Skew Hadamard Difference Sets

Alexander Pott (with Cunsheng Ding and Qi Wang)

Otto-von-Guericke-University Magdeburg

December 06, 2013

Difference set

Subset *D* of a group *G* such that every $g \in G$, $g \neq 0$, has the same number of difference representations d - d' with $d, d' \in D$.

Example

 $\{1,2,4\}\subseteq \mathbb{Z}_7.$

Construction of difference sets

- Use trivial additive sub-structures, interprete multiplicatively.
- Use trivial multiplicative sub-structures, interprete additively.

Construction of difference sets

- Use trivial additive sub-structures, interprete multiplicatively.
- Use trivial multiplicative sub-structures, interprete additively.

Example

- trace(x) = 0 in $\mathbb{F}_{2^n}^*$
- squares in \mathbb{F}_q

How can we generalize trace(x) = 0?

GORDON-MILLS-WELCH (1962): Modify trace

How can we generalize trace(x) = 0?

► GORDON-MILLS-WELCH (1962): Modify trace Breakthrough: MASCHIETTI (1998)

 $\{x \in \mathbb{F}_{2^n}^* : \operatorname{trace}(x) = 0\} = \{y^2 + y : y \in \mathbb{F}_{2^n}^*, y \neq 1\}$

Difference set is the image set of $y^2 + y$ in $\mathbb{F}_{2^n}^*$.

How can we generalize trace(x) = 0?

► GORDON-MILLS-WELCH (1962): Modify trace Breakthrough: MASCHIETTI (1998)

 $\{x \in \mathbb{F}_{2^n}^* : \operatorname{trace}(x) = 0\} = \{y^2 + y : y \in \mathbb{F}_{2^n}^*, y \neq 1\}$

Difference set is the image set of $y^2 + y$ in $\mathbb{F}_{2^n}^*$.

Generalize this description:

Use 2-to-1 mappings.

Hyperovals

Maschietti used monomial hyperovals:

$$\left\{ \begin{pmatrix} 1\\ x\\ x^d \end{pmatrix} : x \in \mathbb{F}_{2^n} \right\} \cup \left\{ \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right\}$$

is a hyperoval in $PG(2, 2^n)$ if and only if $y^d + y$ is 2-to-1.

SIDELNIKOV

$\{x^2-1 : x \in \mathbb{F}_q\} \subseteq \mathbb{F}_q^*$

"almost" difference set in \mathbb{F}_q^* , yields sequences with optimal autocorrelation properties.

Cyclotomy: Unions of cosets of multiplicative subgroup.

TAO FENG, KOJI MOMIHARA, QING XIANG use small subgroups.

Generalizing Squares II

Squares are image set of a 2-to-1 mapping $f : \mathbb{F}_q \to \mathbb{F}_q!$ But in the additive group. Squares are image set of a 2-to-1 mapping $f : \mathbb{F}_q \to \mathbb{F}_q$! But in the additive group. Consider the graph

 $G_f = \{(x, f(x)) : x \in \mathbb{F}_q\}$

If G_f has "nice" properties with respect to addition, then perhaps also the image set.

Planar functions

 $f: \mathbb{F}_q \to \mathbb{F}_q$ is planar if f(x + a) - f(x) is a permutation for all $a \neq 0$. Example $f(x) = x^2$: $(x + a)^2 - x^2 = 2xa + a^2$

is a permutation on \mathbb{F}_q if q odd.

Hence: Squares are image sets of a class of planar functions!

Squares in \mathbb{F}_q are nice

The set of squares are a difference set: d - d' = x has $\frac{q-3}{4}$ solutions with $d, d' \in D$ for all x,

Squares in \mathbb{F}_q are nice

The set of squares are a difference set: d - d' = x has $\frac{q-3}{4}$ solutions with $d, d' \in D$ for all x, and

$$D \cup (-D) \cup \{\mathbf{0}\} = \mathbb{F}_q \qquad (*)$$

Squares in \mathbb{F}_q are nice

The set of squares are a difference set: d - d' = x has $\frac{q-3}{4}$ solutions with $d, d' \in D$ for all x, and

$$D \cup (-D) \cup \{0\} = \mathbb{F}_q \qquad (*)$$

Example (q = 7)

 $\{1,2,4\}\cup\{3,5,6\}\cup\{0\}=\mathbb{F}_7$

skew Hadamard difference sets

Hadamard difference set: without (*).

Are there others?

Brilliant idea due to DING and YUAN (2006):

Try other planar functions!

Brilliant idea due to DING and YUAN (2006):

Try other planar functions!

Exactly one gives new example:

 $f(x) = x^{10} + x^6 - x^2$

in \mathbb{F}_{3^n} Coulter, Matthews (1998).

Brilliant idea due to DING and YUAN (2006):

Try other planar functions!

