Perfect Codes and Balanced Generalized Weighing Matrices

Dieter Jungnickel Institut für Mathematik Universität Augsburg

December 5, 2013

Dieter Jungnickel

RICAM – Special Days on combinatorial constructions using finite fields – 1 / 22

- 1. BGW-matrices
- 2. The classical family and codes
- 3. Background: Relative difference sets
- 4. BGW-matrices and relative difference sets
- 5. Monomially inequivalent BGW-matrices
- 6. Problems

The talk is based on joint work with Vladimir D. Tonchev (Michigan Technological University).

A balanced generalized weighing matrix $BGW(m, k, \mu)$ over a (multiplicative) group G is an $(m \times m)$ -matrix

$$W = (w_{ij})$$
 with entries from $\overline{G} := G \cup \{0\}$

such that each row of W contains exactly k nonzero entries, and for every $a, b \in \{1, \ldots, m\}$, $a \neq b$, the multiset

$$\{w_{ai}w_{bi}^{-1}: 1 \le i \le m, w_{ai}, w_{bi} \ne 0\}$$

contains exactly $\mu/|G|$ copies of each element of G. If G is cyclic, we denote a fixed generator by ω .

Generalised Hadamard matrices:

Here m = k (so there are no entries 0). Notation: $GH(n, \lambda)$, where n = |G|and $\lambda = m/n$. Existence is known for G = EA(q) and parameters (q, 1), (q, 2), (q, 4), etc.

Generalised conference matrices:

Here m = k + 1, with entries 0 on the main diagonal. Notation: $GC(n, \lambda)$, where n = |G| and $\lambda = (k - 1)/n$. Existence is known for $G = \mathbb{Z}_s$, s is a divisor of q - 1, k = q a prime power.

The classical family:

$$BGW\left(\frac{q^d-1}{q-1}, q^{d-1}, q^{d-1}-q^{d-2}\right) \text{ over } \mathbb{Z}_s,$$

where q is a prime power, s|q-1, and $d \ge 2$.

For |G| = 2, one has *Hadamard matrices* and *conference matrices*.

A GH(3, 2):

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ \omega & \omega^2 & 1 & \omega^2 & 1 & \omega \\ \omega & 1 & \omega^2 & \omega^2 & \omega & 1 \\ 1 & \omega^2 & \omega^2 & 1 & \omega & \omega \\ \omega^2 & \omega^2 & 1 & \omega & \omega & 1 \\ \omega^2 & 1 & \omega^2 & \omega & 1 & \omega \end{pmatrix}$$

A GC(3, 1):

$$\begin{pmatrix} 0 & 1 & \omega & \omega & 1 \\ 1 & 0 & 1 & \omega & \omega \\ \omega & 1 & 0 & 1 & \omega \\ \omega & \omega & 1 & 0 & 1 \\ 1 & \omega & \omega & 1 & 0 \end{pmatrix}$$

Dieter Jungnickel

RICAM – Special Days on combinatorial constructions using finite fields – 5 / 22

Proposition. The existence of a $BGW(m, k, \mu)$ over some group G of order m implies that of a symmetric (m, k, μ) -design.

Let $D^{(-1)}$ be the matrix arising from D by replacing each group element g by its inverse g^{-1} , and D^* the transpose of $D^{(-1)}$.

Lemma. Let G be a finite group. A matrix D of order m with entries from $G \cup \{0\}$ is a $BGW(m, k, \mu)$ if and only if the following matrix equation holds over the group ring $\mathbb{Z}G$:

$$DD^* = \left(k - \frac{\mu}{|G|}G\right)I + \frac{\mu}{|G|}GJ,$$

where J denotes the all 1 matrix.

Proposition. (Cameron, Delsarte and Goethals 1979) If D is a $BGW(m, k, \mu)$ over G, then so is D^* .

Theorem. (De Launey 1984)

Suppose the existence of a $BGW(m, k, \mu)$ over a group G of order n. Then:

- If m is odd and n is even, k must be a square.
- If G admits an epimorphism onto a cyclic group of odd prime order p and if h is an integer which divides the squarefree part of k but is not a multiple of p, then the order of h modulo p must be odd.

