k-Nets in a Projective Plane over a Field

Nicola Pace¹ (ICMC, University of São Paulo) joint work with G.Korchmaros (Univ. della Basilicata, Italy) and G.Nagy (Univ. of Szeged, Hungary)

Special Days on Combinatorial Constructions using Finite Fields Linz, December 5–6, 2013

¹Supported by FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo), procs no. 12/03526-0.

Nicola Pace (ICMC, University of São Paulo) joint work with G k-nets

• 3-nets (in particular, 3-nets realizing groups)

- 3-nets (in particular, 3-nets realizing groups)
- Examples:
 - Algebraic 3-nets
 - Tetrahedron type 3-nets

- 3-nets (in particular, 3-nets realizing groups)
- Examples:
 - Algebraic 3-nets
 - Tetrahedron type 3-nets
- Classification of 3-nets realizing group

• 3-nets (in particular, 3-nets realizing groups)

(ロ) (部) (E) (E) (E)

2/34

- Examples:
 - Algebraic 3-nets
 - Tetrahedron type 3-nets
- Classification of 3-nets realizing group
- Some recent result on k-nets, $k \ge 4$.

Let ${\mathbb K}$ be a field

Points:

$$egin{aligned} P:(x,y,z)\in\mathbb{K} imes\mathbb{K} imes\mathbb{K}, & (x,y,z)
eq(0,0,0)\ & (x,y,z)\sim(kx,ky,kz), & ext{for} & k\in\mathbb{K}\setminus\{0\} \end{aligned}$$

Lines:

$$\ell: aX + bY + cZ = 0, \ a, b, c \in \mathbb{K}, \ (a, b, c) \neq (0, 0, 0)$$

Incidence Relation \mathcal{I} :

$$PI\ell \iff ax + by + cz = 0$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 めんの

A projective plane \mathcal{P} is a set of points and lines, together with an incidence relation between the points and the lines such that

- Any two distinct points are incident with a unique line.
- Any two distinct lines are incident with a unique point.
- There exists four points no three of which are incident with one line.

A projective plane \mathcal{P} is a set of points and lines, together with an incidence relation between the points and the lines such that

- Any two distinct points are incident with a unique line.
- Any two distinct lines are incident with a unique point.
- There exists four points no three of which are incident with one line.

Remark

 $PG(2, \mathbb{K})$ is a very particular projective plane.

イロト イポト イヨト イヨト

A projective plane \mathcal{P} is a set of points and lines, together with an incidence relation between the points and the lines such that

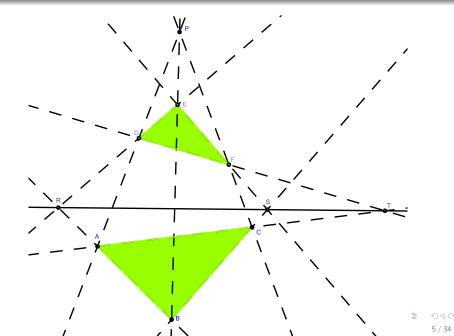
- Any two distinct points are incident with a unique line.
- Any two distinct lines are incident with a unique point.
- There exists four points no three of which are incident with one line.

Remark

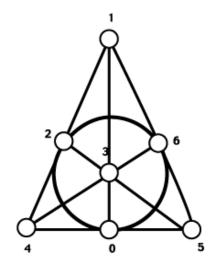
 $PG(2, \mathbb{K})$ is a very particular projective plane. ... with a very special property.

イロン イロン イヨン イヨン

Desargues' Theorem [the special property]

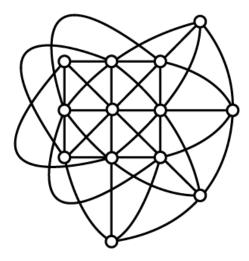


Fano Plane: $PG(2, F_2)$



(source: http://home.wlu.edu/~mcraea/)

・ロト ・回ト ・ヨト ・ヨト … ヨ



(source: http://home.wlu.edu/~mcraea/)

・ロト ・回ト ・ヨト ・ヨト … ヨ

A 3-net in $PG(2, \mathbb{K})$ is a pair $(\mathcal{A}, \mathcal{X})$ where \mathcal{A} is a finite set of lines partitioned into 3 subsets $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3$ and \mathcal{X} is a finite set of points subject to the following conditions:

- for every $i \neq j$ and every $\ell \in A_i, \ell' \in A_j$, we have $\ell \cap \ell' \in X$
- for every X ∈ X and every i (i ∈ {1,2,3}) there exists a unique line ℓ ∈ A_i passing through X.

A 3-net in $PG(2, \mathbb{K})$ is a pair $(\mathcal{A}, \mathcal{X})$ where \mathcal{A} is a finite set of lines partitioned into 3 subsets $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3$ and \mathcal{X} is a finite set of points subject to the following conditions:

- for every $i \neq j$ and every $\ell \in A_i, \ell' \in A_j$, we have $\ell \cap \ell' \in X$
- for every X ∈ X and every i (i ∈ {1,2,3}) there exists a unique line ℓ ∈ A_i passing through X.

