Bent functions, difference sets and strongly regular graphs

Wilfried Meidl

Sabancı University

December 1, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Bent Functions, Definition, Properties
- Bent Functions and
 - Difference Sets
 - Strongly Regular Graphs
- A Construction of Bent Functions
- Interpretation with Difference Sets

Graph Interpretation

Walsh (Fourier) Transform

Definition

 $\begin{array}{l} p: \text{ a prime} \\ f: V_n \longrightarrow \mathbb{F}_p \\ \text{For each } b \in V_n, \end{array}$

$$\widehat{f}(b) = \sum_{x \in V_n} \epsilon_p^{f(x) - \langle b, x \rangle}, \ \ \epsilon_p = e^{2\pi i/p}.$$

Remark

For
$$V_n = \mathbb{F}_p^n$$
, $\langle b, x \rangle = b \cdot x$, for $V_n = \mathbb{F}_{p^n}$, $\langle b, x \rangle = \operatorname{Tr}_n(bx)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Walsh (Fourier) Transform

Definition

 $\begin{array}{l} p: \text{ a prime} \\ f: V_n \longrightarrow \mathbb{F}_p \\ \text{For each } b \in V_n, \end{array}$

$$\widehat{f}(b) = \sum_{x \in V_n} \epsilon_p^{f(x) - \langle b, x \rangle}, \ \epsilon_p = e^{2\pi i/p}.$$

Remark

For $V_n = \mathbb{F}_p^n$, $\langle b, x \rangle = b \cdot x$, for $V_n = \mathbb{F}_{p^n}$, $\langle b, x \rangle = \operatorname{Tr}_n(bx)$. Definition $|\widehat{f}(b)| = p^{n/2}$ for all $b \in V_n \Rightarrow f$ is a bent function.

Walsh (Fourier) Transform

Definition

p: a prime $f: V_n \longrightarrow \mathbb{F}_p$ $For each <math>b \in V_n$,

$$\widehat{f}(b) = \sum_{x \in V_n} \epsilon_p^{f(x) - \langle b, x \rangle}, \ \epsilon_p = e^{2\pi i/p}.$$

Remark

For $V_n = \mathbb{F}_p^n$, $\langle b, x \rangle = b \cdot x$, for $V_n = \mathbb{F}_{p^n}$, $\langle b, x \rangle = \operatorname{Tr}_n(bx)$.

 $|\hat{f}(b)| = p^{n/2}$ for all $b \in V_n \Rightarrow f$ is a bent function. Alternatively, $f: V_n \longrightarrow \mathbb{F}_p$ is bent if and only if the derivative of f in direction a

$$D_a f(x) = f(x+a) - f(x)$$

is balanced for all $a \in V_n$, $a \neq 0$.

Walsh coefficients $\hat{f}(b)$

For Boolean bent functions

$$\widehat{f}(b) = \pm 2^{n/2}.$$

(Kumar-Scholz-Welch 1985) For p-ary bent functions,

 $\widehat{f}(b) = \begin{cases} \pm p^{n/2} \epsilon_p^{f^*(b)} & : n \text{ even or } n \text{ odd and } p \equiv 1 \mod 4 \\ \pm i p^{n/2} \epsilon_p^{f^*(b)} & : n \text{ odd and } p \equiv 3 \mod 4, \end{cases}$

for a function $f^*: V_n \to \mathbb{F}_p$, the so called *dual* function of f.

Regularity of Bent Functions

Let $f: V_n \to \mathbb{F}_p$ be a bent function. Then

$$\widehat{f}(b) = \zeta \ p^{n/2} \epsilon_p^{f^*(b)}, \text{ for all } b \in V_n.$$

- ζ can only be ± 1 or $\pm i$.
 - ♦ *f* is called regular if for all *b* ∈ *V*_{*n*}, $\zeta = 1$.
 - ♦ *f* is called weakly regular if, for all *b* ∈ *V*_{*n*}, ζ is fixed.
 - \diamond If ζ changes with b then f is called not weakly regular.

