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Examples:

Algebraic 3-nets
Tetrahedron type 3-nets

Classification of 3-nets realizing group

Some recent result on k-nets, k ≥ 4.
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Projective Plane PG(2,K)

Let K be a field

Points:

P : (x , y , z) ∈ K×K×K, (x , y , z) 6= (0, 0, 0)

(x , y , z) ∼ (kx , ky , kz), for k ∈ K \ {0}

Lines:

ℓ : aX + bY + cZ = 0, a, b, c ∈ K, (a, b, c) 6= (0, 0, 0)

Incidence Relation I:

PIℓ ⇐⇒ ax + by + cz = 0
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Projective Planes

Definition

A projective plane P is a set of points and lines, together with an
incidence relation between the points and the lines such that

1 Any two distinct points are incident with a unique line.

2 Any two distinct lines are incident with a unique point.

3 There exists four points no three of which are incident with
one line.
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Desargues’ Theorem [the special property]
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Fano Plane: PG(2,F2)

(source: http://home.wlu.edu/∼mcraea/)
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PG(2,F3)

(source: http://home.wlu.edu/∼mcraea/)
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3-nets

Definition

A 3-net in PG (2,K) is a pair (A,X ) where A is a finite set of lines
partitioned into 3 subsets A = A1 ∪A2 ∪ A3 and X is a finite set
of points subject to the following conditions:

for every i 6= j and every ℓ ∈ Ai , ℓ
′ ∈ Aj , we have ℓ ∩ ℓ′ ∈ X

for every X ∈ X and every i (i ∈ {1, 2, 3}) there exists a
unique line ℓ ∈ Ai passing through X .
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partitioned into 3 subsets A = A1 ∪A2 ∪ A3 and X is a finite set
of points subject to the following conditions:

for every i 6= j and every ℓ ∈ Ai , ℓ
′ ∈ Aj , we have ℓ ∩ ℓ′ ∈ X

for every X ∈ X and every i (i ∈ {1, 2, 3}) there exists a
unique line ℓ ∈ Ai passing through X .

Note:
|A1| = |A2| = |A3| = n, |X | = n2

(n is the order of the 3-net)
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(dual) 3-nets

points ↔ lines lines ↔ points

Definition

A (dual) 3-net in PG (2,K) is a pair (A,X ) where A is a finite set
of points partitioned into 3 subsets A = A1 ∪ A2 ∪ A3 and X is a
finite set of lines subject to the following conditions:

1 for every i 6= j and every P ∈ Ai ,P
′ ∈ Aj , we have that the

line PP ′ ∈ X

2 for every ω ∈ X and every i (i ∈ {1, 2, 3}) there exists a
unique point P ∈ Ai passing through ω.
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Definition

A quasigroup (Q, ∗) is a set Q with a binary operation ∗, such that
for each a, b ∈ Q, there exist unique elements x and y in Q such
that:

a ∗ x = b, y ∗ a = b.
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(dual) 3-nets, quasigroups, loops

Definition

A quasigroup (Q, ∗) is a set Q with a binary operation ∗, such that
for each a, b ∈ Q, there exist unique elements x and y in Q such
that:

a ∗ x = b, y ∗ a = b.

Definition

A loop is a quasigroup with an identity element e such that:

x ∗ e = x = e ∗ x

for all x in Q.
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(dual) 3-nets realizing groups

A (dual) 3-net is said to realize a group (G , ·) when it is
coordinatized by G: if A1, A2, A3 are the classes, there exists a
triple of bijective maps from G to (A1,A2,A3), say α : G → A1,
β : G → A2, γ : G → A3 such that a · b = c if and only if α(a),
β(b), γ(c) are three collinear points, for any a, b, c ∈ G .
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Algebraic dual 3-nets

Definition

A dual 3-net (with n ≥ 4) is said to be algebraic if all its points lie
on a (uniquely determined) plane cubic F , called the associated
plane cubic.
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Algebraic dual 3-nets

Definition

A dual 3-net (with n ≥ 4) is said to be algebraic if all its points lie
on a (uniquely determined) plane cubic F , called the associated
plane cubic.

