow C=c+D_{e}$ or $C=c+\overline{D_{e}}$ for any $c \in C$ (in particular $C-c$ is a group).

For $e, q \in \mathbb{Z}^{+}$we define: $q_{e}=e^{2}+(e+1)^{2}, \nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e), \eta_{1}=$ $(1,-(2 e+1)), \eta_{2}=\left(0, q_{e}\right) \in \mathbb{Z}_{q}^{2}, D_{e}=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ and $\bar{v}=(-x, y)$ is the conj. of $v=(x, y)$.
(1) (Existence) $P L(2, e, q) \neq \emptyset \Leftrightarrow q \equiv 0\left(\bmod q_{e}\right)$.
(2) (Characterization) $C \in P L(2, e, q) \Leftrightarrow C=c+D_{e}$ or $C=c+\overline{D_{e}}$ for any $c \in C$ (in particular $C-c$ is a group).
(3) (Structure) Let $C \in P L(2, e, q)$ and $G_{C}=C-c$ the group assoc. with C.
i) G_{C} is cyclic iff $q=q_{e}$. In this case $G_{C} \simeq \mathbb{Z}_{q}$ with generator

$$
\nu_{1}=(e, e+1) \text { if } G_{C}=D_{e} \text { or } \bar{\nu}_{1} \text { if } G_{C}=\overline{D_{e}}
$$

ii) If $q=h q_{e}$ com $h>1$ then $G_{C} \simeq \mathbb{Z}_{q} \times \mathbb{Z}_{h}$.

Moreover, $G_{C}=\eta_{1} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}$ if $G_{C}=D_{e}$ or $G_{C}=\overline{\eta_{1}} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}$ if $G_{C}=\overline{D_{e}}$.

Sketch of the proof

Impossible configuration

Let $I=\{(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,2)\} \subseteq \mathbb{Z}_{q}^{2}$. If $C \in P L(2, e, q)$ and $c, c^{\prime} \in C \Rightarrow \nexists x \in \mathbb{Z}_{q}^{2}$ such that

- $x \in B(c, e) \cup B\left(c^{\prime}, e\right)$.
- $x+C \subseteq B(c, e) \cup B\left(c^{\prime}, e\right)$

Sketch of the proof

Decoding of special points

If $C \in P L(2, e, q)$ and $c \in C$, the point $c+(0, e+1)$ can only be decoded in two ways. These possibilities are $c+(-e, e+1)$ and $c+(e, e+1)$.

Sketch of the proof

Decoding of special points

If $C \in P L(2, e, q)$ and $c \in C$, the point $c+(0, e+1)$ can only be decoded in two ways. These possibilities are $c+(-e, e+1)$ and $c+(e, e+1)$.

Sketch of the proof

Decoding of special points

If $C \in P L(2, e, q)$ and $c \in C$, the point $c+(0, e+1)$ can only be decoded in two ways. These possibilities are $c+(-e, e+1)$ and $c+(e, e+1)$.

Sketch of the proof

Decoding of special points

If $C \in P L(2, e, q)$ and $c \in C$, the point $c+(0, e+1)$ can only be decoded in two ways. These possibilities are $c+(-e, e+1)$ and $c+(e, e+1)$.

Sketch of the proof

Decoding of special points

If $C \in P L(2, e, q)$ and $c \in C$, the point $c+(0, e+1)$ can only be decoded in two ways. These possibilities are $c+(-e, e+1)$ and $c+(e, e+1)$.

Sketch of the proof

Decoding of special points

If $C \in P L(2, e, q)$ and $c \in C$, the point $c+(0, e+1)$ can only be decoded in two ways. These possibilities are $c+(-e, e+1)$ and $c+(e, e+1)$.

Sketch of the proof

Definition

For $C \in P L(2, e, q)$ and $c \in C$ we define the set $\omega(c)=\left\{v_{1}, \ldots, v_{\tau}\right\}$ where the adjacent balls of $B(c, e)$ are exactly $B\left(c+v_{i}, e\right)$ for $1 \leq i \leq \tau$.