Plateaued Functions, Partially Bent Functions

Definition

 $f: V_n \to \mathbb{F}_p$ is called s-plateaued if, for all $b \in V_n$, $|\widehat{f}(b)| = p^{\frac{n+s}{2}}$ or 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Plateaued Functions, Partially Bent Functions

Definition

 $f: V_n \to \mathbb{F}_p$ is called s-plateaued if, for all $b \in V_n$, $|\widehat{f}(b)| = p^{\frac{n+s}{2}}$ or 0.

 $f: V_n \to \mathbb{F}_p$ is called partially bent if, for all $a \in V_n$, $D_a f(x)$ is balanced or constant.

Plateaued Functions, Partially Bent Functions

Definition

 $f: V_n \to \mathbb{F}_p$ is called s-plateaued if, for all $b \in V_n$, $|\widehat{f}(b)| = p^{\frac{n+s}{2}}$ or 0.

 $f: V_n \to \mathbb{F}_p$ is called partially bent if, for all $a \in V_n$, $D_a f(x)$ is balanced or constant.

Fact:

The set of elements $a \in V_n$ for which $D_a f(x)$ is constant is a subspace of V_n , the linear space Λ of f.

Partially bent functions are *s*-plateaued, *s* is the dimension of Λ . We call *f* then *s*-partially bent.

Boolean Bent Functions and Difference Sets

Recall:

Let G be a finite (abelian) group of order ν . A subset D of G of cardinality k is called a (ν, k, λ) -difference set in G if every element $g \in G$, different from the identity, can be written as $d_1 - d_2$, $d_1, d_2 \in D$, in exactly λ different ways.

Hadamard difference set in elementary abelian 2-group: $(\nu, k, \lambda) = (2^n, 2^{n-1} \pm 2^{\frac{n}{2}-1}, 2^{n-2} \pm 2^{\frac{n}{2}-1}).$

Theorem

A Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is a bent function if and only if $D = \{x \in \mathbb{F}_2^n \mid f(x) = 1\}$ is a Hadamard difference set in \mathbb{F}_2^n .

Bent Functions and Relative Difference Sets

Let *G* be a group of order *mn* and let *N* be a subgroup of order *n*. A *k*-subset *R* of *G* is called an (m, n, k, λ) -relative difference set in *G* relative to *N* if every element $g \in G \setminus N$ can be represented in exactly λ ways in the form $r_1 - r_2$, $r_1, r_2 \in R$, and no non-identity element in *N* has such a representation.

Theorem

For a function $f : \mathbb{F}_p^n \to \mathbb{F}_p$ let $R = \{(x, f(x)) \mid x \in \mathbb{F}_p^n\} \subset \mathbb{F}_p^n \times \mathbb{F}_p$. The set R is a (p^n, p, p^n, p^{n-1}) -relative difference set in $\mathbb{F}_p^n \times \mathbb{F}_p$ (relative to \mathbb{F}_p) if and only if f is a bent function.

(日) (同) (三) (三) (三) (○) (○)

Bent functions and strongly regular graphs For a function $f : \mathbb{F}_p^n \to \mathbb{F}_p$, p odd, let

$$D_0 = \{x \in \mathbb{F}_p^n \mid f(x) = 0\},\$$

$$D_S = \{x \in \mathbb{F}_p^n \mid f(x) \text{ is a nonzero square in } \mathbb{F}_p\},\$$

$$D_N = \{x \in \mathbb{F}_p^n \mid f(x) \text{ is a nonsquare } \mathbb{F}_p\}.$$

Bent functions and strongly regular graphs For a function $f : \mathbb{F}_p^n \to \mathbb{F}_p$, p odd, let

$$\begin{array}{lll} D_0 &=& \{x \in \mathbb{F}_p^n \mid f(x) = 0\}, \\ D_S &=& \{x \in \mathbb{F}_p^n \mid f(x) \text{ is a nonzero square in } \mathbb{F}_p\}, \\ D_N &=& \{x \in \mathbb{F}_p^n \mid f(x) \text{ is a nonsquare } \mathbb{F}_p\}. \end{array}$$

Theorem

(Yin Tan et al. 2010/2011) For an odd prime p let $f : \mathbb{F}_p^n \to \mathbb{F}_p$ be a weakly regular bent function in even dimension n, with f(0) = 0, for which there exists a constant k with gcd(k-1, p-1) = 1 such that for all $t \in \mathbb{F}_p$

$$f(tx)=t^kf(x).$$

Then the Cayley graphs of the sets $D_0 \setminus \{0\}$, D_S , D_N are strongly regular graphs.