Algebraic dual 3-nets fall into subfamilies according as the plane
cubic

splits into three lines

splits into an irreducible conic and a line

is irreducible

15 / 34



Triangular dual 3-nets

Theorem

Every triangular dual 3-net realizes a cyclic group isomorphic to a
multiplicative group of K.

16 / 34



Triangular dual 3-nets

Theorem

Every triangular dual 3-net realizes a cyclic group isomorphic to a
multiplicative group of K.

Proof: Assume the vertices of the triangle are

O = (0, 0, 1), X∞ = (1, 0, 0), Y∞ = (0, 1, 0).

16 / 34



Triangular dual 3-nets

Theorem

Every triangular dual 3-net realizes a cyclic group isomorphic to a
multiplicative group of K.

Proof: Assume the vertices of the triangle are

O = (0, 0, 1), X∞ = (1, 0, 0), Y∞ = (0, 1, 0).

A1 = {(x1, 0, 1)|x1 ∈ L1}, A2 = {(1,−x2, 0)|x2 ∈ L2},
A3 = {(0, x3, 1)|x3 ∈ L3}, where Li ⊆ K and |Li | = n.

16 / 34



Triangular dual 3-nets

Theorem

Every triangular dual 3-net realizes a cyclic group isomorphic to a
multiplicative group of K.

Proof: Assume the vertices of the triangle are

O = (0, 0, 1), X∞ = (1, 0, 0), Y∞ = (0, 1, 0).

A1 = {(x1, 0, 1)|x1 ∈ L1}, A2 = {(1,−x2, 0)|x2 ∈ L2},
A3 = {(0, x3, 1)|x3 ∈ L3}, where Li ⊆ K and |Li | = n.

P = (x1, 0, 1), Q = (1,−x2, 0), R = (0, x3, 1), are collinear if and
only if x1x2 = x3.

16 / 34



Triangular dual 3-nets

Theorem

Every triangular dual 3-net realizes a cyclic group isomorphic to a
multiplicative group of K.

Proof: Assume the vertices of the triangle are

O = (0, 0, 1), X∞ = (1, 0, 0), Y∞ = (0, 1, 0).

A1 = {(x1, 0, 1)|x1 ∈ L1}, A2 = {(1,−x2, 0)|x2 ∈ L2},
A3 = {(0, x3, 1)|x3 ∈ L3}, where Li ⊆ K and |Li | = n.

P = (x1, 0, 1), Q = (1,−x2, 0), R = (0, x3, 1), are collinear if and
only if x1x2 = x3.

We can assume 1 ∈ L1, 1 ∈ L2, 1 ∈ L3.

16 / 34



Triangular dual 3-nets

Theorem

Every triangular dual 3-net realizes a cyclic group isomorphic to a
multiplicative group of K.

Proof: Assume the vertices of the triangle are

O = (0, 0, 1), X∞ = (1, 0, 0), Y∞ = (0, 1, 0).

A1 = {(x1, 0, 1)|x1 ∈ L1}, A2 = {(1,−x2, 0)|x2 ∈ L2},
A3 = {(0, x3, 1)|x3 ∈ L3}, where Li ⊆ K and |Li | = n.

P = (x1, 0, 1), Q = (1,−x2, 0), R = (0, x3, 1), are collinear if and
only if x1x2 = x3.

We can assume 1 ∈ L1, 1 ∈ L2, 1 ∈ L3. Thus, L = L1 = L2 = L3 is
a finite multiplicative subgroup of K. In particular, L is cyclic.
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Pencil Type

Assume components of a dual 3-net (A1,A2,A3) lie on three
concurrent lines. These lines are assumed to be those with
equations Y = 0, X = 0, X − Y = 0 respectively, so that the line
of equation Z = 0 meets each component.
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Pencil Type

Assume components of a dual 3-net (A1,A2,A3) lie on three
concurrent lines. These lines are assumed to be those with
equations Y = 0, X = 0, X − Y = 0 respectively, so that the line
of equation Z = 0 meets each component.