Sketch of the proof

Definition

For $C \in P L(2, e, q)$ and $c \in C$ we define the set $\omega(c)=\left\{v_{1}, \ldots, v_{\tau}\right\}$ where the adjacent balls of $B(c, e)$ are exactly $B\left(c+v_{i}, e\right)$ for $1 \leq i \leq \tau$.

Sletch of the proof

Definition

For $C \in P L(2, e, q)$ and $c \in C$ we define the set $\omega(c)=\left\{v_{1}, \ldots, v_{\tau}\right\}$ where the adjacent balls of $B(c, e)$ are exactly $B\left(c+v_{i}, e\right)$ for $1 \leq i \leq \tau$.

$\omega(3,11)=\{(2,3)$,

Sketch of the proof

Definition

For $C \in P L(2, e, q)$ and $c \in C$ we define the set $\omega(c)=\left\{v_{1}, \ldots, v_{\tau}\right\}$ where the adjacent balls of $B(c, e)$ are exactly $B\left(c+v_{i}, e\right)$ for $1 \leq i \leq \tau$.

$\omega(3,11)=\{(2,3),(-3,2)$,

Sketch of the proof

Definition

For $C \in P L(2, e, q)$ and $c \in C$ we define the set $\omega(c)=\left\{v_{1}, \ldots, v_{\tau}\right\}$ where the adjacent balls of $B(c, e)$ are exactly $B\left(c+v_{i}, e\right)$ for $1 \leq i \leq \tau$.

$\omega(3,11)=\{(2,3),(-3,2),(2,-3)$,

Sketch of the proof

Definition

For $C \in P L(2, e, q)$ and $c \in C$ we define the set $\omega(c)=\left\{v_{1}, \ldots, v_{\tau}\right\}$ where the adjacent balls of $B(c, e)$ are exactly $B\left(c+v_{i}, e\right)$ for $1 \leq i \leq \tau$.

$\omega(3,11)=\{(2,3),(-3,2),(2,-3),(-3,-2)\}$

Sketch of the proof

Kissing Lemma

If $C \in P L(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c)=\left\{ \pm \nu_{1}, \pm \nu_{2}\right\}$ (type 1) or $\omega(c)=\left\{ \pm \overline{\nu_{1}}, \pm \overline{\nu_{2}}\right\}$ (type 2), where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.

Sketch of the proof

Kissing Lemma

If $C \in P L(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c)=\left\{ \pm \nu_{1}, \pm \nu_{2}\right\}$ (type 1) or $\omega(c)=\left\{ \pm \overline{\nu_{1}}, \pm \overline{\nu_{2}}\right\}$ (type 2), where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.

Sketch of the proof

Kissing Lemma

If $C \in P L(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c)=\left\{ \pm \nu_{1}, \pm \nu_{2}\right\}$ (type 1) or $\omega(c)=\left\{ \pm \overline{\nu_{1}}, \pm \overline{\nu_{2}}\right\}$ (type 2), where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.

Sketch of the proof

Kissing Lemma

If $C \in P L(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c)=\left\{ \pm \nu_{1}, \pm \nu_{2}\right\}$ (type 1) or $\omega(c)=\left\{ \pm \overline{\nu_{1}}, \pm \overline{\nu_{2}}\right\}$ (type 2), where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.

Sketch of the proof

Kissing Lemma

If $C \in P L(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c)=\left\{ \pm \nu_{1}, \pm \nu_{2}\right\}$ (type 1) or $\omega(c)=\left\{ \pm \overline{\nu_{1}}, \pm \overline{\nu_{2}}\right\}$ (type 2), where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.

Sketch of the proof

Kissing Lemma

If $C \in P L(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c)=\left\{ \pm \nu_{1}, \pm \nu_{2}\right\}$ (type 1) or $\omega(c)=\left\{ \pm \overline{\nu_{1}}, \pm \overline{\nu_{2}}\right\}$ (type 2), where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.