Bent functions and strongly regular graphs For a function $f : \mathbb{F}_p^n \to \mathbb{F}_p$, p odd, let

$$\begin{array}{lll} D_0 &=& \{x \in \mathbb{F}_p^n \mid f(x) = 0\}, \\ D_S &=& \{x \in \mathbb{F}_p^n \mid f(x) \text{ is a nonzero square in } \mathbb{F}_p\}, \\ D_N &=& \{x \in \mathbb{F}_p^n \mid f(x) \text{ is a nonsquare } \mathbb{F}_p\}. \end{array}$$

Theorem

(Yin Tan et al. 2010/2011) For an odd prime p let $f : \mathbb{F}_p^n \to \mathbb{F}_p$ be a weakly regular bent function in even dimension n, with f(0) = 0, for which there exists a constant k with gcd(k-1, p-1) = 1 such that for all $t \in \mathbb{F}_p$

$$f(tx) = t^k f(x).$$

Then the Cayley graphs of the sets $D_0 \setminus \{0\}$, D_S , D_N are strongly regular graphs.

Vertices: Elements of \mathbb{F}_p^n . The vertices x, y are adjacent if $f(x-y) \in D_0 \setminus \{0\}$ $(f(x-y) \in D_S, f(x-y) \in D_N)$.

A construction of bent functions

Theorem (Çeşmelioğlu, McGuire, M. 2012) For each $y = (y_1, y_2, ..., y_s) \in \mathbb{F}_p^s$, let $f_y(x) : \mathbb{F}_p^m \to \mathbb{F}_p$ be an s-plateaued function. If $supp(\hat{f}_y) \cap supp(\hat{f}_{\bar{y}}) = \emptyset$ for $y, \bar{y} \in \mathbb{F}_p^s, y \neq \bar{y}$, then the function $F(x, y_1, y_2, ..., y_s)$ from \mathbb{F}_p^{m+s} to \mathbb{F}_p defined by

$$F(x, y_1, y_2, \ldots, y_s) = f_{y_1, y_2, \ldots, y_s}(x)$$

is bent.

A construction of bent functions

Theorem (Çeşmelioğlu, McGuire, M. 2012) For each $y = (y_1, y_2, ..., y_s) \in \mathbb{F}_p^s$, let $f_y(x) : \mathbb{F}_p^m \to \mathbb{F}_p$ be an s-plateaued function. If $supp(\widehat{f_y}) \cap supp(\widehat{f_y}) = \emptyset$ for $y, \overline{y} \in \mathbb{F}_p^s, y \neq \overline{y}$, then the function $F(x, y_1, y_2, ..., y_s)$ from \mathbb{F}_p^{m+s} to \mathbb{F}_p defined by

$$F(x, y_1, y_2, \ldots, y_s) = f_{y_1, y_2, \ldots, y_s}(x)$$

is bent.

For p = 2, s = 1 (Leander, McGuire 2009; Charpin et. al. 2005)

$$F(x,y) = yf_1(x) + (y+1)f_0(x),$$

i.e.

$$F(x,y) = \begin{cases} f_0(x) & : \ y = 0, \\ f_1(x) & : \ y = 1. \end{cases}$$

Proof

For $a \in \mathbb{F}_p^m$, $b \in \mathbb{F}_p^s$, and putting $y = (y_1, \dots, y_s)$, the Walsh transform \widehat{F} of F at (a, b) is

$$\begin{split} \widehat{F}(a,b) &= \sum_{x \in \mathbb{F}_p^m, y \in \mathbb{F}_p^s} \epsilon_p^{F(x,y) - a \cdot x - b \cdot y} = \sum_{y \in \mathbb{F}_p^s} \epsilon_p^{-b \cdot y} \sum_{x \in \mathbb{F}_p^m} \epsilon_p^{F(x,y) - a \cdot x} \\ &= \sum_{y \in \mathbb{F}_p^s} \epsilon_p^{-b \cdot y} \sum_{x \in \mathbb{F}_p^m} \epsilon_p^{f_y(x) - a \cdot x} = \sum_{y \in \mathbb{F}_p^s} \epsilon_p^{-b \cdot y} \widehat{f_y}(a). \end{split}$$

