A new construction of strength-3 covering arrays using linear feedback shift register (LFSR) sequences

Lucia Moura School of Electrical Engineering and Computer Science University of Ottawa lucia@eecs.uottawa.ca

joint work with Sebastian Raaphorst and Brett Stevens

Special Days on combinatorial constructions using finite fields, RICAM, Linz, December 2013

A new construction of strength-3 covering arrays using linear feedback shift register (LFSR) sequences

Lucia Moura

1 Combinatorial Designs and Covering Arrays

- 2 Our CA constructing for t = 3
- 3 New bounds and open problems

What are combinatorial designs?

Combinatorial designs are combinatorial objects such as arrays or set systems with some type of **"balance property"**.

• The construction in this talk relates many interesting combinatorial designs:

block designs, Steiner triple systems, projective planes, orthogonal arrays, covering arrays.

• The construction uses LFSR sequences in finite fields to build **partial orthogonal arrays** that we transform into (complete) **covering arrays**.

A new construction of strength-3 covering arrays using linear feedback shift register (LFSR) sequences

Steiner triple systems

Definition

A Steiner triple system of order n, STS(n), is a set of 3-subsets (triples) of $X = \{1, 2, ..., n\}$ such that each unordered pair of elements of X appears in exactly 1 triple.

Balanced incomplete block designs

$\{1, 2, 4\}, \{1, 3, 7\}, \{1, 5, 6\}, \{2, 3, 5\}, \{2, 6, 7\}, \{3, 4, 6\}, \{4, 5, 7\} \\ BIBD(n, 3, 1) = STS(n)$

Ex: BIBD(13,4,1) = BIBD($n^2 + n + 1, n + 1, 1$) for n = 3

 $\{0, 1, 3, 9\}$ \leftarrow difference set $\{1, 2, 4, 10\}$ $\{2, 3, 5, 11\}$ $\{3, 4, 6, 12\}$ $\{4, 5, 7, 0\}$ $\{5, 6, 8, 1\}$ $\{6, 7, 9, 2\}$ $\{7, 8, 10, 3\}$ $\{8, 9, 11, 4\}$ $\{9, 10, 12, 5\}$ $\{10, 11, 0, 6\}$ $\{11, 12, 1, 7\}$ $\{12, 0, 2, 8\}$ all possible distances mod 13 appear exactly once as difference of two elements in $\{0, 1, 3, 9\}$

Orthogonal arrays

```
Strength t = 2; v = 3 symbols; k = 4 columns; 2^3 rows

\begin{bmatrix} 0000\\0122\\1220\\2202\\2021\\0211\\2110\\1101\\1012\end{bmatrix}
```

Definition: Orthogonal Array

An orthogonal array of strength t, k columns, v symbols and index λ denoted by $OA_{\lambda}(t, k, v)$, is an $\lambda v^t \times k$ array with symbols from $\{0, 1, \ldots, v-1\}$ such that in every $t \times N$ subarray, every t-tuple of $\{0, 1, \ldots, v-1\}^t$ appears in exactly λ rows.

Covering arrays

Strength t = 3; v = 2 symbols; k = 10 columns; N = 13 rows

Definition: Covering Array

A covering array of strength t, k factors, v symbols and size N, denoted by CA(N;t,k,v), is an $N\times k$ array with symbols from $\{0,1,\ldots,v-1\}$ such that in every $t\times N$ subarray, every t-tuple of $\{0,1,\ldots,v-1\}^t$ is covered at least once.

Covering arrays

Strength t = 3; v = 2 symbols; k = 10 columns; N = 13 rows

Definition: Covering Array

A covering array of strength t, k factors, v symbols and size N, denoted by CA(N;t,k,v), is an $N\times k$ array with symbols from $\{0,1,\ldots,v-1\}$ such that in every $t\times N$ subarray, every t-tuple of $\{0,1,\ldots,v-1\}^t$ is covered at least once.