Sketch of the proof

Kissing Lemma

If $C \in P L(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c)=\left\{ \pm \nu_{1}, \pm \nu_{2}\right\}$ (type 1) or $\omega(c)=\left\{ \pm \overline{\nu_{1}}, \pm \overline{\nu_{2}}\right\}$ (type 2), where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.

Sketch of the proof

Kissing Lemma

If $C \in P L(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c)=\left\{ \pm \nu_{1}, \pm \nu_{2}\right\}$ (type 1) or $\omega(c)=\left\{ \pm \overline{\nu_{1}}, \pm \overline{\nu_{2}}\right\}$ (type 2), where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.

Sketch of the proof

Kissing Lemma

If $C \in P L(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c)=\left\{ \pm \nu_{1}, \pm \nu_{2}\right\}$ (type 1) or $\omega(c)=\left\{ \pm \overline{\nu_{1}}, \pm \overline{\nu_{2}}\right\}$ (type 2), where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.

Sketch of the proof

For $e, q \in \mathbb{Z}^{+}$we define: $q_{e}=e^{2}+(e+1)^{2}, \nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e), \eta_{1}=$ $(1,-(2 e+1)), \eta_{2}=\left(0, q_{e}\right) \in \mathbb{Z}_{q}^{2}, D_{e}=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ and $\bar{v}=(-x, y)$ is the conj. of $v=(x, y)$.
(1) (Existence) $P L(2, e, q) \neq \emptyset \Leftrightarrow q \equiv 0\left(\bmod q_{e}\right)$.
(2) (Characterization) $C \in P L(2, e, q) \Leftrightarrow C=c+D_{e}$ or $C=c+\overline{D_{e}}$ where $c \in C$ any (in particular $C-c$ is a group).
(3) (Structure) Let $C \in P L(2, e, q)$ and $G_{C}=C-c$ the group assoc. with C.
i) G_{C} is cyclic iff $q=q_{e}$. In this case $G_{C} \simeq \mathbb{Z}_{q}$ with generator

$$
\nu_{1}=(e, e+1) \text { if } G_{C}=D_{e} \text { or } \bar{\nu}_{1} \text { if } G_{C}=\overline{D_{e}}
$$

ii) If $q=h q_{e}$ com $h>1$ then $G_{C} \simeq \mathbb{Z}_{q} \times \mathbb{Z}_{h}$.

Moreover, $G_{C}=\eta_{1} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}$ if $G_{C}=D_{e}$ or $G_{C}=\overline{\eta_{1}} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}$ if $G_{C}=\overline{D_{e}}$.

Sketch of the proof

For $e, q \in \mathbb{Z}^{+}$we define: $q_{e}=e^{2}+(e+1)^{2}, \nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e), \eta_{1}=$ $(1,-(2 e+1)), \eta_{2}=\left(0, q_{e}\right) \in \mathbb{Z}_{q}^{2}, D_{e}=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ and $\bar{v}=(-x, y)$ is the conj. of $v=(x, y)$.
(1) (Existence) $P L(2, e, q) \neq \emptyset \Leftrightarrow q \equiv 0\left(\bmod q_{e}\right)$.
(2) (Characterization) $C \in P L(2, e, q) \Leftrightarrow C=c+D_{e}$ or $C=c+\overline{D_{e}}$ where $c \in C$ any (in particular $C-c$ is a group).
(3) (Structure) Let $C \in P L(2, e, q)$ and $G_{C}=C-c$ the group assoc. with C.
i) G_{C} is cyclic iff $q=q_{e}$. In this case $G_{C} \simeq \mathbb{Z}_{q}$ with generator $\nu_{1}=(e, e+1)$ if $G_{C}=D_{e}$ or $\bar{\nu}_{1}$ if $G_{C}=\overline{D_{e}}$.
ii) If $q=h q_{e}$ com $h>1$ then $G_{C} \simeq \mathbb{Z}_{q} \times \mathbb{Z}_{h}$.

Moreover, $G_{C}=\eta_{1} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}$ if $G_{C}=D_{e}$ or $G_{C}=\overline{\eta_{1}} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}$ if $G_{C}=\overline{D_{e}}$.

