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Difference set

Subset D of a group G such that every g ∈ G, g 6= 0, has the
same number of difference representations d − d ′ with
d ,d ′ ∈ D.

Example

{1,2,4} ⊆ Z7.
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Construction of difference sets

I Use trivial additive sub-structures, interprete
multiplicatively.

I Use trivial multiplicative sub-structures, interprete
additively.

Example

I trace(x) = 0 in F∗2n

I squares in Fq
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How can we generalize trace(x) = 0?

I GORDON-MILLS-WELCH (1962): Modify trace

Breakthrough: MASCHIETTI (1998)

{x ∈ F∗2n : trace(x) = 0} = {y2 + y : y ∈ F∗2n , y 6= 1}

Difference set is the image set of y2 + y in F∗2n .

Generalize this description:

Use 2-to-1 mappings.
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Hyperovals

Maschietti used monomial hyperovals:

{

 1
x
xd

 : x ∈ F2n} ∪ {

0
1
0

 ,

0
0
1

}
is a hyperoval in PG(2,2n) if and only if yd + y is 2-to-1.
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SIDELNIKOV

{x2 − 1 : x ∈ Fq} ⊆ F∗q

“almost” difference set in F∗q, yields sequences with optimal
autocorrelation properties.
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Generalizing Squares I

Cyclotomy: Unions of cosets of multiplicative subgroup.

TAO FENG, KOJI MOMIHARA, QING XIANG use small
subgroups.
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Generalizing Squares II

Squares are image set of a 2-to-1 mapping f : Fq → Fq!

But in the additive group.

Consider the graph

Gf = {(x , f (x)) : x ∈ Fq}

If Gf has “nice” properties with respect to addition, then
perhaps also the image set.
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Planar functions

f : Fq → Fq is planar if f (x + a)− f (x) is a permutation for all
a 6= 0.

Example
f (x) = x2:

(x + a)2 − x2 = 2xa + a2

is a permutation on Fq if q odd.

Hence: Squares are image sets of a class of planar functions!
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Squares in Fq are nice

The set of squares are a difference set: d − d ′ = x has q−3
4

solutions with d ,d ′ ∈ D for all x ,

and

D ∪ (−D) ∪ {0} = Fq (∗)

Example (q = 7)

{1,2,4} ∪ {3,5,6} ∪ {0} = F7

skew Hadamard difference sets

Hadamard difference set: without (∗).
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Are there others?

Brilliant idea due to DING and YUAN (2006):

Try other planar functions!

Exactly one gives new example:

f (x) = x10 + x6 − x2

in F3n COULTER, MATTHEWS (1998).

... still no theoretical proof that it is “new” in general
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... rekindled interest in planar functions...

DING and YUAN also proved:

f (x) = x10 − x6 − x2

is planar and also gives skew Hadamard difference set.
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Another look at Ding-Yuan

composition of a permutation polynomial and x2:

(x5 ± x3 − x) ◦ x2

DICKSON of order 5.
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DING, WANG, XIANG (2007)

q = 32h+1, α = 3h+1, u ∈ Fq

Use permutation polynomial

f (x) = x2α+3 + (ux)α − u2x

(which is not planar):

Image set of
f ◦ x2

is skew Hadamard.

Inequivalence only in small cases proved.
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DING, P., WANG (2013)

q = 3m, m 6≡ 0 mod 3, u ∈ Fq

Use DICKSON of order 7:

f (x) = x7 − ux5 − u2x3 − u3x .

(which is not planar).

Inequivalence only in small cases proved.
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Proof I

Proof resembles Ding, Wang, Xiang.

Have to show |Ψ(D)|2 = 3m+1
4 for additive characters Ψ.

Thanks to CHEN, SEHGAL, XIANG (1994), it is sufficient to
show:

Ψ(D) ≡ 3(m−1)/2 − 1
2

mod 3(m−1)/2.
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Proof II

Show
Sβ =

∑
z∈F∗

q

Ψβ(f (z))χ(z) ≡ 0 mod 3(m−1)/2

where χ is the quadratic character and

Ψβ(z) = ζ
Trace(βz)
3 .

This reduces to ∑
z∈F∗

q

ζ
Trace(z7+ηz5+γz)
3 χ(z)

for some η and γ.
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Proof III

∑
z∈F∗

q

ζ
Trace(z7+ηz5+γz)
3 χ(z)

Use

ζ
Trace(z)
3 =

1
q − 1

q−2∑
b=0

g(ω−b)ωb(z)

where
g(ω−b)

is Gauss sum with respect to multiplicative character ω−b,
where ω has order q − 1.
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Proof IV

If γ = 0, we obtain

Sβ = ± 1
q − 1

q−2∑
b=0

g(ω−b)g(ω−
q−1

2 +5−17b)× root of unity

Then use STICKELBERGER and combinatorial arguments.

Case γ 6= 0 is similar.
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... use polynomials ...

I to construct more Hadamard difference sets;
I to construct Sidelnikov sequences x2 − 1;
I to construct more skew Hadamard difference sets.

Problem: Show inequivalence!
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MUZYCHUK (2010)

Mikhail Muzychuk has another construction in Fq3 using orbits
of vectors in F 3

q under the action of GL(3,q).

He can show inequivalence.

Inequivalence of some cyclotomic examples and squares has
been shown by KOJI MOMIHARA.
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Inequivalence

Difference set corresponds to a design!

I triple intersection numbers;

MOMIHARA, computer

I rank of incidence matrix;

always the same for skew H.d.s

I automorphism groups.

MUZYCHUK

22 / 22



Inequivalence

Difference set corresponds to a design!

I triple intersection numbers; MOMIHARA, computer
I rank of incidence matrix;

always the same for skew H.d.s

I automorphism groups.

MUZYCHUK

22 / 22



Inequivalence

Difference set corresponds to a design!

I triple intersection numbers; MOMIHARA, computer
I rank of incidence matrix; always the same for skew H.d.s
I automorphism groups.

MUZYCHUK

22 / 22



Inequivalence

Difference set corresponds to a design!

I triple intersection numbers; MOMIHARA, computer
I rank of incidence matrix; always the same for skew H.d.s
I automorphism groups. MUZYCHUK

22 / 22


