Bent functions, difference sets and strongly regular graphs

Wilfried Meidl
Sabancı University

December 1, 2013

- Bent Functions, Definition, Properties
- Bent Functions and
- Difference Sets
- Strongly Regular Graphs
- A Construction of Bent Functions
- Interpretation with Difference Sets
- Graph Interpretation

Walsh (Fourier) Transform

Definition
p : a prime
$f: V_{n} \longrightarrow \mathbb{F}_{p}$
For each $b \in V_{n}$,

$$
\widehat{f}(b)=\sum_{x \in V_{n}} \epsilon_{p}^{f(x)-\langle b, x\rangle}, \quad \epsilon_{p}=e^{2 \pi i / p}
$$

Remark
For $V_{n}=\mathbb{F}_{p}^{n},<b, x>=b \cdot x$, for $V_{n}=\mathbb{F}_{p^{n}},<b, x>=\operatorname{Tr}_{\mathrm{n}}(b x)$.

Walsh (Fourier) Transform

Definition
p : a prime
$f: V_{n} \longrightarrow \mathbb{F}_{p}$
For each $b \in V_{n}$,

$$
\widehat{f}(b)=\sum_{x \in V_{n}} \epsilon_{p}^{f(x)-\langle b, x\rangle}, \quad \epsilon_{p}=e^{2 \pi i / p}
$$

Remark
For $V_{n}=\mathbb{F}_{p}^{n},<b, x>=b \cdot x$, for $V_{n}=\mathbb{F}_{p^{n}},<b, x>=\operatorname{Tr}_{\mathrm{n}}(b x)$.
Definition
$|\widehat{f}(b)|=p^{n / 2}$ for all $b \in V_{n} \Rightarrow f$ is a bent function.

Walsh (Fourier) Transform

Definition

p: a prime
$f: V_{n} \longrightarrow \mathbb{F}_{p}$
For each $b \in V_{n}$,

$$
\widehat{f}(b)=\sum_{x \in V_{n}} \epsilon_{p}^{f(x)-\langle b, x\rangle}, \quad \epsilon_{p}=e^{2 \pi i / p}
$$

Remark
For $V_{n}=\mathbb{F}_{p}^{n},<b, x>=b \cdot x$, for $V_{n}=\mathbb{F}_{p^{n}},<b, x>=\operatorname{Tr}_{\mathrm{n}}(b x)$.
Definition
$|\widehat{f}(b)|=p^{n / 2}$ for all $b \in V_{n} \Rightarrow f$ is a bent function. Alternatively,
$f: V_{n} \longrightarrow \mathbb{F}_{p}$ is bent if and only if the derivative of f in direction a

$$
D_{a} f(x)=f(x+a)-f(x)
$$

is balanced for all $a \in V_{n}, a \neq 0$.

Walsh coefficients $\widehat{f}(b)$

\diamond For Boolean bent functions

$$
\widehat{f}(b)= \pm 2^{n / 2}
$$

\diamond (Kumar-Scholz-Welch 1985) For p-ary bent functions,
$\widehat{f}(b)=\left\{\begin{array}{lll} \pm p^{n / 2} \epsilon_{p}^{f^{*}(b)} & : & n \text { even or } n \text { odd and } p \equiv 1 \bmod 4 \\ \pm i p^{n / 2} \epsilon_{p}^{f^{*}(b)} & : & n \text { odd and } p \equiv 3 \bmod 4,\end{array}\right.$
for a function $f^{*}: V_{n} \rightarrow \mathbb{F}_{p}$, the so called dual function of f.

Regularity of Bent Functions

Let $f: V_{n} \rightarrow \mathbb{F}_{p}$ be a bent function. Then

$$
\widehat{f}(b)=\zeta p^{n / 2} \epsilon_{p}^{f^{*}(b)}, \text { for all } b \in V_{n}
$$

ζ can only be ± 1 or $\pm i$.
$\diamond f$ is called regular if for all $b \in V_{n}, \zeta=1$.
$\diamond f$ is called weakly regular if, for all $b \in V_{n}, \zeta$ is fixed.
\diamond If ζ changes with b then f is called not weakly regular.