Sketch of the proof

For the second part...
Let $C \in P L(2, q, e)$ and fix any $c \in C$.

Sketch of the proof

For the second part...

Let $C \in P L(2, q, e)$ and fix any $c \in C$.
For the kissing lemma; $c+\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z} \subseteq C$.

Sketch of the proof

For the second part...

Let $C \in P L(2, q, e)$ and fix any $c \in C$.
For the kissing lemma; $c+\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z} \subseteq C$.
For the other inclusion, if $c^{\prime} \in C$ it is sufficient to consider a chain of adjacent balls from $B\left(c^{\prime}, e\right)$ to $B(c, e)$ and use kissing lemma again.

Sketch of the proof

For $e, q \in \mathbb{Z}^{+}$we define: $q_{e}=e^{2}+(e+1)^{2}, \nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e), \eta_{1}=$ $(1,-(2 e+1)), \eta_{2}=\left(0, q_{e}\right) \in \mathbb{Z}_{q}^{2}, D_{e}=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ and $\bar{v}=(-x, y)$ is the conj. of $v=(x, y)$.
(1) (Existence) $P L(2, e, q) \neq \emptyset \Leftrightarrow q \equiv 0\left(\bmod q_{e}\right)$.
(2) (Characterization) $C \in P L(2, e, q) \Leftrightarrow C=c+D_{e}$ or $C=c+\overline{D_{e}}$ where $c \in C$ any (in particular $C-c$ is a group).
(3) (Structure) Let $C \in P L(2, e, q)$ and $G_{C}=C-c$ the group assoc. with C.
i) G_{C} is cyclic iff $q=q_{e}$. In this case $G_{C} \simeq \mathbb{Z}_{q}$ with generator

$$
\nu_{1}=(e, e+1) \text { if } G_{C}=D_{e} \text { or } \bar{\nu}_{1} \text { if } G_{C}=\overline{D_{e}}
$$

ii) If $q=h q_{e}$ com $h>1$ then $G_{C} \simeq \mathbb{Z}_{q} \times \mathbb{Z}_{h}$.

Moreover, $G_{C}=\eta_{1} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}$ if $G_{C}=D_{e}$ or $G_{C}=\overline{\eta_{1}} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}$ if $G_{C}=\overline{D_{e}}$.

Sketch of the proof

For the first part...

(\Rightarrow) Let $C \in P L(2, q, e)$ and fix any $c \in C$. We can suppose
$C=c+\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e) \in \mathbb{Z}_{q}^{2}$.

Sketch of the proof

For the first part...

(\Rightarrow) Let $C \in P L(2, q, e)$ and fix any $c \in C$. We can suppose
$C=c+\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e) \in \mathbb{Z}_{q}^{2}$.
As $\operatorname{gcd}(e, e+1)=1 \Rightarrow\left|\nu_{1} \mathbb{Z}\right|=q$.

Sketch of the proof

For the first part...

(\Rightarrow) Let $C \in P L(2, q, e)$ and fix any $c \in C$. We can suppose
$C=c+\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e) \in \mathbb{Z}_{q}^{2}$.
As $\operatorname{gcd}(e, e+1)=1 \Rightarrow\left|\nu_{1} \mathbb{Z}\right|=q$. Using Lagrange Theorem $q=\left|\nu_{1} \mathbb{Z}\right|| | \nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z} \mid=\# C \Rightarrow \# C=q h$ for some $h \in \mathbb{Z}^{+}$.

Sketch of the proof

For the first part...

(\Rightarrow) Let $C \in P L(2, q, e)$ and fix any $c \in C$. We can suppose
$C=c+\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e) \in \mathbb{Z}_{q}^{2}$.
As $\operatorname{gcd}(e, e+1)=1 \Rightarrow\left|\nu_{1} \mathbb{Z}\right|=q$. Using Lagrange Theorem $q=\left|\nu_{1} \mathbb{Z}\right|| | \nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z} \mid=\# C \Rightarrow \# C=q h$ for some $h \in \mathbb{Z}^{+}$.