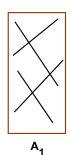
Note:

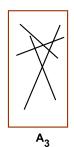
$$|\mathcal{A}_1| = |\mathcal{A}_2| = |\mathcal{A}_3| = n, \ |\mathcal{X}| = n^2$$

(*n* is the *order* of the 3-net)

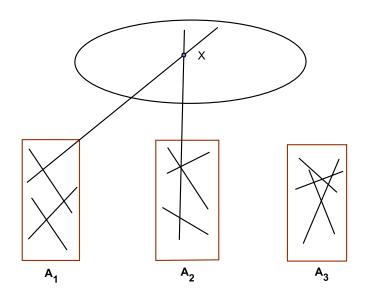
<ロ> (四) (四) (三) (三) (三) (三)

3-nets

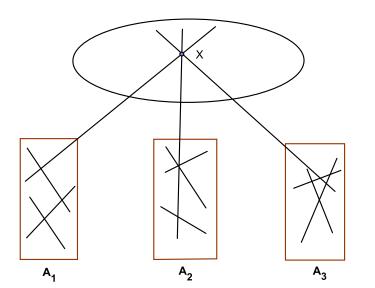




æ 9/34



≣ •ে ৭ ে 9 / 34



≣ •ে ৭ ে 9 / 34

$\mathsf{points} \leftrightarrow \mathsf{lines}$

lines \leftrightarrow points

・ロト ・四ト ・ヨト ・ヨー うへの

10/34

$\mathsf{points} \leftrightarrow \mathsf{lines}$

lines \leftrightarrow points

Definition

A 3-net in $PG(2, \mathbb{K})$ is a pair $(\mathcal{A}, \mathcal{X})$ where \mathcal{A} is a finite set of lines partitioned into 3 subsets $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3$ and \mathcal{X} is a finite set of points subject to the following conditions:

- for every $i \neq j$ and every $\ell \in A_i, \ell' \in A_j$, we have $\ell \cap \ell' \in X$
- for every X ∈ X and every i (i ∈ {1,2,3}) there exists a unique line ℓ ∈ A_i passing through X.

$points \leftrightarrow lines$

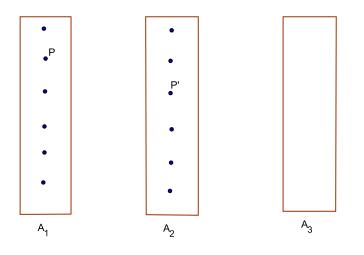
lines \leftrightarrow points

Definition

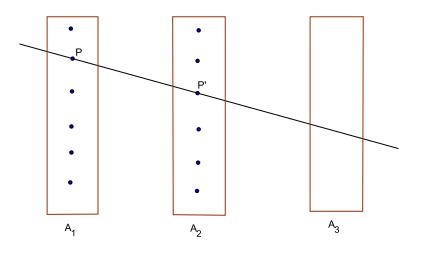
A (dual) 3-net in $PG(2, \mathbb{K})$ is a pair $(\mathcal{A}, \mathcal{X})$ where \mathcal{A} is a finite set of points partitioned into 3 subsets $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3$ and \mathcal{X} is a finite set of lines subject to the following conditions:

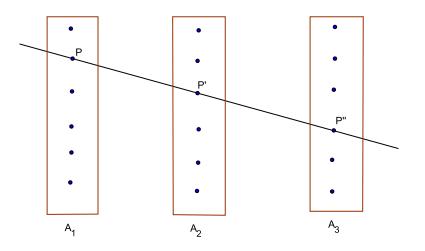
- for every $i \neq j$ and every $P \in A_i, P' \in A_j$, we have that the line $\overline{PP'} \in X$
- for every $\omega \in \mathcal{X}$ and every $i \ (i \in \{1, 2, 3\})$ there exists a unique point $P \in \mathcal{A}_i$ passing through ω .

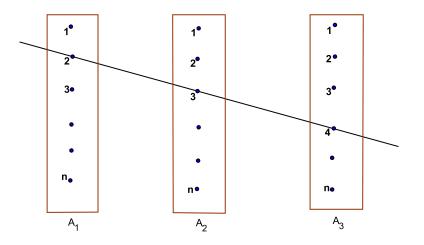
イロト イポト イヨト イヨト 二日



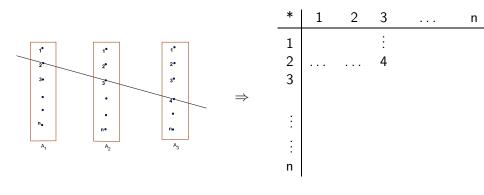
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □







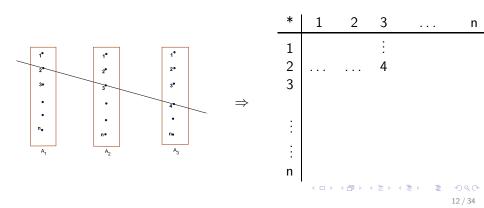
□ ▶ 《 @ ▶ 《 볼 ▶ 《 볼 ▶ 볼 ∽) ९... 12 / 34



Definition

A quasigroup (Q, *) is a set Q with a binary operation *, such that for each $a, b \in Q$, there exist unique elements x and y in Q such that:

$$a * x = b$$
, $y * a = b$.



