Sets of Orthogonal Hypercubes

Gary L. Mullen

Penn State University
mullen@math.psu.edu

Dec. 2013

Latin Squares

A latin square (LS) of order n is an $n \times n$ array based on n distinct symbols, each occuring once in each row and each col.

Two LSs are orthogonal if when superimposed, each of the n^{2} pairs occurs once.

0	1	2	0	1	2
1	2	0	2	0	1
2	0	1	1	2	0

A set $\left\{L_{1}, \ldots, L_{t}\right\}$ is mutually orthogonal (MOLS) if L_{i} orth. L_{j} for all $i \neq j$

A set $\left\{L_{1}, \ldots, L_{t}\right\}$ is mutually orthogonal (MOLS) if L_{i} orth. L_{j} for all $i \neq j$

Let $N(n)$ be the max number of MOLS order n

Theorem (HMWK prob.)
$N(n) \leq n-1$

Theorem (Moore, Bose)
If q is a prime power, $N(q)=q-1$

Theorem (Moore, Bose)
If q is a prime power, $N(q)=q-1$

Next Fermat Prob. (Prime Power Conj.) There are $n-1$ MOLS order n iff n is prime power.

If $n=2(2 k+1)$ (n is odd multiple of 2) then no pair MOLS of order n; i.e. $N(n)=1$

Conjecture (Euler 1782)

If $n=2(2 k+1)$ (n is odd multiple of 2) then no pair MOLS of order n; i.e. $N(n)=1$

Theorem (Tarry 1900)
$N(6)=1$

Conjecture (Euler 1782)

If $n=2(2 k+1)(n$ is odd multiple of 2) then no pair MOLS of order n; i.e. $N(n)=1$

Theorem (Tarry 1900)
$N(6)=1$

Euler Conj. false at $n=10$ (and all other $n=2(2 k+1), k \geq 2$
Theorem (Bose, Parker, Shrikhande 1960)
If $n \neq 2,6, N(n) \geq 2$

If $n=2(2 k+1)(n$ is odd multiple of 2) then no pair MOLS of order n; i.e. $N(n)=1$

Theorem (Tarry 1900)
$N(6)=1$

Euler Conj. false at $n=10$ (and all other $n=2(2 k+1), k \geq 2$
Theorem (Bose, Parker, Shrikhande 1960)
If $n \neq 2,6, N(n) \geq 2$

Prob. $2 \leq N(10) \leq 6$
Prob. Find formula for $N(n)$ if n not prime power.

Hypercubes

For $d \geq 2$, a d-dimensional hypercube of order n is an $n \times \cdots \times n$ array with n^{d} points based on n distinct symbols so that if any coordinate is fixed, each of the n sym. occurs n^{d-2} times in that subarray.
H_{1} orth. H_{2} if upon superposition, each of the n^{2} pairs occurs n^{d-2} times.
$\left\{H_{1}, \ldots, H_{t}\right\}$ mutually orth. if H_{i} orth. H_{j} for all $i \neq j$

Let $N_{d}(n)$ be max number of orth. hcubes order n and dim. d
Theorem
Let $n=q_{1} \times \cdots \times q_{r}, q_{1}<\cdots<q_{r}$ prime powers

$$
\frac{q_{1}^{d}-1}{q_{1}-1}-d \leq N_{d}(n) \leq \frac{n^{d}-1}{n-1}-d
$$

Other Notions of Orthogonality for Hcubes

Many of the following results are due to John Ethier
Ph. D. thesis, Penn State, 2008

For $1 \leq t \leq d$, a t - subarray, is a subset of hcube obtained by fixing $d-t$ coordinates, running the other coordinates.

Ex: If $d=2$, a 1-subarray is a row or a col.
An hcube has type $j, 0 \leq j \leq d-1$, if in each $(d-j)$-dim. subarray, each sym. occurs exactly n^{d-j-1} times.

has type 1 .

has type 2.

A set of d hcubes, dim. d, order n, is d-orth. if each of the n^{d}, d-tuples occurs once.

A set of $j \geq d$ hcubes is mutually d-orth (MdOH) if any d hcubes are d-orth.

Theorem
If $d \geq 2$, max $\# \mathrm{MdOH}$, type 0 , order n and dim. d is $\leq n+d-1$.

Codes

An $\left(l, n^{d}, D\right)$ code has length l, n^{d} codewords, and min. dist. D

Theorem (Singleton)
$D \leq l-d+1$

Code is MDS if $D=l-d+1$

Theorem

A set of $l \geq d$, d-orth hcubes order n, dim. d, type 0 is equivalent to an n-ary MDS $\left(l, n^{d}, l-d+1\right)$ code.