Plateaued Functions, Partially Bent Functions

Definition

$f: V_{n} \rightarrow \mathbb{F}_{p}$ is called s-plateaued if, for all $b \in V_{n},|\widehat{f}(b)|=p^{\frac{n+s}{2}}$ or 0 .

Plateaued Functions, Partially Bent Functions

Definition
$f: V_{n} \rightarrow \mathbb{F}_{p}$ is called s-plateaued if, for all $b \in V_{n},|\widehat{f}(b)|=p^{\frac{n+s}{2}}$ or 0 .
$f: V_{n} \rightarrow \mathbb{F}_{p}$ is called partially bent if, for all $a \in V_{n}, D_{a} f(x)$ is balanced or constant.

Plateaued Functions, Partially Bent Functions

Definition
$f: V_{n} \rightarrow \mathbb{F}_{p}$ is called s-plateaued if, for all $b \in V_{n},|\widehat{f}(b)|=p^{\frac{n+s}{2}}$ or 0 .
$f: V_{n} \rightarrow \mathbb{F}_{p}$ is called partially bent if, for all $a \in V_{n}, D_{a} f(x)$ is balanced or constant.
Fact:
The set of elements $a \in V_{n}$ for which $D_{a} f(x)$ is constant is a subspace of V_{n}, the linear space Λ of f.
Partially bent functions are s-plateaued, s is the dimension of Λ. We call f then s-partially bent.

Boolean Bent Functions and Difference Sets

Recall:
Let G be a finite (abelian) group of order ν. A subset D of G of cardinality k is called a (ν, k, λ)-difference set in G if every element $g \in G$, different from the identity, can be written as $d_{1}-d_{2}, d_{1}, d_{2} \in D$, in exactly λ different ways.

Hadamard difference set in elementary abelian 2-group:
$(\nu, k, \lambda)=\left(2^{n}, 2^{n-1} \pm 2^{\frac{n}{2}-1}, 2^{n-2} \pm 2^{\frac{n}{2}-1}\right)$.
Theorem
A Boolean function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is a bent function if and only if $D=\left\{x \in \mathbb{F}_{2}^{n} \mid f(x)=1\right\}$ is a Hadamard difference set in \mathbb{F}_{2}^{n}.

Bent Functions and Relative Difference Sets

Let G be a group of order $m n$ and let N be a subgroup of order n. A k-subset R of G is called an (m, n, k, λ)-relative difference set in G relative to N if every element $g \in G \backslash N$ can be represented in exactly λ ways in the form $r_{1}-r_{2}, r_{1}, r_{2} \in R$, and no non-identity element in N has such a representation.
Theorem
For a function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ let $R=\left\{(x, f(x)) \mid x \in \mathbb{F}_{p}^{n}\right\} \subset \mathbb{F}_{p}^{n} \times \mathbb{F}_{p}$. The set R is a (p^{n}, p, p^{n}, p^{n-1})-relative difference set in $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}$ (relative to \mathbb{F}_{p}) if and only if f is a bent function.

Bent functions and strongly regular graphs

For a function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}, p$ odd, let

$$
\begin{aligned}
D_{0} & =\left\{x \in \mathbb{F}_{p}^{n} \mid f(x)=0\right\} \\
D_{S} & =\left\{x \in \mathbb{F}_{p}^{n} \mid f(x) \text { is a nonzero square in } \mathbb{F}_{p}\right\} \\
D_{N} & =\left\{x \in \mathbb{F}_{p}^{n} \mid f(x) \text { is a nonsquare } \mathbb{F}_{p}\right\} .
\end{aligned}
$$

