Skew Hadamard Difference Sets

Alexander Pott (with Cunsheng Ding and Qi Wang)

Otto-von-Guericke-University Magdeburg

December 06, 2013

Difference set

Subset D of a group G such that every $g \in G, g \neq 0$, has the same number of difference representations $d-d^{\prime}$ with $d, d^{\prime} \in D$.
Example

$$
\{1,2,4\} \subseteq \mathbb{Z}_{7}
$$

Construction of difference sets

- Use trivial additive sub-structures, interprete multiplicatively.
- Use trivial multiplicative sub-structures, interprete additively.

Construction of difference sets

- Use trivial additive sub-structures, interprete multiplicatively.
- Use trivial multiplicative sub-structures, interprete additively.

Example

- $\operatorname{trace}(x)=0$ in $\mathbb{F}_{2^{n}}^{*}$
- squares in \mathbb{F}_{q}

How can we generalize trace $(x)=0$?

- Gordon-Mills-Welch (1962): Modify trace

How can we generalize trace $(x)=0$?

- Gordon-Mills-Welch (1962): Modify trace

Breakthrough: MASCHIETTI (1998)

$$
\left\{x \in \mathbb{F}_{2^{n}}^{*}: \operatorname{trace}(x)=0\right\}=\left\{y^{2}+y: y \in \mathbb{F}_{2^{n}}^{*}, y \neq 1\right\}
$$

Difference set is the image set of $y^{2}+y$ in $\mathbb{F}_{2^{n}}^{*}$.

How can we generalize trace $(x)=0$?

- Gordon-Mills-Welch (1962): Modify trace

Breakthrough: MASCHIETTI (1998)

$$
\left\{x \in \mathbb{F}_{2^{n}}^{*}: \operatorname{trace}(x)=0\right\}=\left\{y^{2}+y: y \in \mathbb{F}_{2^{n}}^{*}, y \neq 1\right\}
$$

Difference set is the image set of $y^{2}+y$ in $\mathbb{F}_{2^{n}}^{*}$.
Generalize this description:
Use 2-to-1 mappings.

Hyperovals

Maschietti used monomial hyperovals:

$$
\left\{\left(\begin{array}{c}
1 \\
x \\
x^{d}
\end{array}\right): x \in \mathbb{F}_{2^{n}}\right\} \cup\left\{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

is a hyperoval in $\mathrm{PG}\left(2,2^{n}\right)$ if and only if $y^{d}+y$ is 2-to-1.

SIDELNIKOV

$$
\left\{x^{2}-1: x \in \mathbb{F}_{q}\right\} \subseteq \mathbb{F}_{q}^{*}
$$

"almost" difference set in \mathbb{F}_{q}^{*}, yields sequences with optimal autocorrelation properties.

Generalizing Squares I

Cyclotomy: Unions of cosets of multiplicative subgroup.
Tao Feng, Koji Momihara, Qing Xiang use small subgroups.

Generalizing Squares II

Squares are image set of a 2-to-1 mapping $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$!
But in the additive group.

Generalizing Squares II

Squares are image set of a 2-to-1 mapping $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$!
But in the additive group.
Consider the graph

$$
G_{f}=\left\{(x, f(x)): x \in \mathbb{F}_{q}\right\}
$$

If G_{f} has "nice" properties with respect to addition, then perhaps also the image set.

Planar functions

$f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is planar if $f(x+a)-f(x)$ is a permutation for all $a \neq 0$.

Example
$f(x)=x^{2}$:

$$
(x+a)^{2}-x^{2}=2 x a+a^{2}
$$

is a permutation on \mathbb{F}_{q} if q odd.
Hence: Squares are image sets of a class of planar functions!

Squares in \mathbb{F}_{q} are nice

The set of squares are a difference set: $d-d^{\prime}=x$ has $\frac{q-3}{4}$ solutions with $d, d^{\prime} \in D$ for all x,

Squares in \mathbb{F}_{q} are nice

The set of squares are a difference set: $d-d^{\prime}=x$ has $\frac{q-3}{4}$ solutions with $d, d^{\prime} \in D$ for all x, and

$$
D \cup(-D) \cup\{0\}=\mathbb{F}_{q}
$$

Squares in \mathbb{F}_{q} are nice

The set of squares are a difference set: $d-d^{\prime}=x$ has $\frac{q-3}{4}$ solutions with $d, d^{\prime} \in D$ for all x, and

$$
\begin{equation*}
D \cup(-D) \cup\{0\}=\mathbb{F}_{q} \tag{*}
\end{equation*}
$$

Example ($q=7$)

$$
\{1,2,4\} \cup\{3,5,6\} \cup\{0\}=\mathbb{F}_{7}
$$

skew Hadamard difference sets
Hadamard difference set: without (*).

Are there others?

Brilliant idea due to DING and YUAN (2006):
Try other planar functions!

Are there others?

Brilliant idea due to DING and YUAN (2006):
Try other planar functions!
Exactly one gives new example:

$$
f(x)=x^{10}+x^{6}-x^{2}
$$

in $\mathbb{F}_{3^{n}}$ Coulter, Matthews (1998).

Are there others?

