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Overview
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1. Blocking sets on Hermitian curves

2. A lower bound

3. Background: Unitals via difference sets

4. A geometric construction

5. Explicit examples

The talk is based on joint work with A. Blokhuis, A. Brouwer,
V. Krcadinac, S. Rottey, L. Storme, T. Szőnyi and P. Vandendriessche.



Hermitian unitals
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■ Hermitian curve H2,q2 in PG(2, q2):

H2,q2 :
(

x y z
)

A





xq

yq

zq



 = 0,

with det(A) 6= 0, A = (aij), and aqij = aji.

■ Any line of PG(2, q2) intersects H2,q2 in 1 point (tangent) or in q + 1
points (secant).

■ A secant intersects H2,q2 in a Baer subline PG(1, q) (block).

■ Classical (q3 + 1, q + 1, 1)-design (Hermitian unital).



An example
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H2,4 yields AG(2, 3) embedded in PG(2,4)



Blocking sets
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Definition.

1. Blocking set B on H2,q2: a set of points intersecting every block, but not
containing any block completely.

2. Minimal blocking set B: no proper subset of B still is a blocking set.

Computer Results (A. Al-Azemi, A. Betten and D. Betten, Unital designs
with blocking sets):

■ 68806 different 2-(28, 4, 1) unital designs have blocking sets.

■ H2,9: no blocking sets.



A lower bound
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Theorem. Let B be a blocking set of a Hermitian unital U in PG(2, q2),
q = ph, p prime. Then

|B| ≥ 3q2 − 2q − 1

2
= q2 − q + 1 +

q2 − 3

2
.

The setup:

■ Points of U : (x : y : z) with (x : y : z) I [zq : yq : xq],

so xzq + yq+1 + zxq = 0.

■ Tangents of U : the lines [t : u : v] with tvq + uq+1 + vtq = 0.

■ Line at infinity: z = 0, the tangent in (1 : 0 : 0).
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■ B = S ∪ {(1 : 0 : 0)}
■ S := {(a, b) | (a : b : 1) ∈ B}
■ Line [1 : u : v] : X + uY + v = 0

■ Tangent line [1 : u : v] : vq + v + uq+1 = 0

■ A unital point outside B is on q2 unital lines: |S| ≥ q2

■ |B| = |S|+ 1 =: q2 − q + 1 + k

■ Claim: k ≥ 1
2
(q2 − 3)

■ W.l.o.g. |S| < 2q2 − q − 1

■ B minimal =⇒ b 6= 0 for all (a, b) ∈ S



The polynomial method
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H(U, V ) =C(U, V )R(U, V )

:= (V q + V + U q+1)
∏

(a,b)∈S

(V + a+ bU)

H(U, V ) vanishes identically on Fq2 × Fq2!

H(U, V ) = (V q2 − V )f(U, V ) + (U q2 − U)g(U, V )

with

■ deg(f), deg(g) ≤ k + 1

■ deg(f) = k + 1, degV f = k
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■ Common linear factor V + ai + Ubi of f(U, V ) and g(U, V )

=̂ non-necessary point for B.

■ C(U, V ) divides f(U, V ) and g(U, V )

=̂ B blocking set of PG(2, q2), so B = H2,q2

■ f and g are coprime.

■ If f(u, v) = 0, then also g(u, v) = 0.

■ f(u, V ) is fully reducible over Fq2 for all u ∈ Fq2.

■ Let f = f0 · · · fm be the factorization of f into irreducible components.



Case 1
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There is an irreducible factor f0 of f with ∂V f0 6≡ 0.

■ Put m := deg f0, so that 1 ≤ m ≤ deg f = k + 1.

Then degV (f0) = m− ǫ, with ǫ ∈ {0, 1}, and ǫ = 0 for m = 1.

■ Let N be the number of zeros of f0 in F
2
q2.

■ By Bézout’s theorem, N ≤ deg f0 deg g ≤ m(k + 1).

■ As f(u, V ) is fully reducible for all u, the number M of zeros counted
with multiplicity is q2(m− ǫ).

■ Now N ≥ M −m(m− 1).

■ Hence q2(m− ǫ)−m(m− 1) ≤ m(k + 1).

■ By case analysis, k ≥ 1
2
(q2 − 3).



Case 2
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∂V fi ≡ 0 for all irreducible factors fi of f .

■ f(u, V ) is a p-th power.

■ The multiplicity of v as a root of H(u, V ) = (V q2 − V )f(u, V ) is 1
(mod p).