Bent functions and strongly regular graphs

For a function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}, p$ odd, let

$$
\begin{aligned}
D_{0} & =\left\{x \in \mathbb{F}_{p}^{n} \mid f(x)=0\right\} \\
D_{S} & =\left\{x \in \mathbb{F}_{p}^{n} \mid f(x) \text { is a nonzero square in } \mathbb{F}_{p}\right\}, \\
D_{N} & =\left\{x \in \mathbb{F}_{p}^{n} \mid f(x) \text { is a nonsquare } \mathbb{F}_{p}\right\} .
\end{aligned}
$$

Theorem

(Yin Tan et al. 2010/2011) For an odd prime p let $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ be a weakly regular bent function in even dimension n, with $f(0)=0$, for which there exists a constant k with $\operatorname{gcd}(k-1, p-1)=1$ such that for all $t \in \mathbb{F}_{p}$

$$
f(t x)=t^{k} f(x)
$$

Then the Cayley graphs of the sets $D_{0} \backslash\{0\}, D_{S}, D_{N}$ are strongly regular graphs.

Bent functions and strongly regular graphs

For a function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}, p$ odd, let

$$
\begin{aligned}
D_{0} & =\left\{x \in \mathbb{F}_{p}^{n} \mid f(x)=0\right\} \\
D_{S} & =\left\{x \in \mathbb{F}_{p}^{n} \mid f(x) \text { is a nonzero square in } \mathbb{F}_{p}\right\} \\
D_{N} & =\left\{x \in \mathbb{F}_{p}^{n} \mid f(x) \text { is a nonsquare } \mathbb{F}_{p}\right\} .
\end{aligned}
$$

Theorem

(Yin Tan et al. 2010/2011) For an odd prime p let $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ be a weakly regular bent function in even dimension n, with $f(0)=0$, for which there exists a constant k with $\operatorname{gcd}(k-1, p-1)=1$ such that for all $t \in \mathbb{F}_{p}$

$$
f(t x)=t^{k} f(x)
$$

Then the Cayley graphs of the sets $D_{0} \backslash\{0\}, D_{S}, D_{N}$ are strongly regular graphs.

Vertices: Elements of \mathbb{F}_{p}^{n}. The vertices x, y are adjacent if $f(x-y) \in D_{0} \backslash\{0\}\left(f(x-y) \in D_{S}, f(x-y) \in D_{N}\right)$.

A construction of bent functions

Theorem (Cessmelioğlu, McGuire, M. 2012)
For each $y=\left(y_{1}, y_{2}, \ldots, y_{s}\right) \in \mathbb{F}_{p}^{s}$, let $f_{y}(x): \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}$ be an s-plateaued function. If supp $\left(\widehat{f}_{y}\right) \cap \operatorname{supp}\left(\widehat{f}_{y}\right)=\emptyset$ for $y, \bar{y} \in \mathbb{F}_{p}^{s}, y \neq \bar{y}$, then the function $F\left(x, y_{1}, y_{2}, \ldots, y_{s}\right)$ from \mathbb{F}_{p}^{m+s} to \mathbb{F}_{p} defined by

$$
F\left(x, y_{1}, y_{2}, \ldots, y_{s}\right)=f_{y_{1}, y_{2}, \ldots, y_{s}}(x)
$$

is bent.

A construction of bent functions

Theorem (Cessmelioğlu, McGuire, M. 2012)
For each $y=\left(y_{1}, y_{2}, \ldots, y_{s}\right) \in \mathbb{F}_{p}^{s}$, let $f_{y}(x): \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}$ be an s-plateaued function. If $\operatorname{supp}\left(\widehat{f}_{y}\right) \cap \operatorname{supp}\left(\widehat{f}_{\bar{y}}\right)=\emptyset$ for $y, \bar{y} \in \mathbb{F}_{p}^{s}, y \neq \bar{y}$, then the function $F\left(x, y_{1}, y_{2}, \ldots, y_{s}\right)$ from \mathbb{F}_{p}^{m+s} to \mathbb{F}_{p} defined by

$$
F\left(x, y_{1}, y_{2}, \ldots, y_{s}\right)=f_{y_{1}, y_{2}, \ldots, y_{s}}(x)
$$

is bent.
For $p=2, s=1$ (Leander, McGuire 2009; Charpin et. al. 2005)

$$
F(x, y)=y f_{1}(x)+(y+1) f_{0}(x)
$$

i.e.