Theorem
A set of $l \geq d$, d-orth hcubes order n, dim. d, type 0 is equivalent to an n-ary MDS $\left(l, n^{d}, l-d+1\right)$ code.

Corollary (Golomb)
A set of $l-2$ MOLS order n is equivalent to an n-ary MDS $\left(l, n^{2}, l-1\right)$ code.
r hcubes order n, dim. d are mutually strong d-orth (MSdOH) if upon superposition of corresponding j-subarrays of any j hcubes with $1 \leq j \leq \min (d, r)$, each j-tuple occurs exactly once.

Note:

1 If $d=2$ and $r \geq 2$ implies MOLS
2 If $r \geq d$ strong d-orth. implies d-orth
r hcubes order n, dim. d are mutually strong d-orth (MSdOH) if upon superposition of corresponding j-subarrays of any j hcubes with $1 \leq j \leq \min (d, r)$, each j-tuple occurs exactly once.

Note:

1 If $d=2$ and $r \geq 2$ implies MOLS
2 If $r \geq d$ strong d-orth. implies d-orth

Theorem

If $l>d$, a set of $l-d$ MSdOH order n, dim. d, is equiv. to an n-ary MDS $\left(l, n^{d}, l-d+1\right)$ code.
r hcubes order n, dim. d are mutually strong d-orth (MSdOH) if upon superposition of corresponding j-subarrays of any j hcubes with $1 \leq j \leq \min (d, r)$, each j-tuple occurs exactly once.

Note:

1 If $d=2$ and $r \geq 2$ implies MOLS
2 If $r \geq d$ strong d-orth. implies d-orth
Theorem
If $l>d$, a set of $l-d$ MSdOH order n, dim. d, is equiv. to an n-ary MDS $\left(l, n^{d}, l-d+1\right)$ code.

Theorem
There are at most $n-1$ MSdOH order n, dim. $d \geq 2$.

Theorem
An n-ary MDS $\left(d, n^{d-1}, 2\right)$ code is equiv. to an hcube of order n, dim. $d-1$, and type $d-2$.

Theorem
An n-ary MDS $\left(d, n^{d-1}, 2\right)$ code is equiv. to an hcube of order n, dim. $d-1$, and type $d-2$.

Theorem
The \# of (d-1)-dim. hcubes order n, type $d-2$ equals the \# of n-ary $\left(d, n^{d-1}, 2\right)$ MDS codes

Theorem

An n-ary MDS $\left(d, n^{d-1}, 2\right)$ code is equiv. to an hcube of order n, dim. $d-1$, and type $d-2$.

Theorem

The \# of (d-1)-dim. hcubes order n, type d-2 equals the \# of n-ary $\left(d, n^{d-1}, 2\right)$ MDS codes

Theorem

(i) Let $S(n, l, d)$ be \# sets of $l-d, M S d O H$ order n, dim d, type $d-1$ (ii) Let $L(n, l, d)$ be $\# n$-ary MDS $\left(l, n^{d}, l-d+1\right)$ codes. Then

$$
L(n, l, d)=(l-d)!S(n, l, d)
$$

Constructions of Hypercubes

Lemma
A poly. $a_{1} x_{1}+\cdots+a_{d} x_{d}$, not all $a_{i}=0 \in F_{q}$ gives an hcube order q, dim. d.
(type $j-1$ if $j, a_{i} \neq 0$).

Constructions of Hypercubes

Lemma
A poly. $a_{1} x_{1}+\cdots+a_{d} x_{d}$, not all $a_{i}=0 \in F_{q}$ gives an hcube order q, dim. d.
(type $j-1$ if $j, a_{i} \neq 0$).
Theorem
Let $f_{i}\left(x_{1}, \ldots, x_{d}\right)=a_{i 1} x_{1}+\cdots+a_{i d} x_{d}, i=1, \ldots, r$ be polys. over F_{q}.
The corres. hcubes are MSdOH order q, dim. d iff every square submatrix of $M=\left(a_{i j}\right)$ is nonsing.

Constructions of Hypercubes

Lemma

A poly. $a_{1} x_{1}+\cdots+a_{d} x_{d}$, not all $a_{i}=0 \in F_{q}$ gives an hcube order q, dim. d.

$$
\text { (type } \left.j-1 \text { if } j, a_{i} \neq 0\right)
$$

Theorem
Let $f_{i}\left(x_{1}, \ldots, x_{d}\right)=a_{i 1} x_{1}+\cdots+a_{i d} x_{d}, i=1, \ldots, r$ be polys. over F_{q}.
The corres. hcubes are MSdOH order q, dim. d iff every square submatrix of $M=\left(a_{i j}\right)$ is nonsing.