Covering arrays generalize orthogonal arrays

$$CAN(t, k, v) = \min\{N : CA(N; t, k, v) \text{ exists}\}$$

An obvious lower bound: $CAN(t, k, v) \ge v^t$

An orthogonal array with index $\lambda = 1$: every every *t*-tuple of $\{0, 1, \ldots, v - 1\}^t$ appears exactly once in any *t* columns. So, an OA(t, k, v) is a $CA(v^t; t, k, v)$ that meets this lower bound.

For t = 2 and q a prime power, $\exists OA(2, k = q + 1, q)$; q - 1 MOLS.

For t = 3, the following orthogonal arrays exist: $\exists OA(3,4,2), OA(3,4,3), OA(3,6,4), OA(3,6,5), OA(3,8,7),$ etc. giving $CAN(3,4,2) = 2^3 = 8, \cdots, CAN(3,8,7) = 7^3 = 343$, etc.

Bose-Bush bound: $k \le v + 2$ is necessary for an OA(3, k, v).

A Construction for Strength-3 Covering Arrays from Linear Feedback Shift Register Sequences

Work with Raaphorst, Stevens

Designs, Codes and Cryptography (September 2013).

- Use finite fields and linear feedback shift register sequences to build OA of strength 2 "almost" OA of strength 3.
- Build a CA of strength t = 3 by combining two of these "almost" OA of strength 3.
- We get a $CA(2q^3 1; 3, q^2 + q + 1; q)$.
- This improves upper bound for 512 parameter sets in Colbourn's covering array tables.

Combinatorial Designs and Covering Arrays

2 Our CA constructing for t = 3

3 New bounds and open problems

Our new construction of strength-3 covering arrays

The best CAs we can get from OAs are $CA(q^3; 3, q+2, q)$. Our construction works for larger k up to $q^2 + q + 1$, guaranteeing an upper bound under a factor of 2 from the trivial lower bound.

Theorem (Construction for t = 3)

If q is a prime power then there exists a $CA(N = 2q^3 - 1; t = 3, k = q^2 + q + 1; v = q).$

We will use liner feedback shift register sequences LFSR to build "partial" OAs (variable strength OA) that are concatenated vertically to create the CAs.

Example: our construction for q = 2

We get a
$$CA(2q^3 - 1; 3, q^2 + q + 1; q) = CA(15; 3, 7, 2)$$

LFSR sequences of maximal period:

$\underline{0011101}00111010011101\cdots$

	0123456			
r_0 :	0000000	uncovered triples		concatenate with reversals
r_1 :	0011101	015	r_8 :	1011100
r_2 :	0111010	046	r_0 :	0101110
r_3 :	1110100	356	r_{10} :	0010111
r_4 :	1101001	245	r_{11} :	1001011
r_5 :	1010011	134	r_{12} :	1100101
r_6 :	0100111	023	r_{13} :	1110010
r_7 :	1001110	126	r_{14} :	0111001
		BIBD(7,3,1)		(日) (四) (四) (四) (日)

A new construction of strength-3 covering arrays using linear feedback shift register (LFSR) sequences

Example: our construction for q = 3

We get a $CA(2q^3 - 1; 3, q^2 + q + 1; q) = CA(53; 3, 13, 3)$ $0121120111002021221022200101211201110020212210222001 \cdots$ 0123456789abc $BIBD(q^2 + q + 1, 3, q - 1)$ 0000000000000 uncovered triples conc. reversals r_0 : 0121120111002 3-sets of 06ab 2001110211210 r_1 : $r_{27}:$ 1211201110020 3-sets of 59ac 0200111021121 r_2 : $r_{28}:$ 0202122102220 3-sets of 028c 0222012212020 r_{12} : $r_{38}:$ 2021221022200 3-sets of 17bc 0022201221202 r_{13} : $r_{39}:$ 0212210222001 3-sets of 06ab 1002220122120 r_{40} : r_{14} :

r_{15} :	2122102220010	3-sets of 59ac	r_{41} :	0100222012212
	• • •	•••		•••
r_{25} :	0101211201110	3-sets of 028c	$r_{51}:$	0111021121010
r_{26} :	1012112011100	3-sets of 17bc	r_{52} :	0011102112101
	matrix M	BIBD(13,3,2)		reversed M