As each $a \in \mathbb{F}_p^m$ belongs to the support of exactly one $\widehat{f_y}$, $y \in \mathbb{F}_p^s$, for this y we have $\left|\widehat{F}(a,b)\right| = |\epsilon_p^{-b \cdot y}\widehat{f_y}(a)| = p^{\frac{m+s}{2}}$.

Special case

Let $f : \mathbb{F}_p^n \to \mathbb{F}_p$ be a bent function. Then f seen as a function from $\mathbb{F}_p^n \times \mathbb{F}_p^s$ to \mathbb{F}_p , is *s*-partially bent with linear space \mathbb{F}_p^s .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Special case

Let $f : \mathbb{F}_p^n \to \mathbb{F}_p$ be a bent function. Then f seen as a function from $\mathbb{F}_p^n \times \mathbb{F}_p^s$ to \mathbb{F}_p , is *s*-partially bent with linear space \mathbb{F}_p^s .

If $\{f_y : y \in \mathbb{F}_p^s\}$ is a set of bent functions from \mathbb{F}_p^n to \mathbb{F}_p then the set of functions in m = n + s variables $\{f_y(x) + x_{n+1}y_1 + \cdots + x_{n+s}y_s : y \in \mathbb{F}_p^s\}$ is a set of p^s s-partially bent functions with Walsh transforms with pairwise disjoint supports.

Special case

Let $f : \mathbb{F}_p^n \to \mathbb{F}_p$ be a bent function. Then f seen as a function from $\mathbb{F}_p^n \times \mathbb{F}_p^s$ to \mathbb{F}_p , is *s*-partially bent with linear space \mathbb{F}_p^s .

If $\{f_y : y \in \mathbb{F}_p^s\}$ is a set of bent functions from \mathbb{F}_p^n to \mathbb{F}_p then the set of functions in m = n + s variables $\{f_y(x) + x_{n+1}y_1 + \cdots + x_{n+s}y_s : y \in \mathbb{F}_p^s\}$ is a set of p^s s-partially bent functions with Walsh transforms with pairwise disjoint supports.

With
$$\underline{x} = (x_1, \ldots, x_n)$$
, $\overline{x} = (x_{n+1}, \ldots, x_{n+s})$, the function

$$F(\underline{x},\overline{x},y) = f_y(\underline{x}) + x_{n+1}y_1 + \cdots + x_{n+s}y_s := g_{(y_1,\ldots,y_s)}(\underline{x},\overline{x})$$

is an example for the construction of a bent function.

Applications

 Construction of infinite classes of not weakly regular bent functions (Çeşmelioğlu, McGuire, M., JCTA. 2012)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Applications

- Construction of infinite classes of not weakly regular bent functions (Çeşmelioğlu, McGuire, M., JCTA. 2012)
- Bent functions (ternary) of maximal algebraic degree (Çeşmelioğlu, M., IEEE Trans. Inform. Theory 2012, DCC 2013)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Applications

- Construction of infinite classes of not weakly regular bent functions (Çeşmelioğlu, McGuire, M., JCTA. 2012)
- Bent functions (ternary) of maximal algebraic degree (Çeşmelioğlu, M., IEEE Trans. Inform. Theory 2012, DCC 2013)
- Construction of bent functions of high algebraic degree and its dual simultaneously, self-dual bent functions (Çeşmelioğlu, Pott, M., Adv. Math. Comm. 2013)

Bent function
$$F : \mathbb{F}_p^{n+2s} \to \mathbb{F}_p$$
:
 $F(\underline{x}, \overline{x}, y_1, \dots, y_s) = g_{(y_1, \dots, y_s)}(\underline{x}, \overline{x}).$
 $R = \{(\underline{x}, \overline{x}, y_1, \dots, y_s, g_{(y_1, \dots, y_s)}(\underline{x}, \overline{x})) : \underline{x} \in \mathbb{F}_p^n, \overline{x} \in \mathbb{F}_p^s, y_i \in \mathbb{F}_p\}.$
 $(p^{n+2s}, p, p^{n+2s}, p^{n+2s-1})$ -relative difference set in $\mathbb{F}_p^{n+2s} \times \mathbb{F}_p.$

<□ > < @ > < E > < E > E のQ @

. .