$$
F(x, y)=\left\{\begin{array}{ccc}
f_{0}(x) & : & y=0 \\
f_{1}(x) & : & y=1
\end{array}\right.
$$

Proof

For $a \in \mathbb{F}_{p}^{m}, b \in \mathbb{F}_{p}^{s}$, and putting $y=\left(y_{1}, \ldots, y_{s}\right)$, the Walsh transform \widehat{F} of F at (a, b) is

$$
\begin{aligned}
\widehat{F}(a, b) & =\sum_{x \in \mathbb{F}_{p}^{m}, y \in \mathbb{F}_{p}^{s}} \epsilon_{p}^{F(x, y)-a \cdot x-b \cdot y}=\sum_{y \in \mathbb{F}_{p}^{s}} \epsilon_{p}^{-b \cdot y} \sum_{x \in \mathbb{F}_{p}^{m}} \epsilon_{p}^{F(x, y)-a \cdot x} \\
& =\sum_{y \in \mathbb{F}_{p}^{s}} \epsilon_{p}^{-b \cdot y} \sum_{x \in \mathbb{F}_{p}^{m}} \epsilon_{p}^{f_{y}(x)-a \cdot x}=\sum_{y \in \mathbb{F}_{p}^{s}} \epsilon_{p}^{-b \cdot y} \widehat{f}_{y}(a)
\end{aligned}
$$

As each $a \in \mathbb{F}_{p}^{m}$ belongs to the support of exactly one $\widehat{f}_{y}, y \in \mathbb{F}_{p}^{s}$, for this y we have $|\widehat{F}(a, b)|=\left|\epsilon_{p}^{-b \cdot y} \widehat{f}_{y}(a)\right|=p^{\frac{m+s}{2}}$.

Special case

Let $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ be a bent function.
Then f seen as a function from $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{s}$ to \mathbb{F}_{p}, is s-partially bent with linear space \mathbb{F}_{p}^{s}.

Special case

Let $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ be a bent function.
Then f seen as a function from $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{s}$ to \mathbb{F}_{p}, is s-partially bent with linear space \mathbb{F}_{p}^{s}.
If $\left\{f_{y}: y \in \mathbb{F}_{p}^{s}\right\}$ is a set of bent functions from \mathbb{F}_{p}^{n} to \mathbb{F}_{p} then the set of functions in $m=n+s$ variables $\left\{f_{y}(x)+x_{n+1} y_{1}+\cdots+x_{n+s} y_{s}: y \in \mathbb{F}_{p}^{s}\right\}$ is a set of $p^{s} s$-partially bent functions with Walsh transforms with pairwise disjoint supports.

Special case

Let $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ be a bent function.
Then f seen as a function from $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{s}$ to \mathbb{F}_{p}, is s-partially bent with linear space \mathbb{F}_{p}^{s}.
If $\left\{f_{y}: y \in \mathbb{F}_{p}^{s}\right\}$ is a set of bent functions from \mathbb{F}_{p}^{n} to \mathbb{F}_{p} then the set of functions in $m=n+s$ variables
$\left\{f_{y}(x)+x_{n+1} y_{1}+\cdots+x_{n+s} y_{s}: y \in \mathbb{F}_{p}^{s}\right\}$ is a set of $p^{s} s$-partially bent functions with Walsh transforms with pairwise disjoint supports.

With $\underline{x}=\left(x_{1}, \ldots, x_{n}\right), \bar{x}=\left(x_{n+1}, \ldots, x_{n+s}\right)$, the function

$$
F(\underline{x}, \bar{x}, y)=f_{y}(\underline{x})+x_{n+1} y_{1}+\cdots+x_{n+s} y_{s}:=g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})
$$

is an example for the construction of a bent function.