By the sphere packing condition:
$\# B(0, e) \cdot \# C=q^{2} \Leftrightarrow q_{e} \cdot q h=q^{2} \Leftrightarrow q=q_{e} h$ and so $q \equiv 0\left(\bmod q_{e}\right)$.

Sketch of the proof

For the first part...

(\Rightarrow) Let $C \in P L(2, q, e)$ and fix any $c \in C$. We can suppose
$C=c+\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e) \in \mathbb{Z}_{q}^{2}$.
As $\operatorname{gcd}(e, e+1)=1 \Rightarrow\left|\nu_{1} \mathbb{Z}\right|=q$. Using Lagrange Theorem $q=\left|\nu_{1} \mathbb{Z}\right|| | \nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z} \mid=\# C \Rightarrow \# C=q h$ for some $h \in \mathbb{Z}^{+}$.

By the sphere packing condition:
$\# B(0, e) \cdot \# C=q^{2} \Leftrightarrow q_{e} \cdot q h=q^{2} \Leftrightarrow q=q_{e} h$ and so $q \equiv 0\left(\bmod q_{e}\right)$.
(\Leftarrow) Golomb and Welch.

Sketch of the proof

For $e, q \in \mathbb{Z}^{+}$we define: $q_{e}=e^{2}+(e+1)^{2}, \nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e), \eta_{1}=$ $(1,-(2 e+1)), \eta_{2}=\left(0, q_{e}\right) \in \mathbb{Z}_{q}^{2}, D_{e}=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ and $\bar{v}=(-x, y)$ is the conj. of $v=(x, y)$.
(1) (Existence) $P L(2, e, q) \neq \emptyset \Leftrightarrow q \equiv 0\left(\bmod q_{e}\right)$.
(2) (Characterization) $C \in P L(2, e, q) \Leftrightarrow C=c+D_{e}$ or $C=c+\overline{D_{e}}$ where $c \in C$ any (in particular $C-c$ is a group).
(3) (Structure) Let $C \in P L(2, e, q)$ and $G_{C}=C-c$ the group assoc. with C.
i) G_{C} is cyclic iff $q=q_{e}$. In this case $G_{C} \simeq \mathbb{Z}_{q}$ with generator

$$
\nu_{1}=(e, e+1) \text { if } G_{C}=D_{e} \text { or } \bar{\nu}_{1} \text { if } G_{C}=\overline{D_{e}}
$$

ii) If $q=h q_{e}$ com $h>1$ then $G_{C} \simeq \mathbb{Z}_{q} \times \mathbb{Z}_{h}$.

Moreover, $G_{C}=\eta_{1} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}$ if $G_{C}=D_{e}$ or $G_{C}=\overline{\eta_{1}} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}$ if $G_{C}=\overline{D_{e}}$.

Sketch of the proof

For the last part...
We can suppose that C is linear and type 1 , that is $C=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.

Sketch of the proof

For the last part...

We can suppose that C is linear and type 1 , that is $C=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.
As $\left(\begin{array}{cc}-1 & -1 \\ e+1 & e\end{array}\right)\binom{\nu_{1}}{\nu_{2}}=\binom{\eta_{1}}{\eta_{2}}$ and $\operatorname{det}\left(\begin{array}{cc}-1 & -1 \\ e+1 & e\end{array}\right)=1$,
then $C=\eta_{1} \mathbb{Z}+\eta_{2} \mathbb{Z}$ where $\eta_{1}=(1,-(2 e+1))$ and $\eta_{2}=\left(0, q_{e}\right)$ (in $\left.\mathbb{Z}_{q}^{2}\right)$.

Sketch of the proof

For the last part...