Bent function
$$F : \mathbb{F}_p^{n+2s} \to \mathbb{F}_p$$
:
 $F(\underline{x}, \overline{x}, y_1, \dots, y_s) = g_{(y_1, \dots, y_s)}(\underline{x}, \overline{x}).$
 $R = \{(\underline{x}, \overline{x}, y_1, \dots, y_s, g_{(y_1, \dots, y_s)}(\underline{x}, \overline{x})) : \underline{x} \in \mathbb{F}_p^n, \overline{x} \in \mathbb{F}_p^s, y_i \in \mathbb{F}_p\}.$
 $(p^{n+2s}, p, p^{n+2s}, p^{n+2s-1})$ -relative difference set in $\mathbb{F}_p^{n+2s} \times \mathbb{F}_p.$

Analog sets for the *s*-partially bent functions $g_{(y_1,...,y_s)}(\underline{x}, \overline{x})$:

$$R_{(y_1,...,y_s)} = \{ (\underline{x}, \overline{x}, g_{(y_1,...,y_s)}(\underline{x}, \overline{x})) : \underline{x} \in \mathbb{F}_p^n, \overline{x} \in \mathbb{F}_p^s \},$$

subset of $\mathbb{F}_p^n \times \mathbb{F}_p^s \times \mathbb{F}_p \simeq \mathbb{F}_p^{n+s+1}.$

$$R = \{ (\underline{x}, \overline{x}, y_1, \dots, y_s, g_{(y_1, \dots, y_s)}(\underline{x}, \overline{x})) : \underline{x} \in \mathbb{F}_p^n, \overline{x} \in \mathbb{F}_p^s, y_i \in \mathbb{F}_p \}$$
$$R_{(y_1, \dots, y_s)} = \{ (\underline{x}, \overline{x}, g_{(y_1, \dots, y_s)}(\underline{x}, \overline{x})) : \underline{x} \in \mathbb{F}_p^n, \overline{x} \in \mathbb{F}_p^s \}$$

Obtaining the relative difference set R from the sets $R_{(y_1,...,y_s)}$:

$$R = \bigcup_{(y_1,\ldots,y_s) \in \mathbb{F}_p^s} (y_1,\ldots,y_s) + R_{(y_1,\ldots,y_s)}$$

Note, $(y_1, \ldots, y_s) = (0, \ldots, 0, y_1, \ldots, y_s, 0)$ are coset representatives of \mathbb{F}_p^{n+s+1} in \mathbb{F}_p^{n+2s+1} .

$$R = \{ (\underline{x}, \overline{x}, y_1, \dots, y_s, g_{(y_1, \dots, y_s)}(\underline{x}, \overline{x})) : \underline{x} \in \mathbb{F}_p^n, \overline{x} \in \mathbb{F}_p^s, y_i \in \mathbb{F}_p \}$$
$$R_{(y_1, \dots, y_s)} = \{ (\underline{x}, \overline{x}, g_{(y_1, \dots, y_s)}(\underline{x}, \overline{x})) : \underline{x} \in \mathbb{F}_p^n, \overline{x} \in \mathbb{F}_p^s \}$$

Obtaining the relative difference set R from the sets $R_{(y_1,...,y_s)}$:

$$R = \bigcup_{(y_1,\ldots,y_s)\in\mathbb{F}_p^s} (y_1,\ldots,y_s) + R_{(y_1,\ldots,y_s)}$$

Note, $(y_1, \ldots, y_s) = (0, \ldots, 0, y_1, \ldots, y_s, 0)$ are coset representatives of \mathbb{F}_p^{n+s+1} in \mathbb{F}_p^{n+2s+1} .