< D >

A new construction of strength-3 covering arrays using linear feedback shift register (LFSR) sequences

Lucia Moura

A closer look at LFSRs

a linear feedback shift register sequence with primitive characteristic polynomial $f(x) = x^3 + 0x^2 + 2x + 1$ of degree t = 3 over GF(q), q = 3 is defined by: set arbitrary initial conditions (not all-zero): $a_0 = 0$, $a_1 = 1$, $a_2 = 2$ use f to define: $a_n = 0 \times a_{n-1} - 2 \times a_{n-2} - 1 \times a_{n-3}$, $n \ge 3$ Because f is **primitive**, the sequence has **maximum period** $q^t - 1 = q^3 - 1 = 26$

 $\underline{0121120111002}021221022200101211201110020212210222001\cdots$

properties:

- each nonzero 3-tuple of GF(q) appears once per period, starting at positions $i=0,\ldots,q^3-2$
- the patterns of zeroes is the same at adjacent windows of size $q^3-1/(q-1)=q^2+q+1$
- there are exactly q + 1 such zeroes.

< ロ > < 同 > < 回 > < 回 >

Variable strength orthogonal arrays (VOA)

Let f be a degree-t primitive polynomial over GF(q) with root $\alpha \in GF(q^t)$. Then $\{1, \alpha, \alpha^2, \ldots, \alpha^{m-1}\}$ is a basis for $GF(q^t)$. Consider the LFSR sequence with initial values $T = (a_0, \ldots, a_{t-1})$ not all zero and characteristic polynomial f. Let $k = \frac{q^t - 1}{q - 1}$. Consider the following $q^t \times k$ array:

 $M = M(f,T) = \begin{bmatrix} 0 & 0 & \dots & 0 \\ a_0 & a_1 & \dots & a_{k-1} \\ a_1 & a_2 & \dots & a_k \\ \vdots & \vdots & & \vdots \\ a_{q^{t-2}} & a_{q^{t-1}} & \dots & a_{q^{t-2+k-1}} \end{bmatrix}$

Every t consecutive columns have their q^t tuples covered. Usually, M is not OA(t, k, q): not all triples of columns **covered**. Call Λ the hypergraph with hyper-edges the t-tuples of columns that are covered. We call M a $VOA(q^t; \Lambda, q)$ and the triples of columns For t = 2, M is the old construction for OA(2, q + 1, q)

$$t = 2, q = 3, k = \frac{q^2 - 1}{q - 1} = q + 1.$$

 $T = (0, 1); f(x) = x^2 + x + 2, \text{ degree}(f) = t = 2$
LFSR: 0122021101220211...

$$M = M(f, T) = \begin{bmatrix} 0000\\ 0122\\ 1220\\ 2202\\ 2021\\ 0211\\ 2110\\ 1101\\ 1012 \end{bmatrix}$$

is an orthogonal array of strength t = 2 !!!

A new construction of strength-3 covering arrays using linear feedback shift register (LFSR) sequences