A quasigroup (Q, *) is a set Q with a binary operation *, such that for each $a, b \in Q$, there exist unique elements x and y in Q such that:

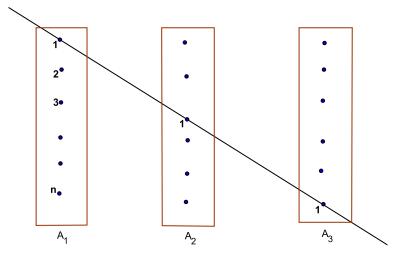
$$a * x = b, y * a = b.$$

Definition

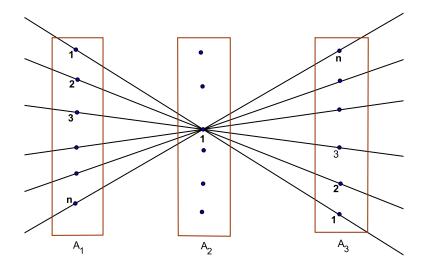
A loop is a quasigroup with an identity element e such that:

$$x * e = x = e * x$$

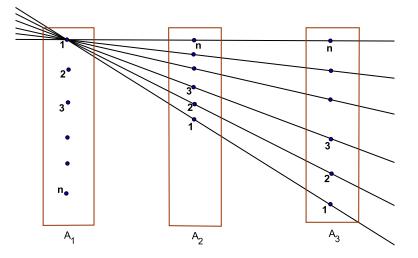
for all x in Q.



□ ▶ 《□ ▶ 《 철 ▶ 《 철 ▶ 《 철 ▶ 《 철 ▶ 《 전 ▲ 2 / 34



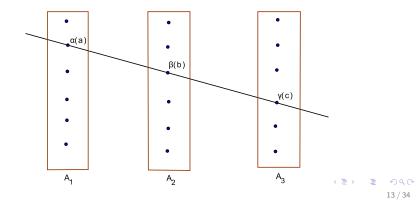
□ › < @ › < ≧ › < ≧ › ≧ · 의 < 은 12/34



1 ▶ 《□ ▶ 《 볼 ▶ 《 볼 ▶ 《 볼 ♪ ③ Q (~ 12 / 34

(dual) 3-nets realizing groups

A (dual) 3-net is said to realize a group (G, \cdot) when it is coordinatized by G: if A_1 , A_2 , A_3 are the classes, there exists a triple of bijective maps from G to (A_1, A_2, A_3) , say $\alpha : G \to A_1$, $\beta : G \to A_2$, $\gamma : G \to A_3$ such that $a \cdot b = c$ if and only if $\alpha(a)$, $\beta(b)$, $\gamma(c)$ are three collinear points, for any $a, b, c \in G$.



• Problem Classify dual 3-nets!

- Problem Classify dual 3-nets!
- Comment Easily stated but too a general problem

- Problem Classify dual 3-nets!
- Comment Easily stated but too a general problem
 - Question: Which groups can be realized?

- Problem Classify dual 3-nets!
- Comment Easily stated but too a general problem
 - Question: Which groups can be realized? It depends on the characteristic of the field K! If n ≥ 1, char(K) = 2 and K "large enough", the group (Z₂)ⁿ can be realized. If char(K) ≠ 2, the group (Z₂)³ cannot be realized (Yuzvinsky, 2003).

- Problem Classify dual 3-nets!
- Comment Easily stated but too a general problem
 - Question: Which groups can be realized? It depends on the characteristic of the field K! If n ≥ 1, char(K) = 2 and K "large enough", the group (Z₂)ⁿ can be realized. If char(K) ≠ 2, the group (Z₂)³ cannot be realized (Yuzvinsky, 2003).
- Some restrictions are needed. Our hypotheses are:
 - (i) The 3-net $(\Lambda_1, \Lambda_2, \Lambda_3)$ realizes a group G.
 - (ii) p > n or p = 0, where |G| = n and p is the characteristic of the field.

- Problem Classify dual 3-nets!
- Comment Easily stated but too a general problem
 - Question: Which groups can be realized? It depends on the characteristic of the field K! If n ≥ 1, char(K) = 2 and K "large enough", the group (Z₂)ⁿ can be realized. If char(K) ≠ 2, the group (Z₂)³ cannot be realized (Yuzvinsky, 2003).
- Some restrictions are needed. Our hypotheses are:
 - (i) The 3-net $(\Lambda_1, \Lambda_2, \Lambda_3)$ realizes a group G.
 - (ii) p > n or p = 0, where |G| = n and p is the characteristic of the field.

Definition

A dual 3-net (with $n \ge 4$) is said to be <u>algebraic</u> if all its points lie on a (uniquely determined) plane cubic \mathcal{F} , called the associated plane cubic.

Definition

A dual 3-net (with $n \ge 4$) is said to be <u>algebraic</u> if all its points lie on a (uniquely determined) plane cubic \mathcal{F} , called the associated plane cubic.

Algebraic dual 3-nets fall into subfamilies according as the plane cubic

- splits into three lines
- splits into an irreducible conic and a line
- is irreducible

イロン 不同 とくほう イロン

Every triangular dual 3-net realizes a cyclic group isomorphic to a multiplicative group of \mathbb{K} .

Every triangular dual 3-net realizes a cyclic group isomorphic to a multiplicative group of \mathbb{K} .