Applications

- Construction of infinite classes of not weakly regular bent functions (Çeșmelioğlu, McGuire, M., JCTA. 2012)

Applications

- Construction of infinite classes of not weakly regular bent functions (Çeșmelioğlu, McGuire, M., JCTA. 2012)
- Bent functions (ternary) of maximal algebraic degree (Çeșmelioğlu, M., IEEE Trans. Inform. Theory 2012, DCC 2013)

Applications

- Construction of infinite classes of not weakly regular bent functions (Çeșmelioğlu, McGuire, M., JCTA. 2012)
- Bent functions (ternary) of maximal algebraic degree (Çeșmelioğlu, M., IEEE Trans. Inform. Theory 2012, DCC 2013)
- Construction of bent functions of high algebraic degree and its dual simultaneously, self-dual bent functions (Çeșmelioğlu, Pott, M., Adv. Math. Comm. 2013)

Difference set interpretation

Bent function $F: \mathbb{F}_{p}^{n+2 s} \rightarrow \mathbb{F}_{p}$: $F\left(\underline{x}, \bar{x}, y_{1}, \ldots, y_{s}\right)=g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})$.

$$
R=\left\{\left(\underline{x}, \bar{x}, y_{1}, \ldots, y_{s}, g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})\right): \underline{x} \in \mathbb{F}_{p}^{n}, \bar{x} \in \mathbb{F}_{p}^{s}, y_{i} \in \mathbb{F}_{p}\right\}
$$

$\left(p^{n+2 s}, p, p^{n+2 s}, p^{n+2 s-1}\right)$-relative difference set in $\mathbb{F}_{p}^{n+2 s} \times \mathbb{F}_{p}$.

Difference set interpretation

Bent function $F: \mathbb{F}_{p}^{n+2 s} \rightarrow \mathbb{F}_{p}$: $F\left(\underline{x}, \bar{x}, y_{1}, \ldots, y_{s}\right)=g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})$.
$R=\left\{\left(\underline{x}, \bar{x}, y_{1}, \ldots, y_{s}, g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})\right): \underline{x} \in \mathbb{F}_{p}^{n}, \bar{x} \in \mathbb{F}_{p}^{s}, y_{i} \in \mathbb{F}_{p}\right\}$.
$\left(p^{n+2 s}, p, p^{n+2 s}, p^{n+2 s-1}\right)$-relative difference set in $\mathbb{F}_{p}^{n+2 s} \times \mathbb{F}_{p}$.

Analog sets for the s-partially bent functions $g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})$:

$$
R_{\left(y_{1}, \ldots, y_{s}\right)}=\left\{\left(\underline{x}, \bar{x}, g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})\right): \underline{x} \in \mathbb{F}_{p}^{n}, \bar{x} \in \mathbb{F}_{p}^{s}\right\}
$$

subset of $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{s} \times \mathbb{F}_{p} \simeq \mathbb{F}_{p}^{n+s+1}$.

Difference set interpretation

$$
\begin{aligned}
R= & \left\{\left(\underline{x}, \bar{x}, y_{1}, \ldots, y_{s}, g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})\right): \underline{x} \in \mathbb{F}_{p}^{n}, \bar{x} \in \mathbb{F}_{p}^{s}, y_{i} \in \mathbb{F}_{p}\right\} \\
& R_{\left(y_{1}, \ldots, y_{s}\right)}=\left\{\left(\underline{x}, \bar{x}, g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})\right): \underline{x} \in \mathbb{F}_{p}^{n}, \bar{x} \in \mathbb{F}_{p}^{s}\right\}
\end{aligned}
$$

Obtaining the relative difference set R from the sets $R_{\left(y_{1}, \ldots, y_{s}\right)}$:

$$
R=\bigcup_{\left(y_{1}, \ldots, y_{s}\right) \in \mathbb{F}_{p}^{s}}\left(y_{1}, \ldots, y_{s}\right)+R_{\left(y_{1}, \ldots, y_{s}\right)} .
$$

Note, $\left(y_{1}, \ldots, y_{s}\right)=\left(0, \ldots, 0, y_{1}, \ldots, y_{s}, 0\right)$ are coset representatives of $\mathbb{F}_{\rho}^{n+s+1}$ in $\mathbb{F}_{\rho}^{n+2 s+1}$.