One can take any set of coset representatives $\{a_y \mid y \in \mathbb{F}_p^s\}$ of $\mathbb{F}_p^n \times \mathbb{F}_p^{s+1}$ in $\mathbb{F}_p^n \times \mathbb{F}_p^{2s+1}$ and form

$$R=\bigcup_{y\in\mathbb{F}_p^s}a_y+R_y.$$

Comparison with Davis, Jedwab 1997

 $R_{(y_1,...,y_s)} \longleftrightarrow$ building block in $G = \mathbb{F}_p^{n+s+1}$: "A subset R of a group G is called a building block in G if the magnitude of all nonprincipal character sums over R is either 0 or m."

Comparison with Davis, Jedwab 1997

 $R_{(y_1,...,y_s)} \longleftrightarrow$ building block in $G = \mathbb{F}_p^{n+s+1}$: "A subset R of a group G is called a building block in G if the magnitude of all nonprincipal character sums over R is either 0 or m."

The collection of the sets $R_{(y_1,...,y_s)}$ forms an $(a, m, t) = (p^{n+s}, p^{(n+2s)/2}, p^s)$ building set in $G = \mathbb{F}_p^{n+s+1}$ relative to the subgroup $U = \{0\} \times \{0\} \times \cdots \times \{0\} \times \mathbb{F}_p$ of \mathbb{F}_p^{n+s+1} : "An (a, m, t) building set in G relative to U is a collection of t building blocks with magnitude m in G, each containing a elements, such that for every nonprincipal character χ of G, the following holds:

- 1. Exactly one of the building blocks has nonzero character sum if χ is nonprincipal on U.
- 2. If χ is principal on U, then character sums for all building blocks are equal to zero."

Theorem (Çeşmelioğlu, M.)

Let $g_0, g_1 : \mathbb{F}_p^n \to \mathbb{F}_p$ be two (distinct) bent functions in even dimension n, $g_0(0) = g_1(0) = 0$ such that

- ▶ both g₀, g₁ are regular, or both g₀, g₁ are weakly regular but not regular,
- ▶ $g_i(tx) = t^k g_i(x)$ for all $t \in \mathbb{F}_p$ and an integer k with gcd(k-1, p-1) = 1, i = 0, 1.

Then the function $F : \mathbb{F}_p^{n+2} \to \mathbb{F}_p$

$$F(x, y, z) = (g_1(x) - g_0(x))z^{p-1} + uyz^{k-1} + g_0(x),$$

for a non-zero element $u \in \mathbb{F}_p$ is a weakly regular bent function satisfying $F(t(x, y, z)) = t^k F(x, y, z)$ for all $t \in \mathbb{F}_p$.

Theorem (Çeşmelioğlu, M.)

Let $g_0, g_1 : \mathbb{F}_p^n \to \mathbb{F}_p$ be two (distinct) bent functions in even dimension n, $g_0(0) = g_1(0) = 0$ such that

- ▶ both g₀, g₁ are regular, or both g₀, g₁ are weakly regular but not regular,
- ▶ $g_i(tx) = t^k g_i(x)$ for all $t \in \mathbb{F}_p$ and an integer k with gcd(k-1, p-1) = 1, i = 0, 1.

Then the function $F : \mathbb{F}_p^{n+2} \to \mathbb{F}_p$

$$F(x, y, z) = (g_1(x) - g_0(x))z^{p-1} + uyz^{k-1} + g_0(x),$$

for a non-zero element $u \in \mathbb{F}_p$ is a weakly regular bent function satisfying $F(t(x, y, z)) = t^k F(x, y, z)$ for all $t \in \mathbb{F}_p$.

$$F(x, y, a) = \left\{ egin{array}{ccc} g_0(x, y) = g_0(x) & : & a = 0, \ g_1(x) + u a^{k-1} y & : & a
eq 0 \end{array}
ight.$$

is a 1-partially bent function in n+1 variables for every $a \in \mathbb{F}_p$. $a \in \mathbb{F}_p$.

Strongly regular graph for $F(x, y, z) = (g_1(x) - g_0(x))z^{p-1} + uyz^{k-1} + g_0(x)$: Set of vertices: $\mathbb{F}_p^{n+2} = \mathbb{F}_p^n \times \mathbb{F}_p \times \mathbb{F}_p$. The vertices (x, y, z), (x_1, y_1, z_1) are adjacent if and only if $F(x - x_1, y - y_1, z - z_1)$ is a nonzero square (nonsquare, equal

zero).