The points in the components may be labeled such that
A1 = {(1, 0, x1)|x1 ∈ L1}, A2 = {(0, 1, x2)|x2 ∈ L2},
A3 = {(1, 1, x3)|x3 ∈ L3}, Li ⊆ K, 0 ∈ Li .

P = (1, 0, x1), Q = (0, 1, x2), R = (1, 1, x3) are collinear if and
only if x3 = x1 + x2. Therefore, L1 = L2 = L3 and (A1,A2,A3)
realizes a subgroup of the additive group of K of order n.
Note: n is a power of p, where p is the characteristic of the field K

⇒ This case cannot occur if p > n.
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Conic-Line Type

(Λ1,Λ2,Λ3):= dual 3-net of order n; p > n or p = 0;
Proposition (Blokhuis, Korchmaros, Mazzocca, 2011). If Λ3 is
contained in a line then (Λ1,Λ2,Λ3) is either triangular or conic-line
type. The same holds whenever Λ1 ∪ Λ2 is contained in a conic.
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Operation on Cubics

Proposition

A non-singular plane cubic F can be equipped with an additive
group (F ,+) on the set of all its points. If an inflection point P0

of F is chosen to be the identity 0, then three distinct points
P ,Q,R ∈ F are collinear if and only if P + Q + R = 0.

P

Q

R

P0

P ⊕ Q

r

r

r

r

r

Figure: Abelian group law on an elliptic curve
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Operation on Cubics

Proposition

A non-singular plane cubic F can be equipped with an additive
group (F ,+) on the set of all its points. If an inflection point P0

of F is chosen to be the identity 0, then three distinct points
P ,Q,R ∈ F are collinear if and only if P + Q + R = 0.

Proposition

Let F be an irreducible singular plane cubic with its unique
singular point U, and define the operation + on F \ {U} in exactly
the same way as on a non–singular plane cubic. Then (F ,+) is an
abelian group isomorphic to the additive group of K, or the
multiplicative group of K, according as U is a cusp or a node.
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Examples of dual 3-nets from cubic curves

Theorem

Let G be the abelian group associated to a non-singular cubic
curve F . Take a finite subgroup H of G whose index is greater
than two, with 0 ∈ H, and choose three pairwise distinct cosets of
H in G, say

A = a + H, B = b + H, C = c + H,

with a, b, c ∈ G and collinear, i.e. a + b + c = 0. Then A ∪ B ∪ C
is a dual 3-net whose order is equal to the size of H.
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Dihedral Group: Dn =
〈

x , y |x2 = yn = 1, y x = yn−1
〉

, n ≥ 3
(Pereira, Yuzvinsky, 2008; Stipins, 2007)

Quaternions: Q = {±1,±i ,±j ,±k}, if char(K) 6= 2 (Urzua,
2007)
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Dihedral Group: Dn =
〈

x , y |x2 = yn = 1, y x = yn−1
〉

, n ≥ 3
(Pereira, Yuzvinsky, 2008; Stipins, 2007)

Quaternions: Q = {±1,±i ,±j ,±k}, if char(K) 6= 2 (Urzua,
2007)

What can we say about 3-nets realizing abelian groups?

A nice result: If an abelian group G contains an element of
order ≥ 10 then every dual 3-net realizing G is algebraic.
(Yuzvinsky, 2003)

Conjecture (Yuzvinsky, 2003): Every 3-net realizing an abelian
group is algebraic. (TRUE, Korchmaros, Nagy, Pace, 2012)
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Subnets realizing subgroups

If H ≤ G and Γ1 = α(H), Γ2 = β(H), Γ3 = γ(H),
then (Γ1, Γ2, Γ3) is a dual 3-net realizing the group (H, ·)
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Subnets realizing subgroups

If H ≤ G and Γ1 = α(H), Γ2 = β(H), Γ3 = γ(H),
then (Γ1, Γ2, Γ3) is a dual 3-net realizing the group (H, ·)
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Subnets realizing subgroups

Lemma

Let (A1,A2,A3) be a dual 3-net that realizes a group (G , ·) of
order kn containing a normal subgroup (H, ·) of order n. For any
two cosets g1H and g2H of H in G, let

Γ1 = α(g1H), Γ2 = β(g2H) and Γ3 = γ((g1 · g2)H).