Proof: Assume the vertices of the triangle are

$$O=(0,0,1),\; X_{\infty}=(1,0,0),\; Y_{\infty}=(0,1,0).$$

Every triangular dual 3-net realizes a cyclic group isomorphic to a multiplicative group of \mathbb{K} .

Proof: Assume the vertices of the triangle are

$$O = (0,0,1), \ X_{\infty} = (1,0,0), \ Y_{\infty} = (0,1,0).$$

・ロン ・回と ・ヨン ・ ヨン

Every triangular dual 3-net realizes a cyclic group isomorphic to a multiplicative group of \mathbb{K} .

Proof: Assume the vertices of the triangle are

$$O=(0,0,1),\;X_{\infty}=(1,0,0),\;Y_{\infty}=(0,1,0).$$

 $P = (x_1, 0, 1), Q = (1, -x_2, 0), R = (0, x_3, 1)$, are collinear if and only if $x_1x_2 = x_3$.

Every triangular dual 3-net realizes a cyclic group isomorphic to a multiplicative group of \mathbb{K} .

Proof: Assume the vertices of the triangle are

$$O=(0,0,1),\;X_{\infty}=(1,0,0),\;Y_{\infty}=(0,1,0).$$

 $P = (x_1, 0, 1), Q = (1, -x_2, 0), R = (0, x_3, 1)$, are collinear if and only if $x_1x_2 = x_3$.

We can assume $1 \in L_1$, $1 \in L_2$, $1 \in L_3$.

Every triangular dual 3-net realizes a cyclic group isomorphic to a multiplicative group of \mathbb{K} .

Proof: Assume the vertices of the triangle are

$$O=(0,0,1),\;X_{\infty}=(1,0,0),\;Y_{\infty}=(0,1,0).$$

 $P = (x_1, 0, 1), Q = (1, -x_2, 0), R = (0, x_3, 1)$, are collinear if and only if $x_1x_2 = x_3$.

We can assume $1 \in L_1$, $1 \in L_2$, $1 \in L_3$. Thus, $L = L_1 = L_2 = L_3$ is a finite multiplicative subgroup of \mathbb{K} . In particular, L is cyclic.

Assume components of a dual 3-net (A_1, A_2, A_3) lie on three concurrent lines. These lines are assumed to be those with equations Y = 0, X = 0, X - Y = 0 respectively, so that the line of equation Z = 0 meets each component.

Assume components of a dual 3-net (A_1, A_2, A_3) lie on three concurrent lines. These lines are assumed to be those with equations Y = 0, X = 0, X - Y = 0 respectively, so that the line of equation Z = 0 meets each component.

The points in the components may be labeled such that $A_1 = \{(1, 0, x_1) | x_1 \in L_1\}, A_2 = \{(0, 1, x_2) | x_2 \in L_2\}, A_3 = \{(1, 1, x_3) | x_3 \in L_3\}, L_i \subseteq \mathbb{K}, 0 \in L_i.$

Assume components of a dual 3-net (A_1, A_2, A_3) lie on three concurrent lines. These lines are assumed to be those with equations Y = 0, X = 0, X - Y = 0 respectively, so that the line of equation Z = 0 meets each component.

The points in the components may be labeled such that $A_1 = \{(1, 0, x_1) | x_1 \in L_1\}, A_2 = \{(0, 1, x_2) | x_2 \in L_2\}, A_3 = \{(1, 1, x_3) | x_3 \in L_3\}, L_i \subseteq \mathbb{K}, 0 \in L_i.$

 $P = (1, 0, x_1)$, $Q = (0, 1, x_2)$, $R = (1, 1, x_3)$ are collinear if and only if $x_3 = x_1 + x_2$.

Assume components of a dual 3-net (A_1, A_2, A_3) lie on three concurrent lines. These lines are assumed to be those with equations Y = 0, X = 0, X - Y = 0 respectively, so that the line of equation Z = 0 meets each component.

The points in the components may be labeled such that $A_1 = \{(1, 0, x_1) | x_1 \in L_1\}, A_2 = \{(0, 1, x_2) | x_2 \in L_2\}, A_3 = \{(1, 1, x_3) | x_3 \in L_3\}, L_i \subseteq \mathbb{K}, 0 \in L_i.$

 $P = (1, 0, x_1)$, $Q = (0, 1, x_2)$, $R = (1, 1, x_3)$ are collinear if and only if $x_3 = x_1 + x_2$. Therefore, $L_1 = L_2 = L_3$ and (A_1, A_2, A_3) realizes a subgroup of the additive group of \mathbb{K} of order n.

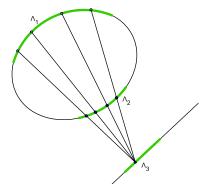
・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅつ

Assume components of a dual 3-net (A_1, A_2, A_3) lie on three concurrent lines. These lines are assumed to be those with equations Y = 0, X = 0, X - Y = 0 respectively, so that the line of equation Z = 0 meets each component.

The points in the components may be labeled such that $A_1 = \{(1, 0, x_1) | x_1 \in L_1\}, A_2 = \{(0, 1, x_2) | x_2 \in L_2\}, A_3 = \{(1, 1, x_3) | x_3 \in L_3\}, L_i \subseteq \mathbb{K}, 0 \in L_i.$

 $P = (1, 0, x_1), Q = (0, 1, x_2), R = (1, 1, x_3)$ are collinear if and only if $x_3 = x_1 + x_2$. Therefore, $L_1 = L_2 = L_3$ and (A_1, A_2, A_3) realizes a subgroup of the additive group of \mathbb{K} of order n. <u>Note:</u> n is a power of p, where p is the characteristic of the field \mathbb{K} \Rightarrow This case cannot occur if p > n.