Difference set interpretation

$$
\begin{aligned}
R= & \left\{\left(\underline{x}, \bar{x}, y_{1}, \ldots, y_{s}, g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})\right): \underline{x} \in \mathbb{F}_{p}^{n}, \bar{x} \in \mathbb{F}_{p}^{s}, y_{i} \in \mathbb{F}_{p}\right\} \\
& R_{\left(y_{1}, \ldots, y_{s}\right)}=\left\{\left(\underline{x}, \bar{x}, g_{\left(y_{1}, \ldots, y_{s}\right)}(\underline{x}, \bar{x})\right): \underline{x} \in \mathbb{F}_{p}^{n}, \bar{x} \in \mathbb{F}_{p}^{s}\right\}
\end{aligned}
$$

Obtaining the relative difference set R from the sets $R_{\left(y_{1}, \ldots, y_{s}\right)}$:

$$
R=\bigcup_{\left(y_{1}, \ldots, y_{s}\right) \in \mathbb{F}_{p}^{s}}\left(y_{1}, \ldots, y_{s}\right)+R_{\left(y_{1}, \ldots, y_{s}\right)} .
$$

Note, $\left(y_{1}, \ldots, y_{s}\right)=\left(0, \ldots, 0, y_{1}, \ldots, y_{s}, 0\right)$ are coset representatives of \mathbb{F}_{p}^{n+s+1} in $\mathbb{F}_{\rho}^{n+2 s+1}$.
One can take any set of coset representatives $\left\{a_{y} \mid y \in \mathbb{F}_{p}^{s}\right\}$ of $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{s+1}$ in $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{2 s+1}$ and form

$$
R=\bigcup_{y \in \mathbb{E}_{p}^{s}} a_{y}+R_{y} .
$$

Comparison with Davis, Jedwab 1997

$R_{\left(y_{1}, \ldots, y_{s}\right)} \longleftrightarrow$ building block in $G=\mathbb{F}_{p}^{n+s+1}$:
"A subset R of a group G is called a building block in G if the magnitude of all nonprincipal character sums over R is either 0 or m."

Comparison with Davis, Jedwab 1997

$R_{\left(y_{1}, \ldots, y_{s}\right)} \longleftrightarrow$ building block in $G=\mathbb{F}_{p}^{n+s+1}$:
" A subset R of a group G is called a building block in G if the magnitude of all nonprincipal character sums over R is either 0 or m."

The collection of the sets $R_{\left(y_{1}, \ldots, y_{s}\right)}$ forms an $(a, m, t)=\left(p^{n+s}, p^{(n+2 s) / 2}, p^{s}\right)$ building set in $G=\mathbb{F}_{p}^{n+s+1}$ relative to the subgroup $U=\{0\} \times\{0\} \times \cdots \times\{0\} \times \mathbb{F}_{p}$ of \mathbb{F}_{p}^{n+s+1} :
"An (a, m, t) building set in G relative to U is a collection of t building blocks with magnitude m in G, each containing a elements, such that for every nonprincipal character χ of G, the following holds:

1. Exactly one of the building blocks has nonzero character sum if χ is nonprincipal on U.
2. If χ is principal on U, then character sums for all building blocks are equal to zero."