We can suppose that C is linear and type 1 , that is $C=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.
As $\left(\begin{array}{cc}-1 & -1 \\ e+1 & e\end{array}\right)\binom{\nu_{1}}{\nu_{2}}=\binom{\eta_{1}}{\eta_{2}}$ and $\operatorname{det}\left(\begin{array}{cc}-1 & -1 \\ e+1 & e\end{array}\right)=1$,
then $C=\eta_{1} \mathbb{Z}+\eta_{2} \mathbb{Z}$ where $\eta_{1}=(1,-(2 e+1))$ and $\eta_{2}=\left(0, q_{e}\right)$ (in $\left.\mathbb{Z}_{q}^{2}\right)$.
Clearly $\eta_{1} \mathbb{Z} \cap \eta_{2} \mathbb{Z}=(0)$ (therefore $\left.C=\eta_{1} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}\right)$) and $\left|\eta_{1} \mathbb{Z}\right|=q \mathrm{e}$ $\left|\eta_{2} \mathbb{Z}\right|=\frac{q}{q_{e}}=h$ from where we can conclude that
$C=\eta_{1} \mathbb{Z} \oplus \eta_{2} \mathbb{Z} \simeq \mathbb{Z}_{q} \times \mathbb{Z}_{h}$.

Sketch of the proof

For the last part...

We can suppose that C is linear and type 1 , that is $C=\nu_{1} \mathbb{Z}+\nu_{2} \mathbb{Z}$ where $\nu_{1}=(e, e+1), \nu_{2}=(-(e+1), e)$.
As $\left(\begin{array}{cc}-1 & -1 \\ e+1 & e\end{array}\right)\binom{\nu_{1}}{\nu_{2}}=\binom{\eta_{1}}{\eta_{2}}$ and $\operatorname{det}\left(\begin{array}{cc}-1 & -1 \\ e+1 & e\end{array}\right)=1$,
then $C=\eta_{1} \mathbb{Z}+\eta_{2} \mathbb{Z}$ where $\eta_{1}=(1,-(2 e+1))$ and $\eta_{2}=\left(0, q_{e}\right)$ (in $\left.\mathbb{Z}_{q}^{2}\right)$.
Clearly $\eta_{1} \mathbb{Z} \cap \eta_{2} \mathbb{Z}=(0)$ (therefore $\left.C=\eta_{1} \mathbb{Z} \oplus \eta_{2} \mathbb{Z}\right)$) and $\left|\eta_{1} \mathbb{Z}\right|=q \mathrm{e}$ $\left|\eta_{2} \mathbb{Z}\right|=\frac{q}{q_{e}}=h$ from where we can conclude that
$C=\eta_{1} \mathbb{Z} \oplus \eta_{2} \mathbb{Z} \simeq \mathbb{Z}_{q} \times \mathbb{Z}_{h}$.
As $h \mid q$, it is clear that C is cyclic iff $h=1$.

Example

Example

For $q=1105$. There are exactly 5 codes in $\mathbb{Z}_{1105} \times \mathbb{Z}_{1105}$ up to translations and conjugation (1105 = 5 1 13 $\cdot 17$). One of these codes is cyclic and the others are non-cyclic. These codes are given by:

- $C_{1}=(1,-3) \mathbb{Z}_{1105} \oplus(0,5) \mathbb{Z}_{1105}(e=1)$
- $C_{2}=(1,-5) \mathbb{Z}_{1105} \oplus(0,13) \mathbb{Z}_{1105}(e=2)$
- $C_{3}=(1,-13) \mathbb{Z}_{1105} \oplus(0,85) \mathbb{Z}_{1105}(e=6)$
- $C_{4}=(1,-21) \mathbb{Z}_{1105} \oplus(0,221) \mathbb{Z}_{1105}(e=10)$
- $C_{5}=(23,24) \mathbb{Z}_{1105}(e=23)$