Conic-Line Type

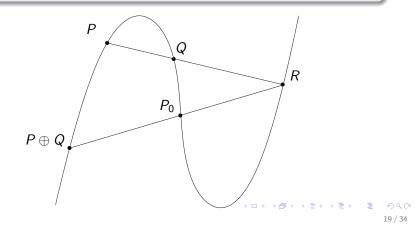


 $(\Lambda_1, \Lambda_2, \Lambda_3)$:= dual 3-net of order *n*; p > n or p = 0; **Proposition** (Blokhuis, Korchmaros, Mazzocca, 2011). If Λ_3 is contained in a line then $(\Lambda_1, \Lambda_2, \Lambda_3)$ is either triangular or conic-line type. The same holds whenever $\Lambda_1 \cup \Lambda_2$ is contained in a conic.

Operation on Cubics

Proposition

A non-singular plane cubic \mathcal{F} can be equipped with an additive group $(\mathcal{F}, +)$ on the set of all its points. If an inflection point P_0 of F is chosen to be the identity 0, then three distinct points $P, Q, R \in \mathcal{F}$ are collinear if and only if P + Q + R = 0.



Proposition

A non-singular plane cubic \mathcal{F} can be equipped with an additive group $(\mathcal{F}, +)$ on the set of all its points. If an inflection point P_0 of \mathcal{F} is chosen to be the identity 0, then three distinct points $P, Q, R \in \mathcal{F}$ are collinear if and only if P + Q + R = 0.

Proposition

Let \mathcal{F} be an irreducible singular plane cubic with its unique singular point U, and define the operation + on $\mathcal{F} \setminus \{U\}$ in exactly the same way as on a non–singular plane cubic. Then $(\mathcal{F}, +)$ is an abelian group isomorphic to the additive group of \mathbb{K} , or the multiplicative group of \mathbb{K} , according as U is a cusp or a node.

Let G be the abelian group associated to a non-singular cubic curve \mathcal{F} . Take a finite subgroup H of G whose index is greater than two, with $0 \in H$, and choose three pairwise distinct cosets of H in G, say

$$A = a + H$$
, $B = b + H$, $C = c + H$,

with $a, b, c \in G$ and collinear, i.e. a + b + c = 0. Then $A \cup B \cup C$ is a dual 3-net whose order is equal to the size of H.

(ロ) (四) (三) (三)

Can we realize non-abelian groups?

Can we realize non-abelian groups? What can we say about 3-nets realizing abelian groups? Can we realize non-abelian groups? YES

- Dihedral Group: $D_n = \langle x, y | x^2 = y^n = 1, y^x = y^{n-1} \rangle$, $n \ge 3$ (Pereira, Yuzvinsky, 2008; Stipins, 2007)
- Quaternions: $Q = \{\pm 1, \pm i, \pm j, \pm k\}$, if char(\mathbb{K}) $\neq 2$ (Urzua, 2007)

What can we say about 3-nets realizing abelian groups?

A few results and conjectures

Can we realize non-abelian groups? YES

- Dihedral Group: $D_n = \langle x, y | x^2 = y^n = 1, y^x = y^{n-1} \rangle$, $n \ge 3$ (Pereira, Yuzvinsky, 2008; Stipins, 2007)
- Quaternions: $Q = \{\pm 1, \pm i, \pm j, \pm k\}$, if char(\mathbb{K}) $\neq 2$ (Urzua, 2007)

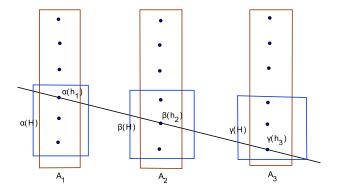
What can we say about 3-nets realizing abelian groups?

- A nice result: If an abelian group G contains an element of order ≥ 10 then every dual 3-net realizing G is algebraic. (Yuzvinsky, 2003)
- Conjecture (Yuzvinsky, 2003): Every 3-net realizing an abelian group is algebraic. (TRUE, Korchmaros, Nagy, Pace, 2012)

If $H \leq G$ and $\Gamma_1 = \alpha(H)$, $\Gamma_2 = \beta(H)$, $\Gamma_3 = \gamma(H)$, then $(\Gamma_1, \Gamma_2, \Gamma_3)$ is a dual 3-net realizing the group (H, \cdot)

Subnets realizing subgroups

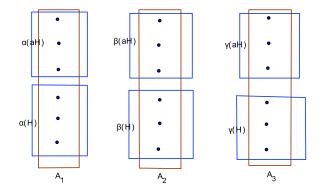
If $H \leq G$ and $\Gamma_1 = \alpha(H)$, $\Gamma_2 = \beta(H)$, $\Gamma_3 = \gamma(H)$, then $(\Gamma_1, \Gamma_2, \Gamma_3)$ is a dual 3-net realizing the group (H, \cdot)



◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ● ●

Subnets realizing subgroups

If $H \leq G$ and $\Gamma_1 = \alpha(H)$, $\Gamma_2 = \beta(H)$, $\Gamma_3 = \gamma(H)$, then $(\Gamma_1, \Gamma_2, \Gamma_3)$ is a dual 3-net realizing the group (H, \cdot)



▲ロ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ … 例 Q @

Lemma

Let (A_1, A_2, A_3) be a dual 3-net that realizes a group (G, \cdot) of order kn containing a normal subgroup (H, \cdot) of order n. For any two cosets g_1H and g_2H of H in G, let

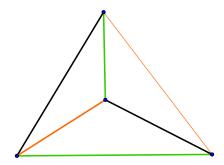
 $\Gamma_1 = \alpha(g_1H), \Gamma_2 = \beta(g_2H)$ and $\Gamma_3 = \gamma((g_1 \cdot g_2)H).$

Then $(\Gamma_1, \Gamma_2, \Gamma_3)$ is a 3-subnet of (A_1, A_2, A_3) which realizes H.

The dual 3-net (A_1, A_2, A_3) is said to be <u>tetrahedron-type</u> if its components lie on the sides of a non-degenerate quadrangle such that $A_i = \Gamma_i \cup \Delta_i$, $|\Gamma_i| = |\Delta_i| = n$, and Γ_i and Δ_i are contained in opposite sides, for i = 1, 2, 3.

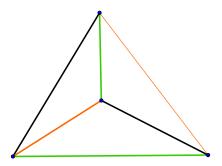
Tetrahedron: Dihedral Group

The dual 3-net (A_1, A_2, A_3) is said to be <u>tetrahedron-type</u> if its components lie on the sides of a non-degenerate quadrangle such that $A_i = \Gamma_i \cup \Delta_i$, $|\Gamma_i| = |\Delta_i| = n$, and Γ_i and Δ_i are contained in opposite sides, for i = 1, 2, 3.



Tetrahedron: Dihedral Group

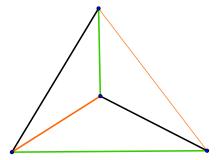
The dual 3-net (A_1, A_2, A_3) is said to be <u>tetrahedron-type</u> if its components lie on the sides of a non-degenerate quadrangle such that $A_i = \Gamma_i \cup \Delta_i$, $|\Gamma_i| = |\Delta_i| = n$, and Γ_i and Δ_i are contained in opposite sides, for i = 1, 2, 3.



Theorem

Any tetrahedron-type dual 3-net realizes a dihedral group.

Tetrahedron: Dihedral Group



Theorem

Any tetrahedron-type dual 3-net realizes a dihedral group.

Theorem (Korchmaros, Nagy, Pace)

Any dual 3-net that realizes a dihedral group is of tetrahedron-type.

500

Proposition

Any dual 3-net realizing an abelian group of order \leq 8 is algebraic.

Proposition

Any dual 3-net realizing an abelian group of order 9 is algebraic.

Proposition

If p = 0, no dual 3-net realizes Alt₄.

Reference:

G. Nagy, N. Pace, *On small 3-nets embedded in a projective plane over a field*, J. Combinatorial Theory, Series A, Volume 120, Issue 7, September 2013, Pages 1632–1641.

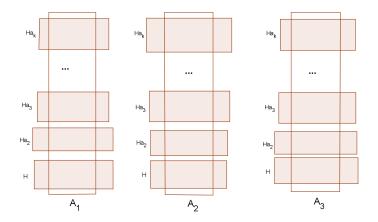
Dual 3-nets containing algebraic 3-subnets of order n with $n \ge 5$

Proposition

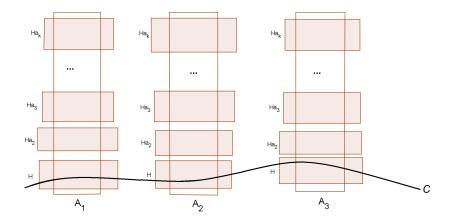
Let p = 0 or p > |G|. Let G be a group containing a proper abelian normal subgroup H of order $n \ge 5$. If a dual 3-net $(\Lambda_1, \Lambda_2, \Lambda_3)$ realizes G such that all its dual 3-subnets realizing H as a subgroup of G are algebraic, then one of the following holds.

- (i) $(\Lambda_1, \Lambda_2, \Lambda_3)$ is algebraic, and G is either cyclic or the direct product of two cyclic groups.
- (ii) $(\Lambda_1, \Lambda_2, \Lambda_3)$ is of tetrahedron type, and G is dihedral.