Strongly Regular Graph Interpretation

Strongly Regular Graph Interpretation

Theorem (Çeșmelioğlu, M.)
Let $g_{0}, g_{1}: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ be two (distinct) bent functions in even dimension $n, g_{0}(0)=g_{1}(0)=0$ such that

- both g_{0}, g_{1} are regular, or both g_{0}, g_{1} are weakly regular but not regular,
- $g_{i}(t x)=t^{k} g_{i}(x)$ for all $t \in \mathbb{F}_{p}$ and an integer k with $\operatorname{gcd}(k-1, p-1)=1, i=0,1$.
Then the function $F: \mathbb{F}_{p}^{n+2} \rightarrow \mathbb{F}_{p}$

$$
F(x, y, z)=\left(g_{1}(x)-g_{0}(x)\right) z^{p-1}+u y z^{k-1}+g_{0}(x)
$$

for a non-zero element $u \in \mathbb{F}_{p}$ is a weakly regular bent function satisfying $F(t(x, y, z))=t^{k} F(x, y, z)$ for all $t \in \mathbb{F}_{p}$.

Strongly Regular Graph Interpretation

Theorem (Çeșmelioğlu, M.)
Let $g_{0}, g_{1}: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ be two (distinct) bent functions in even dimension $n, g_{0}(0)=g_{1}(0)=0$ such that

- both g_{0}, g_{1} are regular, or both g_{0}, g_{1} are weakly regular but not regular,
- $g_{i}(t x)=t^{k} g_{i}(x)$ for all $t \in \mathbb{F}_{p}$ and an integer k with $\operatorname{gcd}(k-1, p-1)=1, i=0,1$.
Then the function $F: \mathbb{F}_{p}^{n+2} \rightarrow \mathbb{F}_{p}$

$$
F(x, y, z)=\left(g_{1}(x)-g_{0}(x)\right) z^{p-1}+u y z^{k-1}+g_{0}(x)
$$

for a non-zero element $u \in \mathbb{F}_{p}$ is a weakly regular bent function satisfying $F(t(x, y, z))=t^{k} F(x, y, z)$ for all $t \in \mathbb{F}_{p}$.

$$
F(x, y, a)=\left\{\begin{aligned}
g_{0}(x, y)=g_{0}(x) & : \quad a=0 \\
g_{1}(x)+u a^{k-1} y & : \quad a \neq 0
\end{aligned}\right.
$$

is a 1 -partially bent function in $n+1$ variables for every $a \in \mathbb{F}_{p}$.

Strongly Regular Graph Interpretation

Strongly regular graph for

$$
F(x, y, z)=\left(g_{1}(x)-g_{0}(x)\right) z^{p-1}+u y z^{k-1}+g_{0}(x)
$$

Set of vertices: $\mathbb{F}_{p}^{n+2}=\mathbb{F}_{p}^{n} \times \mathbb{F}_{p} \times \mathbb{F}_{p}$.
The vertices $(x, y, z),\left(x_{1}, y_{1}, z_{1}\right)$ are adjacent if and only if $F\left(x-x_{1}, y-y_{1}, z-z_{1}\right)$ is a nonzero square (nonsquare, equal zero).

Strongly Regular Graph Interpretation

Strongly regular graph for

$$
F(x, y, z)=\left(g_{1}(x)-g_{0}(x)\right) z^{p-1}+u y z^{k-1}+g_{0}(x)
$$

Set of vertices: $\mathbb{F}_{p}^{n+2}=\mathbb{F}_{p}^{n} \times \mathbb{F}_{p} \times \mathbb{F}_{p}$.
The vertices $(x, y, z),\left(x_{1}, y_{1}, z_{1}\right)$ are adjacent if and only if $F\left(x-x_{1}, y-y_{1}, z-z_{1}\right)$ is a nonzero square (nonsquare, equal zero).