More relevant results related to the Golomb-Welch conjecture

- $P L\left(2, e, q_{e}\right) \neq \emptyset, P L(n, 1,2 n+1) \neq \emptyset, P L(3,2)=\emptyset, P L(n, e)=\emptyset$ for $e \geq e_{n}$. S. W. Golomb, L. R. Welch. Perfect Codes in the Lee metric and the packing of polynominoes, SIAM Journal Applied Math., vol. 18, pp. 302-317. 1970.
- $P L(n, e, q)=\emptyset$ for $3 \leq n \leq 5, e \geq n-1, q \geq 2 e+1$ and for $n \geq 6, e \geq \frac{2 n-3}{2 \sqrt{2}}-\frac{1}{2}$ K.A.Post. Nonexistence theorem on perfect Lee codes over large alphabets. Inf. and control 29, 369-380. 1975.
- $P L(n, 2, q)=\emptyset$ for $q=13, q$ not divisible by a prime $\dot{4}+1$, and $q=p^{k}$ with p prime, $p \neq 13$ and $p<\sqrt{n^{2}+(n+1)^{2}}$.
J.Astola. On perfect codes in the Lee metric. Ann. Univ. Turku (A) 176 (1), 56. 1978.
- $P L(3, e)=\emptyset$ for $e \geq 2$.
S.Gravier, M.Mollard, C.Payan. On the Non-existence of 3-dimensional tiling in the Lee metric. Europ. J. Combinatorics 19. pp.567-572. 1998.
- $P L(4, e)=\emptyset$ for $e \geq 2$.
S.Spacapan. A complete proof of the nonexistence of regular four dimensional tilings in the Lee metric.

Preprint Series, vol.42(993). 2004

More relevant results related to the Golomb-Welch conjecture

- $P L(n, 2)=\emptyset$ for $5 \leq n \leq 12$ for linear codes
P.Horak. On perfect Lee codes. Discr. Math. 309. 5551-5561. 2009.
P.Horak, O.Grosek. A new approach towards the Golomb-Welch conjecture. preprint arxiv.org/pdf/1205.4875v3.pdf. 2013.

Future work

- Approach the classification of n-dimensional perfect single-error-correcting Lee codes using the geometry of polyominoes and combinatorial arguments.
- Prove the non-existence of e-perfect Lee codes in some dimension $n>3$ using these techniques.
- Construct quasi-perfect Lee codes and dense codes using this approach.

Future work

- Approach the classification of n-dimensional perfect single-error-correcting Lee codes using the geometry of polyominoes and combinatorial arguments.
- Prove the non-existence of e-perfect Lee codes in some dimension $n>3$ using these techniques.
- S. Gravier, M. Mollard, C. Payan succeed for $n=3$.

On the nonexistence of three-dimensional tiling in the Lee metric II. Discr.Math 235, 151-157. 2001.

- Construct quasi-perfect Lee codes and dense codes using this approach.

Future work

- Approach the classification of n-dimensional perfect single-error-correcting Lee codes using the geometry of polyominoes and combinatorial arguments.
- Prove the non-existence of e-perfect Lee codes in some dimension $n>3$ using these techniques.
- Construct quasi-perfect Lee codes and dense codes using this approach.

Future work

- Approach the classification of n-dimensional perfect single-error-correcting Lee codes using the geometry of polyominoes and combinatorial arguments.
- Prove the non-existence of e-perfect Lee codes in some dimension $n>3$ using these techniques.
- Construct quasi-perfect Lee codes and dense codes using this approach.
- Is it possible to use combinatorial designs to obtain non-trivial condition on the parameters (n, e, q) of perfect Lee codes, like in the Hamming case?

Future work

- Approach the classification of n-dimensional perfect single-error-correcting Lee codes using the geometry of polyominoes and combinatorial arguments.
- Prove the non-existence of e-perfect Lee codes in some dimension $n>3$.
- Construct quasi-perfect Lee codes and dense codes using this approach.
- Is it possible to use combinatorial designs to obtain non-trivial condition on the parameters (n, e, q) of perfect Lee codes, like in the Hamming case ?

Some references in polyominoes

- J.H.Conway and J.C.Lagarias. Tiling with polyominoes and combinatorial group theory. Journal of Comb. Theory, Series A.53, 183-208, 1990.
- S.W. Golomb. Polyominoes: Puzzles, Patterns, Problems and Packings. Princeton University Press, second edition, 1996.
- M.R. Korn. Geometric and algebraic properties of polyomino tilings. PhD. Thesis, Massachusetts Institute of Technology, 2004.

Thanks for your attention!