Exactly one gives new example:

 $f(x) = x^{10} + x^6 - x^2$

in \mathbb{F}_{3^n} Coulter, Matthews (1998).

... still no theoretical proof that it is "new" in general

... rekindled interest in planar functions...

DING and YUAN also proved:

$$f(x) = x^{10} - x^6 - x^2$$

is planar and also gives skew Hadamard difference set.

Another look at Ding-Yuan

composition of a permutation polynomial and x^2 :

$$(x^5 \pm x^3 - x) \circ x^2$$

DICKSON of order 5.

DING, WANG, XIANG (2007)

 $q = 3^{2h+1}, \, \alpha = 3^{h+1}, \, u \in \mathbb{F}_q$

Use permutation polynomial

$$f(x) = x^{2\alpha+3} + (ux)^{\alpha} - u^2x$$

(which is not planar):

DING, WANG, XIANG (2007)

 $q=3^{2h+1}$, $lpha=3^{h+1}$, $u\in \mathbb{F}_q$

Use permutation polynomial

$$f(x) = x^{2\alpha+3} + (ux)^{\alpha} - u^2x$$

(which is not planar):

Image set of

 $f \circ x^2$

is skew Hadamard.

Inequivalence only in small cases proved.

DING, P., WANG (2013)

 $q = 3^m$, $m \not\equiv 0 \mod 3$, $u \in \mathbb{F}_q$

Use DICKSON of order 7:

$$f(x) = x^7 - ux^5 - u^2x^3 - u^3x.$$

(which is not planar).

Inequivalence only in small cases proved.

Proof I

Proof resembles Ding, Wang, Xiang.

Have to show $|\Psi(D)|^2 = \frac{3^m+1}{4}$ for additive characters Ψ .

Thanks to CHEN, SEHGAL, XIANG (1994), it is sufficient to show:

$$\Psi(D) \equiv \frac{3^{(m-1)/2} - 1}{2} \mod 3^{(m-1)/2}.$$

Proof II

Show

$$\mathcal{S}_eta = \sum_{z \in \mathbb{F}_q^*} \Psi_eta(f(z)) \chi(z) \equiv 0 mod 3^{(m-1)/2}$$

where χ is the quadratic character and

$$\Psi_{\beta}(z) = \zeta_3^{\operatorname{Trace}(\beta z)}.$$

This reduces to

$$\sum_{z \in \mathbb{F}_q^*} \zeta_3^{\operatorname{Trace}(z^7 + \eta z^5 + \gamma z)} \chi(z)$$

for some η and γ .

Proof III

$$\sum_{z \in \mathbb{F}_q^*} \zeta_3^{\operatorname{Trace}(z^7 + \eta z^5 + \gamma z)} \chi(z)$$

$$\zeta_3^{\text{Trace}(z)} = \frac{1}{q-1} \sum_{b=0}^{q-2} g(\omega^{-b}) \omega^b(z)$$

where

 $g(\omega^{-b})$

is Gauss sum with respect to multiplicative character ω^{-b} , where ω has order q - 1.

Proof IV

If $\gamma = 0$, we obtain

$$\mathcal{S}_eta=\pmrac{1}{q-1}\sum_{b=0}^{q-2}g(\omega^{-b})g(\omega^{-rac{q-1}{2}+5^{-1}7b}) imes$$
 root of unity

Then use STICKELBERGER and combinatorial arguments.

Case $\gamma \neq \mathbf{0}$ is similar.

... use polynomials ...

- to construct more Hadamard difference sets;
- to construct Sidelnikov sequences $x^2 1$;
- to construct more skew Hadamard difference sets.

Problem: Show inequivalence!

Mikhail Muzychuk has another construction in \mathbb{F}_{q^3} using orbits of vectors in \mathbb{F}_q^3 under the action of GL(3, q).

Mikhail Muzychuk has another construction in \mathbb{F}_{q^3} using orbits of vectors in \mathbb{F}_q^3 under the action of GL(3, q).

He can show inequivalence.

Mikhail Muzychuk has another construction in \mathbb{F}_{q^3} using orbits of vectors in \mathbb{F}_q^3 under the action of GL(3, q).

He can show inequivalence.

Inequivalence of some cyclotomic examples and squares has been shown by KOJI MOMIHARA.

- triple intersection numbers;
- rank of incidence matrix;
- automorphism groups.

- triple intersection numbers; MOMIHARA, computer
- rank of incidence matrix;
- automorphism groups.

- triple intersection numbers; MOMIHARA, computer
- rank of incidence matrix; always the same for skew H.d.s
- automorphism groups.

- triple intersection numbers; MOMIHARA, computer
- rank of incidence matrix; always the same for skew H.d.s
- ► automorphism groups. MUZYCHUK