Then (Γ1, Γ2, Γ3) is a 3-subnet of (A1,A2,A3) which realizes H.
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Tetrahedron: Dihedral Group

The dual 3-net (A1,A2,A3) is said to be tetrahedron-type if its
components lie on the sides of a non-degenerate quadrangle such
that Ai = Γi ∪∆i , |Γi | = |∆i | = n, and Γi and ∆i are contained in
opposite sides, for i = 1, 2, 3.
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Tetrahedron: Dihedral Group

The dual 3-net (A1,A2,A3) is said to be tetrahedron-type if its
components lie on the sides of a non-degenerate quadrangle such
that Ai = Γi ∪∆i , |Γi | = |∆i | = n, and Γi and ∆i are contained in
opposite sides, for i = 1, 2, 3.

Theorem

Any tetrahedron-type dual 3-net realizes a dihedral group.
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Tetrahedron: Dihedral Group

Theorem

Any tetrahedron-type dual 3-net realizes a dihedral group.

Theorem (Korchmaros, Nagy, Pace)

Any dual 3-net that realizes a dihedral group is of tetrahedron-type.
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Classification of low order dual 3-nets

Proposition

Any dual 3–net realizing an abelian group of order ≤ 8 is algebraic.

Proposition

Any dual 3–net realizing an abelian group of order 9 is algebraic.

Proposition

If p = 0, no dual 3–net realizes Alt4.

Reference:
G. Nagy, N. Pace, On small 3-nets embedded in a projective plane
over a field, J. Combinatorial Theory, Series A, Volume 120, Issue
7, September 2013, Pages 1632–1641.
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Dual 3-nets containing algebraic 3-subnets of order n with
n ≥ 5

Proposition

Let p = 0 or p > |G |. Let G be a group containing a proper
abelian normal subgroup H of order n ≥ 5. If a dual 3-net
(Λ1,Λ2,Λ3) realizes G such that all its dual 3-subnets realizing H
as a subgroup of G are algebraic, then one of the following holds.

(i) (Λ1,Λ2,Λ3) is algebraic, and G is either cyclic or the direct
product of two cyclic groups.

(ii) (Λ1,Λ2,Λ3) is of tetrahedron type, and G is dihedral.
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Algebraic Subnets: Irreducible Cubic Case
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Algebraic Subnets: Irreducible Cubic Case

See also (G.Korchmaros, N.P., Coset Intersection of Irreducible
Plane Cubics, to appear in Des. Codes and Cryptography, 2013).
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Classification

Theorem (Korchmaros, Nagy, Pace)

In the projective plane PG (2,K) defined over an algebraically
closed field K of characteristic p ≥ 0, let (A1,A2,A3) be a dual
3-net of order n ≥ 4 which realizes a group G. If either p = 0 or
p > n then one of the following holds:

Infinite families:

(I) G is either cyclic or the direct product of two cyclic groups,
and (A1,A2,A3) is algebraic;

(II) G is dihedral and (A1,A2,A3) is of tetrahedron type.
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Classification

Theorem (Korchmaros, Nagy, Pace)

In the projective plane PG (2,K) defined over an algebraically
closed field K of characteristic p ≥ 0, let (A1,A2,A3) be a dual
3-net of order n ≥ 4 which realizes a group G. If either p = 0 or
p > n then one of the following holds:

Infinite families:

(I) G is either cyclic or the direct product of two cyclic groups,
and (A1,A2,A3) is algebraic;

(II) G is dihedral and (A1,A2,A3) is of tetrahedron type.

Sporadic Cases:

(III) G is the quaternion group of order 8.

(IV)∗ G is isomorphic to one of the following groups Alt4, Sym4,
Alt5.

∗ If p = 0 then (IV) does not occur.
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Open questions:

If p > n,

We couldn’t find any example for the cases: Alt4,Sym4,Alt5.