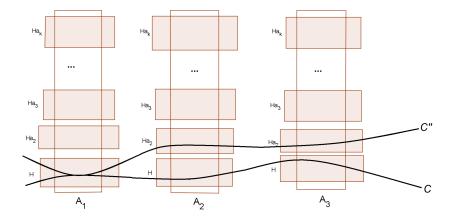
・ロト ・回ト ・ヨト ・ヨト

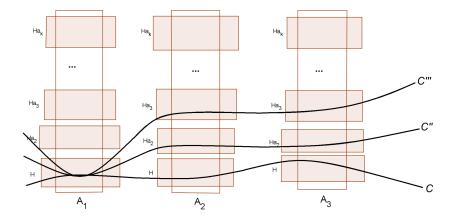


・ロト・四ト・日下・日下 切べる



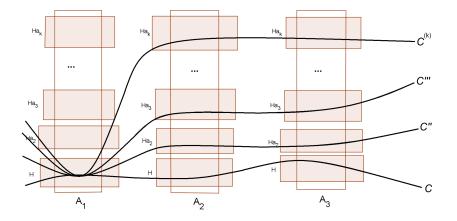
4 日 > 4 日 >





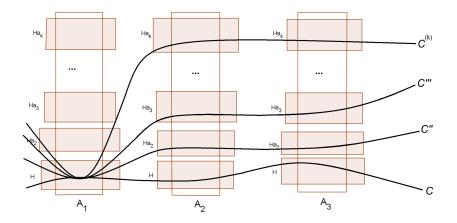
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ● ●

Algebraic Subnets: Irreducible Cubic Case



・ロ・・四・・ヨ・・ヨ・ うへで

Algebraic Subnets: Irreducible Cubic Case



See also (G.Korchmaros, N.P., Coset Intersection of Irreducible Plane Cubics, to appear in Des. Codes and Cryptography, 2013).

27 / 34

Theorem (Korchmaros, Nagy, Pace)

In the projective plane $PG(2, \mathbb{K})$ defined over an algebraically closed field \mathbb{K} of characteristic $p \ge 0$, let (A_1, A_2, A_3) be a dual 3-net of order $n \ge 4$ which realizes a group G. If either p = 0 or p > n then one of the following holds:

Infinite families:

- G is either cyclic or the direct product of two cyclic groups, and (A₁, A₂, A₃) is algebraic;
- (II) G is dihedral and (A_1, A_2, A_3) is of tetrahedron type.

イロト 不得 とくほと くほとう ほ

Theorem (Korchmaros, Nagy, Pace)

In the projective plane $PG(2, \mathbb{K})$ defined over an algebraically closed field \mathbb{K} of characteristic $p \ge 0$, let (A_1, A_2, A_3) be a dual 3-net of order $n \ge 4$ which realizes a group G. If either p = 0 or p > n then one of the following holds:

Infinite families:

 G is either cyclic or the direct product of two cyclic groups, and (A₁, A₂, A₃) is algebraic;

(II) G is dihedral and (A_1, A_2, A_3) is of tetrahedron type. Sporadic Cases:

(III) G is the quaternion group of order 8.

 $(IV)^*$ G is isomorphic to one of the following groups Alt₄, Sym₄, Alt₅.

イロト イポト イヨト イヨト

Theorem (Korchmaros, Nagy, Pace)

In the projective plane $PG(2, \mathbb{K})$ defined over an algebraically closed field \mathbb{K} of characteristic $p \ge 0$, let (A_1, A_2, A_3) be a dual 3-net of order $n \ge 4$ which realizes a group G. If either p = 0 or p > n then one of the following holds:

Infinite families:

- G is either cyclic or the direct product of two cyclic groups, and (A₁, A₂, A₃) is algebraic;
- (II) G is dihedral and (A_1, A_2, A_3) is of tetrahedron type. Sporadic Cases:
- (III) G is the quaternion group of order 8.
- $(\mathsf{IV})^*$ G is isomorphic to one of the following groups Alt₄, Sym₄, Alt₅.

* If p = 0 then (IV) does not occur.

<ロ> <同> <同> < 回> < 回>

If p > n,

We couldn't find any example for the cases: Alt₄, Sym₄, Alt₅.

We suspect that Alt_4 cannot be realized.

If p > n,

We couldn't find any example for the cases: Alt₄, Sym₄, Alt₅.

We suspect that Alt_4 cannot be realized.

Reference:

G.Korchmaros, G.Nagy, N.Pace, 3-nets realizing a group in a projective plane, to appear in J. Algebraic Combinatorics, 2013.

Definition

Let k be an integer, $k \ge 3$. A k-net in $PG(2, \mathbb{K})$ is a pair $(\mathcal{A}, \mathcal{X})$ where \mathcal{A} is a finite set of lines partitioned into k subsets $\mathcal{A} = \bigcup_{i=1}^{k} \mathcal{A}_i$ and \mathcal{X} is a finite set of points subject to the following conditions:

1 for every $i \neq j$ and every $\ell \in A_i, \ell' \in A_j$, we have $\ell \cap \ell' \in \mathcal{X}$

If or every X ∈ X and every i (i = 1,..., k) there exists a unique line ℓ ∈ A_i passing through X.

Definition

Let k be an integer, $k \ge 3$. A k-net in $PG(2, \mathbb{K})$ is a pair $(\mathcal{A}, \mathcal{X})$ where \mathcal{A} is a finite set of lines partitioned into k subsets $\mathcal{A} = \bigcup_{i=1}^{k} \mathcal{A}_i$ and \mathcal{X} is a finite set of points subject to the following conditions:

- **1** for every $i \neq j$ and every $\ell \in A_i, \ell' \in A_j$, we have $\ell \cap \ell' \in \mathcal{X}$
- If or every X ∈ X and every i (i = 1,..., k) there exists a unique line ℓ ∈ A_i passing through X.