Theorem

Let f_{i} be a set of $t \geq d$ lin. polys. over F_{q}. The corres. hcubes of order q, $\operatorname{dim} . d$ are d-orth iff every d rows of M are lin. indep.

Non-prime powers - Kronecker product

Glue smaller hcubes together to get larger ones of same dim.

Conjecture

The max \# of mutually d-orth hcubes order n, $\operatorname{dim} . d, n>d$ satisfies

$$
\begin{cases}n+2 & \text { for } d=3 \text { and } d=n-1 \text { both } \text { with } n \text { even } \\ n+1 & \text { in all other cases }\end{cases}
$$

Conjecture

The max \# of mutually d-orth hcubes order n, $\operatorname{dim} . d, n>d$ satisfies

$$
\begin{cases}n+2 & \text { for } d=3 \text { and } d=n-1 \text { both with } n \text { even } \\ n+1 & \text { in all other cases }\end{cases}
$$

Conjecture

The max \# of mutually strong d-orth hcubes order n, $\operatorname{dim} . d, n>d$ satisfies

$$
\begin{cases}n+2-d & \text { for } d=3 \text { and } d=n-1 \text { both with } n \text { even } \\ n+1-d & \text { in all other cases }\end{cases}
$$

For $2 \leq k \leq d, k$ hcubes order n, dim. d are k-orth if each of the n^{k}, k-tuples occurs exactly n^{d-k} times.

For $2 \leq k \leq d, k$ hcubes order n, dim. d are k-orth if each of the n^{k}, k-tuples occurs exactly n^{d-k} times.

Theorem

For a set of t lin. polys. over F_{q} with the property that any k poly. represent k-orth hcubes

$$
t \leq q^{d-k+1}+q^{d-k}+\cdots+q+k-1
$$

For $2 \leq k \leq d, k$ hcubes order n, dim. d are k-orth if each of the n^{k}, k-tuples occurs exactly n^{d-k} times.

Theorem
For a set of t lin. polys. over F_{q} with the property that any k poly. represent k-orth hcubes

$$
t \leq q^{d-k+1}+q^{d-k}+\cdots+q+k-1
$$

Conjecture

Let $d \geq 2$. The max \# of mutually k-orth hcubes order n, dim. d, type 0 is

$$
n^{d-k+1}+n^{d-k}+\cdots+n+k-1
$$

Hypercubes of class r

0	1	2	4	5	3	8	6	7
3	4	5	$\|$7 8 6 2 6 7	8	1	1		
1	2	0	5	3	4			

Figure: A hypercube of dimension 3, order 3, and class 2 .

Definition

Let d, n, r, t be integers, with $d>0, n>0, r>0$ and $0 \leq t \leq d-r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times n \times \cdots \times n$ (d times) array on n^{r} distinct symbols such that in every co-dimension- t-subarray (that is, fix t coordinates of the array and allow the remaining $d-t$ coordinates to vary) each of the n^{r} distinct symbols appears exactly n^{d-t-r} times.

Definition

Let d, n, r, t be integers, with $d>0, n>0, r>0$ and $0 \leq t \leq d-r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times n \times \cdots \times n$ (d times) array on n^{r} distinct symbols such that in every co-dimension-t-subarray (that is, fix t coordinates of the array and allow the remaining $d-t$ coordinates to vary) each of the n^{r} distinct symbols appears exactly n^{d-t-r} times.
Moreover, if $d \geq 2 r$, two such hypercubes are said to be orthogonal if when superimposed each of the $n^{2 r}$ possible distinct pairs occurs exactly $n^{d-2 r}$ times.

Definition

Let d, n, r, t be integers, with $d>0, n>0, r>0$ and $0 \leq t \leq d-r$. A (d, n, r, t)-hypercube of dimension d, order n, class r and type t is an $n \times n \times \cdots \times n$ (d times) array on n^{r} distinct symbols such that in every co-dimension-t-subarray (that is, fix t coordinates of the array and allow the remaining $d-t$ coordinates to vary) each of the n^{r} distinct symbols appears exactly n^{d-t-r} times.
Moreover, if $d \geq 2 r$, two such hypercubes are said to be orthogonal if when superimposed each of the $n^{2 r}$ possible distinct pairs occurs exactly $n^{d-2 r}$ times.
Finally, a set \mathcal{H} of such hypercubes is mutually orthogonal if any two distinct hypercubes in \mathcal{H} are orthogonal.