We suspect that Alt4 cannot be realized.
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Open questions:

If p > n,

We couldn’t find any example for the cases: Alt4,Sym4,Alt5.

We suspect that Alt4 cannot be realized.

Reference:
G.Korchmaros, G.Nagy, N.Pace, 3-nets realizing a group in a
projective plane, to appear in J. Algebraic Combinatorics, 2013.
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k-nets

Definition

Let k be an integer, k ≥ 3. A k-net in PG (2,K) is a pair (A,X )
where A is a finite set of lines partitioned into k subsets
A =

⋃k
i=1Ai and X is a finite set of points subject to the

following conditions:

1 for every i 6= j and every ℓ ∈ Ai , ℓ
′ ∈ Aj , we have ℓ ∩ ℓ′ ∈ X

2 for every X ∈ X and every i (i = 1, . . . , k) there exists a
unique line ℓ ∈ Ai passing through X .
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where A is a finite set of lines partitioned into k subsets
A =

⋃k
i=1Ai and X is a finite set of points subject to the

following conditions:

1 for every i 6= j and every ℓ ∈ Ai , ℓ
′ ∈ Aj , we have ℓ ∩ ℓ′ ∈ X

2 for every X ∈ X and every i (i = 1, . . . , k) there exists a
unique line ℓ ∈ Ai passing through X .

Note:
|A1| = |A2| = . . . = |Ak | = n, |X | = n2

(n is the order of the k-net)
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k-nets in characteristic zero

In the complex plane, we know only one 4-net up to projectivity.
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In the complex plane, we know only one 4-net up to projectivity.

This 4-net, called the classical 4-net, has order 3 and it exists since
PG (2,C) contains an affine subplane AG (2,F3) of order 3, unique
up to projectivity, and the four parallel line classes of AG (2,F3) are
the components of a 4–net in PG (2,C).

32 / 34



k-nets in characteristic zero

In the complex plane, we know only one 4-net up to projectivity.

This 4-net, called the classical 4-net, has order 3 and it exists since
PG (2,C) contains an affine subplane AG (2,F3) of order 3, unique
up to projectivity, and the four parallel line classes of AG (2,F3) are
the components of a 4–net in PG (2,C).

By a result of Stipins, no k–net with k ≥ 5 exists in PG (2,C).
Stipins’ result holds true in PG (2,K) provided that K has zero
characteristic.

References:
J. Stipins, Old and new examples of k-nets in P2,
math.AG/0701046.
S. Yuzvinsky, A new bound on the number of special fibers in a
pencil of curves, Proc. Amer. Math. Soc. 137 (2009), 1641–1648.
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k-nets in positive characteristic

Let K be a field of characteristic p > 0. In this case, PG (2,K)
contains an affine subplane AG (2,Fp) of order p from which
k–nets for 3 ≤ k ≤ p + 1 arise taking k parallel line classes as
components. Similarly, if PG (2,K) contains an affine subplane
AG (2,Fph), then k-nets of order ph for 3 ≤ k ≤ ph + 1 exist in
PG (2,K).
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No 5-net of order n with p > n is known to exist!
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Let K be a field of characteristic p > 0. In this case, PG (2,K)
contains an affine subplane AG (2,Fp) of order p from which
k–nets for 3 ≤ k ≤ p + 1 arise taking k parallel line classes as
components. Similarly, if PG (2,K) contains an affine subplane
AG (2,Fph), then k-nets of order ph for 3 ≤ k ≤ ph + 1 exist in
PG (2,K).

No 5-net of order n with p > n is known to exist! This suggests
that for sufficiently large p compared with n, Stipins’ result
remains valid in PG (2,K).

Theorem (Korchmaros, Nagy, Pace)

If p > 3ϕ(n
2
−n), where ϕ is the classical Euler ϕ function, then

k ≤ 4. Moreover, This approach also works in zero characteristic
and provides a new proof for Stipins’ result.

Reference: G. Korchmaros, G. Nagy, N. Pace, k-nets embedded in
a projective plane over a field (preprint arXiv:1306.5779)
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Thank you!
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