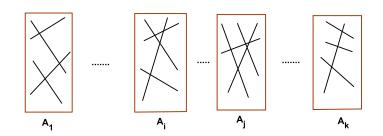
Note:

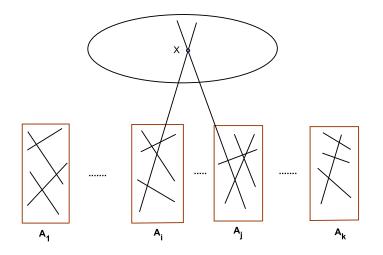
$$|\mathcal{A}_1| = |\mathcal{A}_2| = \ldots = |\mathcal{A}_k| = n, \ |\mathcal{X}| = n^2$$

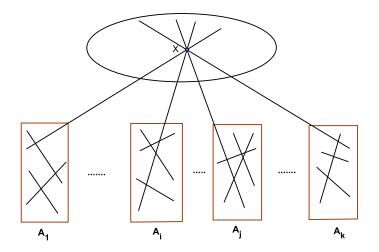
(*n* is the *order* of the k-net)

(ロ) (部) (E) (E) (E)

k-nets







・ロト・西・・ヨト・ヨー りゃぐ

31/34

In the complex plane, we know only one 4-net up to projectivity.

In the complex plane, we know only one 4-net up to projectivity.

This 4-net, called the <u>classical 4-net</u>, has order 3 and it exists since $PG(2, \mathbb{C})$ contains an affine subplane $AG(2, \mathbb{F}_3)$ of order 3, unique up to projectivity, and the four parallel line classes of $AG(2, \mathbb{F}_3)$ are the components of a 4-net in $PG(2, \mathbb{C})$.

In the complex plane, we know only one 4-net up to projectivity.

This 4-net, called the <u>classical 4-net</u>, has order 3 and it exists since $PG(2, \mathbb{C})$ contains an affine subplane $AG(2, \mathbb{F}_3)$ of order 3, unique up to projectivity, and the four parallel line classes of $AG(2, \mathbb{F}_3)$ are the components of a 4-net in $PG(2, \mathbb{C})$.

By a result of Stipins, no *k*-net with $k \ge 5$ exists in $PG(2, \mathbb{C})$. Stipins' result holds true in $PG(2, \mathbb{K})$ provided that \mathbb{K} has zero characteristic.

References:

J. Stipins, Old and new examples of k-nets in P2, math.AG/0701046.

S. Yuzvinsky, A new bound on the number of special fibers in a pencil of curves, Proc. Amer. Math. Soc. 137 (2009), 1641–1648.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

Let \mathbb{K} be a field of characteristic p > 0. In this case, $PG(2, \mathbb{K})$ contains an affine subplane $AG(2, F_p)$ of order p from which k-nets for $3 \le k \le p+1$ arise taking k parallel line classes as components. Similarly, if $PG(2, \mathbb{K})$ contains an affine subplane $AG(2, F_{p^h})$, then k-nets of order p^h for $3 \le k \le p^h + 1$ exist in $PG(2, \mathbb{K})$.

Let \mathbb{K} be a field of characteristic p > 0. In this case, $PG(2, \mathbb{K})$ contains an affine subplane $AG(2, F_p)$ of order p from which k-nets for $3 \le k \le p+1$ arise taking k parallel line classes as components. Similarly, if $PG(2, \mathbb{K})$ contains an affine subplane $AG(2, F_{p^h})$, then k-nets of order p^h for $3 \le k \le p^h + 1$ exist in $PG(2, \mathbb{K})$.

No 5-net of order n with p > n is known to exist!

Let \mathbb{K} be a field of characteristic p > 0. In this case, $PG(2, \mathbb{K})$ contains an affine subplane $AG(2, F_p)$ of order p from which k-nets for $3 \le k \le p+1$ arise taking k parallel line classes as components. Similarly, if $PG(2, \mathbb{K})$ contains an affine subplane $AG(2, F_{p^h})$, then k-nets of order p^h for $3 \le k \le p^h + 1$ exist in $PG(2, \mathbb{K})$.

No 5-net of order *n* with p > n is known to exist! This suggests that for sufficiently large *p* compared with *n*, Stipins' result remains valid in $PG(2, \mathbb{K})$.

Let \mathbb{K} be a field of characteristic p > 0. In this case, $PG(2, \mathbb{K})$ contains an affine subplane $AG(2, F_p)$ of order p from which k-nets for $3 \le k \le p+1$ arise taking k parallel line classes as components. Similarly, if $PG(2, \mathbb{K})$ contains an affine subplane $AG(2, F_{p^h})$, then k-nets of order p^h for $3 \le k \le p^h + 1$ exist in $PG(2, \mathbb{K})$.

No 5-net of order *n* with p > n is known to exist! This suggests that for sufficiently large *p* compared with *n*, Stipins' result remains valid in $PG(2, \mathbb{K})$.

Theorem (Korchmaros, Nagy, Pace)

If $p > 3^{\varphi(n^2-n)}$, where φ is the classical Euler φ function, then $k \leq 4$. Moreover, This approach also works in zero characteristic and provides a new proof for Stipins' result.

<u>Reference:</u> G. Korchmaros, G. Nagy, N. Pace, k-nets embedded in a projective plane over a field (preprint arXiv:1306.5779)

Thank you!

・ロト ・回 ト ・ヨト ・ヨト … ヨ

34 / 34