Theorem

The maximum number of mutually orthogonal hypercubes of dimension d, order n, type t and class r is bounded above by

$$
\frac{1}{n^{r}-1}\left(n^{d}-1-\binom{d}{1}(n-1)-\binom{d}{2}(n-1)^{2}-\cdots-\binom{d}{t}(n-1)^{t}\right) .
$$

Lemma

Let n be a power of a prime, let d, r be positive integers with $d \geq 2 r$ and let $q=n^{r}$. Consider F_{q} as a vector space over F_{n}, and define $c_{j} \in F_{q}$, $j=1,2, \ldots, d$, such that any r of them form a linearly independent set in F_{q}. The hypercube constructed from the polynomial $c_{1} x_{1}+\cdots+c_{d} x_{d}$ is a hypercube of dimension d, order n, class r and type r.

Lemma

Let n be a power of a prime, let d, r be positive integers with $d \geq 2 r$ and let $q=n^{r}$. Consider F_{q} as a vector space over F_{n}, and define $c_{j} \in F_{q}$, $j=1,2, \ldots, d$, such that any r of them form a linearly independent set in F_{q}. The hypercube constructed from the polynomial $c_{1} x_{1}+\cdots+c_{d} x_{d}$ is a hypercube of dimension d, order n, class r and type r.

Theorem

There are at most $(n-1)^{r}$ mutually orthogonal $(2 r, n, r, r)$-hypercubes.

Corollary
Let n be an odd prime power. Then there exists a complete set of $(n-1)^{2}$ mutually orthogonal hypercubes of dimension 4, order n and class 2.

Corollary

Let n be an odd prime power. Then there exists a complete set of $(n-1)^{2}$ mutually orthogonal hypercubes of dimension 4, order n and class 2.

Corollary

Let $n=2^{2 k}, k \in \mathbb{N}$. Then there exists a complete set of $(n-1)^{2}$ mutually orthogonal hypercubes of dimension 4, order n, and class 2.

Problems

1 Construct a complete set of mutually orthogonal $(4, n, 2,2)$-hypercubes when $n=2^{2 k+1}$.

Problems

1 Construct a complete set of mutually orthogonal (4, $n, 2,2)$-hypercubes when $n=2^{2 k+1}$.
2 Is the $(n-1)^{r}$ bound in the previous Theorem tight when $r>2$? If so, construct a complete set of mutually orthogonal
($2 r, n, r, r$)-hypercubes of class $r>2$. If not, determine a tight upper bound and construct such a complete set.

Problems

1 Construct a complete set of mutually orthogonal ($4, n, 2,2$)-hypercubes when $n=2^{2 k+1}$.
2 Is the $(n-1)^{r}$ bound in the previous Theorem tight when $r>2$? If so, construct a complete set of mutually orthogonal
($2 r, n, r, r$)-hypercubes of class $r>2$. If not, determine a tight upper bound and construct such a complete set.
3 Find constructions (other than standard Kronecker product constructions) of sets for mutually orthogonal hypercubes when n is not a prime power. Such constructions will require a new method not based on finite fields.

Other Kinds of Orthogonality

Höhler (1970) studies hcubes involving an extra condition for orth.
For $d \geq 2$ max number Höhler orth hcubes is $(n-1)^{d-1}$.

Other Kinds of Orthogonality

Höhler (1970) studies hcubes involving an extra condition for orth.
For $d \geq 2$ max number Höhler orth hcubes is $(n-1)^{d-1}$.
Theorem (Höhler 1970)
For $d>2$ max reached iff n is a prime power!!

Other Kinds of Orthogonality

Höhler (1970) studies hcubes involving an extra condition for orth.
For $d \geq 2$ max number Höhler orth hcubes is $(n-1)^{d-1}$.
Theorem (Höhler 1970)
For $d>2$ max reached iff n is a prime power!!

Morgan studies equi-orthogonal hcubes (special case of strong orthogonality)

References

Dénes/Keedwell, "Latin Squares," Academic Press, 1974
Dénes/Keedwell, "Latin Squares," North Holland, 1991
Mullen, "A candidate for the next Fermat problem," Math. Intell., 1995
Laywine/Mullen/Whittle, D-dim. hcubes ..., Monatsh. Math., 1995
Morgan, "Construction of sets of orth. freq. hcubes," Disc. Math., 1998
Laywine/Mullen, "Discrete Math. Using LSs," Wiley, 1998

Colbourn/Dinitz, "Handbook of Comb. Designs," CRC Press, 2007
Ethier/Mullen, "Strong Forms of Orthogonality for Sets of Hypercubes," Disc. Math. 2012

Ethier/Mullen "Strong forms of orthogonality for sets of frequency hypercubes," Quasigroups and Related Systems, 2013.

Ethier/Mullen/Panario/Stevens/Thomson, "Sets of orthogonal hypercubes of class r," J. Combin. Thy., A 2011.