Lucia Moura

・ 同・ ・ ヨ・

Our construction focus on M = M(T, f) for t = 3

M is a $VOA(3,\Lambda,q)$ for $\Lambda = BIBD(q^2+q+1,3,q^2)$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\underline{0121120111002}021221022200101211201110020212210222001\cdots$				
r_1 : 0121120111002 3-sets of 06ab r_2 : 1211201110020 3-sets of 59ac r_{12} : 0202122102220 3-sets of 028c		0123456789abc	$BIBD(q^2 + q + 1, 3, q - 1)$		
r_2 : 1211201110020 3-sets of 59ac r_{12} : 0202122102220 3-sets of 028c	r_0 :	0000000000000	uncovered triples		
r_{12} : 0202122102220 3-sets of 028c	r_1 :	0121120111002	3-sets of 06ab		
	r_2 :	1211201110020	3-sets of 59ac		
$m \rightarrow 2021221022200$ 3 cots of 17bc	r_{12} :	0202122102220	3-sets of 028c		
7_{13} . 2021221022200 3-sets of 17bc	r_{13} :	2021221022200	3-sets of 17bc		
r_{14} : 0212210222001 3-sets of 06ab	r_{14} :	0212210222001	3-sets of 06ab		
<i>r</i> ₁₅ : 2122102220010 3-sets of 59ac	r_{15} :	2122102220010	3-sets of 59ac		
<i>r</i> ₂₅ : 0101211201110 3-sets of 028c	r_{25} :	0101211201110	3-sets of 028c		
<i>r</i> ₂₆ : 1012112011100 3-sets of 17bc	r_{26} :	1012112011100	3-sets of 17bc		

A new construction of strength-3 covering arrays using linear feedback shift register (LFSR) sequences

Triples of zeroes in rows of M relate to coverage

Theorem

Let q be a prime power, f be a primitive polynomial of degree 3 over GF(q) with root $\alpha \in GF(q^3)$, and let $k = \frac{q^3-1}{q-1} = q^2 + q + 1$. Consider the $q^3 \times k$ array M = M(f), the subinterval array of f. Then M is a $VOA(q^3; \Lambda, q)$, and for a set $\{i_0, i_1, i_2\}$, $0 \le i_0 < i_1 < i_2 < q^2 + q + 1$, the following are equivalent: $\{i_0, i_1, i_2\} \in \Lambda$ (i.e. $\{i_0, i_1, i_2\}$ is "covered" in M). There is no row r in M, $0 < r < q^3$, other than the all-zero

- 2 There is no row r in M, $0 \le r < q^3$, other than the all-zero row such that $M_{r,i_0} = M_{r,i_1} = M_{r,i_2} = 0$.
- **3** $\{\alpha^{i_0}, \alpha^{i_1}, \alpha^{i_2}\}$ is linearly independent over GF(q).

The structure of zeroes in rows of M

Theorem

Let f be a primitive polynomial f of degree 3 over GF(q).

- Define M = M(f) as before, the set $\mathcal{B} = \{\{a_1, \dots, a_{q+1}\} : M_{i,a_1} = \dots = M_{i,a_{q+1}} = 0$ for some $0 \le i < q^3 - 1\}$ is the set of blocks of a projective plane of order q.
- **2** Consider Λ associated with M = M(f). Then, $\binom{V}{3} \setminus \Lambda$ is a simple $BIBD(q^2 + q + 1, 3, q - 1)$, and Λ is a simple $BIBD(q^2 + q + 1, 3, q^2)$.

Key properties: completing coverage with "reversal" of M

- Let $H = \{0 \le i < k : a_i = 0\}$ (pos of 0's in 1st row of M). H is a $(q^2 + q + 1, q + 1, 1)$ -difference set. Its translates are the blocks of the projective plane \mathcal{B} .
- If $\{a, b, c\} \subset H$ with a < b < c, then, $b - c + a \mod q^2 + q + 1 \notin H$.
- Let $D = \{a, b, c\}$ with $0 \le a < b < c < q^2 + q + 1$. If triple of columns D is uncovered in M(f), then $D' = \{a, b, b c + a\}$ is covered in M(f).
- Let $\hat{f} = f(1/x)x^{\deg(f)}$, the reciprocal polynomial of f. If $D = \{a, b, c\}$ is not covered in M(f), then D is covered in $M(\hat{f})$.
- $M(\hat{f})$ is obtained by reversal (mirror image) of M(f).