Brilliant idea due to DING and YUAN (2006):
Try other planar functions!
Exactly one gives new example:

$$
f(x)=x^{10}+x^{6}-x^{2}
$$

in $\mathbb{F}_{3^{n}}$ Coulter, Matthews (1998).
... still no theoretical proof that it is "new" in general

DING and YuAN also proved:

$$
f(x)=x^{10}-x^{6}-x^{2}
$$

is planar and also gives skew Hadamard difference set.

Another look at Ding-Yuan

composition of a permutation polynomial and x^{2} :

$$
\left(x^{5} \pm x^{3}-x\right) \circ x^{2}
$$

DICKSON of order 5.

Ding, Wang, Xiang (2007)

$$
q=3^{2 h+1}, \alpha=3^{h+1}, u \in \mathbb{F}_{q}
$$

Use permutation polynomial

$$
f(x)=x^{2 \alpha+3}+(u x)^{\alpha}-u^{2} x
$$

(which is not planar):

Ding, Wang, Xiang (2007)

$$
q=3^{2 h+1}, \alpha=3^{h+1}, u \in \mathbb{F}_{q}
$$

Use permutation polynomial

$$
f(x)=x^{2 \alpha+3}+(u x)^{\alpha}-u^{2} x
$$

(which is not planar):
Image set of

$$
f \circ x^{2}
$$

is skew Hadamard.
Inequivalence only in small cases proved.

Ding, P., Wang (2013)

$q=3^{m}, m \not \equiv 0 \bmod 3, u \in \mathbb{F}_{q}$
Use Dickson of order 7:

$$
f(x)=x^{7}-u x^{5}-u^{2} x^{3}-u^{3} x .
$$

(which is not planar).
Inequivalence only in small cases proved.

Proof I

Proof resembles Ding, Wang, Xiang.
Have to show $|\Psi(D)|^{2}=\frac{3^{m}+1}{4}$ for additive characters ψ.
Thanks to Chen, Sehgal, Xiang (1994), it is sufficient to show:

$$
\Psi(D) \equiv \frac{3^{(m-1) / 2}-1}{2} \bmod 3^{(m-1) / 2}
$$

Proof II

Show

$$
S_{\beta}=\sum_{z \in \mathbb{F}_{q}^{*}} \Psi_{\beta}(f(z)) \chi(z) \equiv 0 \bmod 3^{(m-1) / 2}
$$

where χ is the quadratic character and

$$
\Psi_{\beta}(z)=\zeta_{3}^{\operatorname{Trace}(\beta z)}
$$

This reduces to

$$
\sum_{z \in \mathbb{F}_{q}^{*}} \zeta_{3}^{\operatorname{Trace}\left(z^{7}+\eta z^{5}+\gamma z\right)} \chi(z)
$$

for some η and γ.

Proof III

$$
\sum_{z \in \mathbb{F}_{q}^{*}} \zeta_{3}^{\operatorname{Trace}\left(z^{7}+\eta z^{5}+\gamma z\right)} \chi(z)
$$

Use

$$
\zeta_{3}^{\operatorname{Trace}(z)}=\frac{1}{q-1} \sum_{b=0}^{q-2} g\left(\omega^{-b}\right) \omega^{b}(z)
$$

where

$$
g\left(\omega^{-b}\right)
$$

is Gauss sum with respect to multiplicative character ω^{-b}, where ω has order $q-1$.

Proof IV

If $\gamma=0$, we obtain

$$
S_{\beta}= \pm \frac{1}{q-1} \sum_{b=0}^{q-2} g\left(\omega^{-b}\right) g\left(\omega^{-\frac{q-1}{2}+5^{-1} 7 b}\right) \times \text { root of unity }
$$

Then use Stickelberger and combinatorial arguments.
Case $\gamma \neq 0$ is similar.

... use polynomials ...

- to construct more Hadamard difference sets;
- to construct Sidelnikov sequences $x^{2}-1$;
- to construct more skew Hadamard difference sets.

Problem: Show inequivalence!

MuZychuk (2010)

Mikhail Muzychuk has another construction in $\mathbb{F}_{q^{3}}$ using orbits of vectors in \mathbb{F}_{q}^{3} under the action of $\mathrm{GL}(3, q)$.

Muzychuk (2010)

Mikhail Muzychuk has another construction in $\mathbb{F}_{q^{3}}$ using orbits of vectors in \mathbb{F}_{q}^{3} under the action of $\mathrm{GL}(3, q)$.

He can show inequivalence.

Muzychuk (2010)

Mikhail Muzychuk has another construction in $\mathbb{F}_{q^{3}}$ using orbits of vectors in \mathbb{F}_{q}^{3} under the action of $\mathrm{GL}(3, q)$.

He can show inequivalence.
Inequivalence of some cyclotomic examples and squares has been shown by Koлı Momihara.

Inequivalence

Difference set corresponds to a design!

- triple intersection numbers;
- rank of incidence matrix;
- automorphism groups.

Inequivalence

Difference set corresponds to a design!

- triple intersection numbers; Momihara, computer
- rank of incidence matrix;
- automorphism groups.

Inequivalence

Difference set corresponds to a design!

- triple intersection numbers; MomiHaRA, computer
- rank of incidence matrix; always the same for skew H.d.s
- automorphism groups.

Inequivalence

Difference set corresponds to a design!

- triple intersection numbers; Momihara, computer
- rank of incidence matrix; always the same for skew H.d.s
- automorphism groups. Muzychuk