■ All (non-horizontal) secants intersect B in 1 (mod p) points.

■ Summing over a parallel class of U :

|B| ≡ (q2 − q + 1) · 1 ≡ 1 (mod p).

■ Summing over the q2 lines through a point p /∈ B:

|B| ≡ q2 · 1 ≡ 0 (mod p).



Unitals via difference sets
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■ Represent PG(2, q2) via a planar difference set D in the cyclic group G of
order q4 + q2 + 1.

■ Let D be fixed by every multiplier.

■ G = A×B, where |A| = q2 − q + 1 and |B| = q2 + q + 1.

■ The cosets of A are arcs, the cosets of B Baer subplanes.

■ Elements of G: pairs (i, j) with 0 ≤ i ≤ q2 − q and 0 ≤ j ≤ q2 + q.

■ The multiplier q3 maps (i, j) to (−i, j).

■ g 7→ D − q3g defines a Hermitian polarity.

■ The absolute points give the Hermitian unital
U = {a+ β | a ∈ A, 2β ∈ B ∩D}.

■ U is the union of q + 1 cosets of A.



A geometric construction
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Theorem. H2,q2 , with q ≥ 7, has blocking sets of size

q3 + 1

2
if q is odd,

q3 − q2 + q

2
if q is even.

Idea of proof:

■ Let q be odd. Partition the q + 1 cosets of A into two sets of size
(q + 1)/2 such that the union of each is a blocking set of U .

■ If q is even, partition U into collections of q/2 and q/2 + 1 cosets of A
forming blocking sets.



Hermitian curve partitioned into arcs
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Proof for q odd
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The point set of U is A+ 1
2
(B ∩D), and 1

2
(B ∩D) is an oval O in the Baer

subplane B.

Lines have three types of intersection pattern with the U -cosets of A:
■ A tangent of O is also a tangent of the unital U .
■ A secant of O intersects two U -cosets in a single point, and the

remaining ones in 0 or 2 points. Both cases occur (q − 1)/2 times.

■ An external line of O intersects all U -cosets of A in 0 or 2 points. Both
cases occur (q + 1)/2 times.

The (q2 − q)/2 external lines give partitions of the set of U -cosets not
leading to blocking sets of U .

As 1
2

(

q+1
(q+1)/2

)

> 1
2
(q2 − q) for q ≥ 7, the desired partition of the U -cosets

exists.



The main result
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■ q = 2: Non-existence (well-known)

■ q = 3: Non-existence by computer search

■ q = 4: Method works!

■ q = 5: Method fails, but a random greedy computer search gives blocking
sets of all sizes from 45 to 81.

Main Theorem.

The Hermitian unital in PG(2, q2) contains a blocking set if and only if q > 3.



An alternative construction
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Theorem.

Let r|(q − 1), where r > 1 and 4r2 + 1 < q.

Then the Hermitian unital in PG(2, q2) contains a blocking set B of size
k + q(q − 1)2/r for some k with 1 ≤ k ≤ q2 − q + 1.

For r ∼ √
q/2, this result leads to proper blocking sets of size approximately

2q2
√
q.



Sketch of proof for q odd
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■ We again use the Hermitian curve H with affine equation
Xq +X + Y q+1 = 0.

■ Choose a non-square k ∈ Fq and i ∈ Fq2 with i2 = k.

Now the elements of Fq2 are x = x1 + ix2, with x1, x2 ∈ Fq.

■ Put B := {(x, y) ∈ H | y = ur + iv, with u, v ∈ Fq} ∪ {(1 : 0 : 0)}.
So B contains (1 : 0 : 0) and the points of U on the horizontal lines
Y = ur + iv, u, v ∈ Fq.

■ Trivially, B meets every horizontal line.

■ B meets every non-horizontal line of H in z points, where

(q − 2− (2r − 2)
√
q)/r ≤ z ≤ (q + 1 + (2r − 2)

√
q)/r.
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■ Consider a cyclic (q2 − q+1)-arc A in H and passing through (1 : 0 : 0).

■ The q + 1 lines through (1 : 0 : 0) tangent to A form a dual Baer subline
at (1 : 0 : 0).

■ One of these lines is the tangent line Z = 0 to H in (1 : 0 : 0), and the
remaining q are secant lines to H.

■ Delete all points 6= (1 : 0 : 0) of the arc A ∩B from B.

■ Delete all points 6= (1 : 0 : 0) lying on the above q secants of H through
(1 : 0 : 0) from B.

■ This gives the desired blocking set.



Thanks for your attention.
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