Strongly regular graph for

$$F(x, y, z) = (g_1(x) - g_0(x))z^{p-1} + uyz^{k-1} + g_0(x):$$

Set of vertices: $\mathbb{F}_{p}^{n+2} = \mathbb{F}_{p}^{n} \times \mathbb{F}_{p} \times \mathbb{F}_{p}$.

The vertices (x, y, z), (x_1, y_1, z_1) are adjacent if and only if $F(x - x_1, y - y_1, z - z_1)$ is a nonzero square (nonsquare, equal zero).

Observation: Since $F(x - x_1, y - y_1, z - z_1) =$

$$\begin{cases} g_0(x-x_1) &: z_1 = z, \\ g_1(x-x_1) + u(y-y_1)(z-z_1)^{k-1} &: z_1 \neq z \end{cases}$$

Strongly regular graph for

$$F(x, y, z) = (g_1(x) - g_0(x))z^{p-1} + uyz^{k-1} + g_0(x):$$

Set of vertices: $\mathbb{F}_p^{n+2} = \mathbb{F}_p^n \times \mathbb{F}_p \times \mathbb{F}_p$.

The vertices (x, y, z), (x_1, y_1, z_1) are adjacent if and only if $F(x - x_1, y - y_1, z - z_1)$ is a nonzero square (nonsquare, equal zero).

Observation: Since $F(x - x_1, y - y_1, z - z_1) =$

$$\begin{cases} g_0(x-x_1) &: z_1 = z, \\ g_1(x-x_1) + u(y-y_1)(z-z_1)^{k-1} &: z_1 \neq z \end{cases}$$

► (x, y, z), (x₁, y₁, z) are adjacent if and only if g₀(x - x₁) is a nonzero square (nonsquare, equal zero), i.e. x and x₁ are adjacent in the strongly regular graph of g₀,

Strongly regular graph for

$$F(x, y, z) = (g_1(x) - g_0(x))z^{p-1} + uyz^{k-1} + g_0(x):$$

Set of vertices:
$$\mathbb{F}_{p}^{n+2} = \mathbb{F}_{p}^{n} \times \mathbb{F}_{p} \times \mathbb{F}_{p}$$
.

The vertices (x, y, z), (x_1, y_1, z_1) are adjacent if and only if $F(x - x_1, y - y_1, z - z_1)$ is a nonzero square (nonsquare, equal zero).

Observation: Since $F(x - x_1, y - y_1, z - z_1) =$

$$\begin{cases} g_0(x-x_1) &: z_1 = z, \\ g_1(x-x_1) + u(y-y_1)(z-z_1)^{k-1} &: z_1 \neq z \end{cases}$$

- ► (x, y, z), (x₁, y₁, z) are adjacent if and only if g₀(x x₁) is a nonzero square (nonsquare, equal zero), i.e. x and x₁ are adjacent in the strongly regular graph of g₀,
- (x, y, z), (x_1, y_1, z_1) , $z_1 \neq z$, are adjacent if and only if $g_1(x x_1) + u(y y_1)(z z_1)^{k-1}$ is a nonzero square (nonsquare, equal zero).

Questions

Find initial functions.

Known examples: Quadratic functions, $f(x) = \operatorname{Tr}_n(x^{p^{3r}+p^{2r}-p^r+1}+x^2), n = 4r.$ For p = 3, $f(x) = \operatorname{Tr}_n(\alpha x^{(3^r+1)/2}), \operatorname{gcd}(r, 2n) = 1$, and $f(x) = \operatorname{Tr}_n(\alpha x^{t(3^r-1)}), f(x) = \operatorname{Tr}_n(\alpha x^{(3^r-1)/4+3^r+1}),$ conditions on r, n, α . All for k = 2.

Find functions for other k. Example: $f(x, y) = x_1y_1^{k-1} + x_2y_2^{k-1} + \cdots + x_my_m^{k-1}$ (homogeneous).

Find homogeneous bent functions.