Observation: Since $F\left(x-x_{1}, y-y_{1}, z-z_{1}\right)=$

$$
\left\{\begin{aligned}
& g_{0}\left(x-x_{1}\right): \\
& z_{1}=z \\
& g_{1}\left(x-x_{1}\right)+u\left(y-y_{1}\right)\left(z-z_{1}\right)^{k-1}: \\
& z_{1} \neq z
\end{aligned}\right.
$$

Strongly Regular Graph Interpretation

Strongly regular graph for
$F(x, y, z)=\left(g_{1}(x)-g_{0}(x)\right) z^{p-1}+u y z^{k-1}+g_{0}(x):$
Set of vertices: $\mathbb{F}_{p}^{n+2}=\mathbb{F}_{p}^{n} \times \mathbb{F}_{p} \times \mathbb{F}_{p}$.
The vertices $(x, y, z),\left(x_{1}, y_{1}, z_{1}\right)$ are adjacent if and only if $F\left(x-x_{1}, y-y_{1}, z-z_{1}\right)$ is a nonzero square (nonsquare, equal zero).
Observation: Since $F\left(x-x_{1}, y-y_{1}, z-z_{1}\right)=$

$$
\left\{\begin{aligned}
g_{0}\left(x-x_{1}\right) & : \quad z_{1}=z, \\
g_{1}\left(x-x_{1}\right)+u\left(y-y_{1}\right)\left(z-z_{1}\right)^{k-1} & : \quad z_{1} \neq z
\end{aligned}\right.
$$

- $(x, y, z),\left(x_{1}, y_{1}, z\right)$ are adjacent if and only if $g_{0}\left(x-x_{1}\right)$ is a nonzero square (nonsquare, equal zero), i.e. x and x_{1} are adjacent in the strongly regular graph of g_{0},

Strongly Regular Graph Interpretation

Strongly regular graph for
$F(x, y, z)=\left(g_{1}(x)-g_{0}(x)\right) z^{p-1}+u y z^{k-1}+g_{0}(x):$
Set of vertices: $\mathbb{F}_{p}^{n+2}=\mathbb{F}_{p}^{n} \times \mathbb{F}_{p} \times \mathbb{F}_{p}$.
The vertices $(x, y, z),\left(x_{1}, y_{1}, z_{1}\right)$ are adjacent if and only if $F\left(x-x_{1}, y-y_{1}, z-z_{1}\right)$ is a nonzero square (nonsquare, equal zero).

Observation: Since $F\left(x-x_{1}, y-y_{1}, z-z_{1}\right)=$

$$
\left\{\begin{aligned}
g_{0}\left(x-x_{1}\right) & : \quad z_{1}=z \\
g_{1}\left(x-x_{1}\right)+u\left(y-y_{1}\right)\left(z-z_{1}\right)^{k-1} & : \quad z_{1} \neq z
\end{aligned}\right.
$$

- $(x, y, z),\left(x_{1}, y_{1}, z\right)$ are adjacent if and only if $g_{0}\left(x-x_{1}\right)$ is a nonzero square (nonsquare, equal zero), i.e. x and x_{1} are adjacent in the strongly regular graph of g_{0},
- (x, y, z), $\left(x_{1}, y_{1}, z_{1}\right), z_{1} \neq z$, are adjacent if and only if $g_{1}\left(x-x_{1}\right)+u\left(y-y_{1}\right)\left(z-z_{1}\right)^{k-1}$ is a nonzero square (nonsquare, equal zero).

Questions

- Find initial functions.

Known examples: Quadratic functions, $f(x)=\operatorname{Tr}_{\mathrm{n}}\left(x^{p^{3 r}+p^{2 r}-p^{r}+1}+x^{2}\right), n=4 r$.
For $p=3$,
$f(x)=\operatorname{Tr}_{\mathrm{n}}\left(\alpha x^{\left(3^{r}+1\right) / 2}\right), \operatorname{gcd}(r, 2 n)=1$, and
$f(x)=\operatorname{Tr}_{\mathrm{n}}\left(\alpha x^{t\left(3^{r}-1\right)}\right), f(x)=\operatorname{Tr}_{\mathrm{n}}\left(\alpha x^{\left(3^{r}-1\right) / 4+3^{r}+1}\right)$,
conditions on r, n, α.
All for $k=2$.

- Find functions for other k.

Example: $f(x, y)=x_{1} y_{1}^{k-1}+x_{2} y_{2}^{k-1}+\cdots+x_{m} y_{m}^{k-1}$ (homogeneous).

- Find homogeneous bent functions.