For t = 3, there exists a $CA(2q^3 - 1; 3, q^2 + q + 1; q)$

 $\underline{0121120111002}021221022200101211201110020212210222001\cdots$

	$\overline{M(f)}$	$BIBD(q^2 + q + 1, 3, q - 1)$		$M(\hat{f})$
r_0 :	0000000000000	uncovered triples		0000000000000
r_1 :	0121120111002	3-sets of 06ab	r_{27} :	2001110211210
r_2 :	1211201110020	3-sets of 59ac	r_{28} :	0200111021121
		•••		•••
r_{12} :	0202122102220	3-sets of 028c	$r_{38}:$	0222012212020
r_{13} :	2021221022200	3-sets of 17bc	$r_{39}:$	0022201221202
r_{14} :	0212210222001	3-sets of 06ab	r_{40} :	1002220122120
r_{15} :	2122102220010	3-sets of 59ac	$r_{41}:$	0100222012212
	•••	•••		•••
r_{25} :	0101211201110	3-sets of 028c	$r_{51}:$	0111021121010
r_{26} :	1012112011100	3-sets of 17bc	r_{52} :	0011102112101
		BIBD(13,3,2)		

A new construction of strength-3 covering arrays using linear feedback shift register (LFSR) sequences

Combinatorial Designs and Covering Arrays

- 2 Our CA constructing for t = 3
- 3 New bounds and open problems

Improved CA bounds: $q \leq 25$, prime powers

q	k	new N	old N
2	7	15	12
3	13	53	50
4	21	127	152
5	31	249	365
7	57	685	1015
8	73	1023	1492
9	91	1457	2169
11	133	2661	3971
13	183	4393	6565
16	273	8191	12226
17	307	9825	15874
19	381	13717	24158
23	553	24333	38590
25	651	31249	49346

 $\leftarrow \text{ improved upper bounds} \\ \text{ in Colbourn's CAs table} \\ \text{ for all } q \neq 2, 3, q \leq 25 \\ \end{cases}$

A new construction of strength-3 covering arrays using linear feedback shift register (LFSR) sequences

Improved bounds for $v \leq 25$, non prime powers

Non-prime-powers: "drop the symbols+fusion" for the next prime power.

$v \leq q$	k	new N	$old\ N$
6	57	684	624
10	133	2659	3794
12	183	4391	6350
14	273	8187	11996
15	273	8189	11998
18	381	13715	20191
20	553	24327	35941
21	553	24329	35943
22	553	24331	35945
24	651	31247	46196

 $\label{eq:constraint} \begin{array}{l} \leftarrow \mbox{ improved upper bounds} \\ \mbox{ in Colbourn's CAs table} \\ \mbox{ for all } v \neq 2,3,6, \ v \leq 25 \end{array}$

Improving upper bounds for higher k

- Using constructed CAs as ingredients in recursive constructions we improve many upper bounds.
- Before-and-after run of Colbourn tables of best bounds, gives upper bound improvements for 512 (ranges of) parameter sets. http://www.public.asu.edu/~ccolbou/src/tabby/ catable.html

Open Problem: How this extends to $t \ge 4$?

For general t, q, M(f) is a $q^t \times \frac{q^t-1}{q-1}$ array which is a $VOA(q^t, \Lambda, q)$ for some hypergraph Λ on $\frac{q^t-1}{q-1}$ vertices.

- Find s permutations of the columns of M(f) such that the vertical concatenation of the s permuted M(f) is a $CA(s(q^t-1)+1;t,\frac{q^t-1}{q-1},q).$
- Determine s(t,q) the smallest such s. From our constructions, we know s(2,q) = 1, s(3,q) = 2. We experimentally determined $s(4,2) \le 4$, $s(4,3) \le 6$, $s(5,2) \le 9$; none of these cases improved best bounds.
- Determine a largest subset of the $\frac{q^t-1}{q-1}$ columns where it is enough to paste s = 2 matrices. For t = 4, this would lead to $CA(N = 2q^4 1; t = 4, k, q)$ where $k \leq \frac{q^t-1}{q-1}$.
- Study the structure of Λ (covered *t*-tuples) for t ≥ 4, to get insight on constructions.