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Difference set

Subset D of a group G such that every g € G, g # 0, has the
same number of difference representations d — @’ with
d,d e D.

Example

{1,2,4} C Z5.
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Construction of difference sets

» Use trivial additive sub-structures, interprete
multiplicatively.

» Use trivial multiplicative sub-structures, interprete
additively.
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Construction of difference sets

» Use trivial additive sub-structures, interprete
multiplicatively.

» Use trivial multiplicative sub-structures, interprete
additively.

Example

» trace(x) =0in F3,
» squares in Fq
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How can we generalize trace(x) = 07

» GORDON-MILLS-WELCH (1962): Modify trace
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How can we generalize trace(x) = 07

» GORDON-MILLS-WELCH (1962): Modify trace
Breakthrough: MASCHIETTI (1998)

{x €F3, : trace(x) =0} ={y2+y : y € Fhn,y #1}

Difference set is the image set of y2 + y in Fj,.
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How can we generalize trace(x) = 07

» GORDON-MILLS-WELCH (1962): Modify trace
Breakthrough: MASCHIETTI (1998)

{x €F3, : trace(x) =0} ={y2+y : y € Fhn,y #1}
Difference set is the image set of y2 + y in Fj,.

Generalize this description:

Use 2-to-1 mappings.
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Hyperovals
Maschietti used monomial hyperovals:

1 0 0
)
x4 0 1

is a hyperoval in PG(2,2") if and only if y9 + y is 2-to-1.
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SIDELNIKOV

2 . *
{x=1:xeFq} C Ty

“almost” difference set in g, yields sequences with optimal
autocorrelation properties.
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Generalizing Squares |

Cyclotomy: Unions of cosets of multiplicative subgroup.

TAO FENG, KoJI MOMIHARA, QING XIANG use small
subgroups.
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Generalizing Squares |l

Squares are image set of a 2-to-1 mapping f : Fq — Fq!

But in the additive group.
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Generalizing Squares |l

Squares are image set of a 2-to-1 mapping f : Fq — Fq!
But in the additive group.
Consider the graph

Gr = {(x, f(x)) : x € Fg}

If G has “nice” properties with respect to addition, then
perhaps also the image set.
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Planar functions

f:Fq — Fqis planarif f(x + a) — f(x) is a permutation for all
a+#0.

Example
f(x) = x2:
(x+a)?—x?=2xa+a

is a permutation on Iy if g odd.

Hence: Squares are image sets of a class of planar functions!
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Squares in Fg are nice

The set of squares are a difference set: d — d’ = x has C’%S
solutions with d, d’ € D for all x,
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Squares in F, are nice

The set of squares are a difference set: d — d’ = x has q%s
solutions with d, d’ € D for all x, and

Du(=D)u{0} =Fq (*)
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Squares in F, are nice

The set of squares are a difference set: d — d’ = x has C’T’S
solutions with d, d’ € D for all x, and

Du(=D)u{0} =Fq (*)

Example (g = 7)

{1,2,4} U {3,5,6} U {0} =7

skew Hadamard difference sets

Hadamard difference set: without ().
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Are there others?

Brilliant idea due to DING and YUAN (2006):

Try other planar functions!
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Are there others?

Brilliant idea due to DING and YUAN (2006):
Try other planar functions!

Exactly one gives new example:

f(x) = x10 4+ xb — x2

in Fi3n  COULTER, MATTHEWS (1998).

11/22



Are there others?

Brilliant idea due to DING and YUAN (2006):
Try other planar functions!

Exactly one gives new example:

f(x) = x10 4+ xb — x2

in Fi3n  COULTER, MATTHEWS (1998).

... still no theoretical proof that it is “new” in general
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... rekindled interest in planar functions...

DING and YUAN also proved:

f(x)=x10— xb — x2

is planar and also gives skew Hadamard difference set.
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Another look at Ding-Yuan

composition of a permutation polynomial and x?:

(x® 4+ x3 — x) o x2

DICKSON of order 5.
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DING, WANG, XIANG (2007)

q=3"1 0 =31 ucT,
Use permutation polynomial
f(x) = x223 4 (ux)™ — uPx

(which is not planar):
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DING, WANG, XIANG (2007)

q=3"1 0 =31 ucT,
Use permutation polynomial

f(x) = x2*T3 4 (ux)® — UPx
(which is not planar):

Image set of
fox

is skew Hadamard.

Inequivalence only in small cases proved.
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DING, P., WANG (2013)

q=3",m#0mod 3, u e Fy

Use DICKSON of order 7:

5 3 3

f(x) = x" — ux® — Px3 — Px.
(which is not planar).

Inequivalence only in small cases proved.
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Proof |

Proof resembles Ding, Wang, Xiang.
Have to show |V(D)|? = 3%1 for additive characters V.

Thanks to CHEN, SEHGAL, XIANG (1994), it is sufficient to
show:

(m=1)/2 _
V(D) = % mod 3(m-1)/2,
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Proof Il

Show

Ss= > Ws(f(2))x(2) = 0 mod 3("~1)/2

zeF*

where y is the quadratic character and
( ) C\;}I’race )
This reduces to

7 5
Z Trace z'4nz +'yz)X(Z)

zeF*

for some n and ~.
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Proof Il

Z Trace( Z7+7725+72)X(Z)
zeFy
Use
Trace(z) 1 2
G = 3 glw O)t(2)
q
b=0
where
9w

is Gauss sum with respect to multiplicative character w2,
where w has order g — 1.
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Proof IV

If v = 0, we obtain
1 2

Sp=+—0 Zg(w‘b)g(w‘qzi*‘r’f'w) x root of unity
b=0

Then use STICKELBERGER and combinatorial arguments.

Case v # 0 is similar.
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... use polynomials ...

» to construct more Hadamard difference sets;
» to construct Sidelnikov sequences x° — 1;
» to construct more skew Hadamard difference sets.

Problem: Show inequivalence!
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MuzyCHUK (2010)

Mikhail Muzychuk has another construction in I ;s using orbits
of vectors in IF;’ under the action of GL(3, g).
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Mikhail Muzychuk has another construction in I s using orbits
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He can show inequivalence.
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MuzYCHUK (2010)

Mikhail Muzychuk has another construction in I s using orbits
of vectors in IFC? under the action of GL(3, g).

He can show inequivalence.

Inequivalence of some cyclotomic examples and squares has
been shown by KoJI MOMIHARA.
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Inequivalence

Difference set corresponds to a design!

» triple intersection numbers;
» rank of incidence matrix;
» automorphism groups.
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Inequivalence

Difference set corresponds to a design!

» triple intersection numbers; MOMIHARA, computer
» rank of incidence matrix; always the same for skew H.d.s
» automorphism groups. MUzYCHUK
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