Theorem. (DJ 1982)

- The existence of a $BGW(m, k, \mu)$ over a group G of order n is equivalent to that of a symmetric divisible design with parameters (m, n, k, λ) admitting G as a class regular automorphism group, where $\lambda = \mu/n$.
- The existence of a generalized Hadamard matrix GH(n,1) over a group G of order n is equivalent to that of a finite projective plane of order n which admits G as the group of all (p, L)-elations for some flag (p, L).
- The existence of a generalized conference matrix GC(n-1,1) over G of order n-1 is equivalent to that of a finite projective plane of order n which admits G as the group of all (p, L)-homologies for some antiflag (p, L).

Background: Simplex codes

The q-ary simplex code $S_d(q)$ of length $\frac{q^d-1}{q-1}$ is the linear code over GF(q) with a generator matrix having as columns representatives of all distinct 1-dimensional subspaces of the d-dimensional vector space $GF(q)^d$.

NB: $S_d(q)$ is the dual code of the unique linear perfect single-error-correcting code of length $\frac{q^d-1}{q-1}$ over GF(q), that is, of the q-ary analogue of the Hamming code.

Lemma. Each non-zero vector in $S_d(q)$ has Hamming weight q^{d-1} . Moreover, the supports of all these vectors form the blocks of a symmetric $(\frac{q^d-1}{q-1}, q^{d-1}, q^{d-1} - q^{d-2})$ design which is isomorphic to the complement of the classical point-hyperplane design in the projective space PG(d-1,q).

Theorem. Any $\frac{q^d-1}{q-1} \times \frac{q^d-1}{q-1}$ matrix M with rows a set of representatives of the $\frac{q^d-1}{q-1}$ distinct 1-dimensional subspaces of $S_d(q)$ is a BGW-matrix with parameters

$$m = \frac{q^d - 1}{q - 1}, \ k = q^{d - 1}, \ \mu = q^{d - 1} - q^{d - 2}$$

over the multiplicative group $GF(q)^*$ of GF(q).

Moreover, such a matrix has rank d over GF(q).

Theorem. Let M be any BGW-matrix with parameters

$$m = \frac{q^d - 1}{q - 1}, \ k = q^{d - 1}, \ \mu = q^{d - 1} - q^{d - 2}$$

over $GF(q)^*$. Then

 $rank_q M \ge d.$

Moreover, the equality $rank_q M = d$ holds if and only if M is monomially equivalent to a matrix obtained from the simplex code.

An $m \times m$ matrix W is called ω -circulant provided that for $i = 1, \ldots, m-1$:

$$w_{i,j} = w_{i+1,j+1}$$
 for $j = 1, \ldots, m-1$

and

 $w_{i+1,1} = \omega w_{i,v}.$

Proposition. The BGW-matrices above can always be put into into ω -circulant form. They can also be put into circulant form whenever $(q-1, \frac{q^{d+1}-1}{q-1}) = 1.$

An explicit description

Let β be a primitive element β for $GF(q^d)$ and $\omega = \beta^{-m}$. Let W be the ω -circulant $(m \times m)$ -matrix with first row

$$\mathbf{w} = (\operatorname{Tr} \beta^0, \operatorname{Tr} \beta^1, \dots, \operatorname{Tr} \beta^{m-1}).$$
 (1)

Then, with $v = m(q - 1) = q^d - 1$,

$$W = \begin{pmatrix} \operatorname{Tr} \beta^{0} & \operatorname{Tr} \beta^{1} & \operatorname{Tr} \beta^{2} & \dots & \operatorname{Tr} \beta^{m-1} \\ \operatorname{Tr} \beta^{v-1} & \operatorname{Tr} \beta^{0} & \operatorname{Tr} \beta^{1} & \dots & \operatorname{Tr} \beta^{m-2} \\ \operatorname{Tr} \beta^{v-2} & \operatorname{Tr} \beta^{v-1} & \operatorname{Tr} \beta^{0} & \dots & \operatorname{Tr} \beta^{m-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \operatorname{Tr} \beta^{v-(m-1)} & \operatorname{Tr} \beta^{v-(m-2)} & \dots & \dots & \operatorname{Tr} \beta^{0} \end{pmatrix}$$

Dieter Jungnickel

RICAM – Special Days on combinatorial constructions using finite fields – 13 / 22

NB: By the linearity of the trace function and the definition of ω ,

$$\omega \operatorname{Tr} \beta^{j} = \operatorname{Tr} (\omega \beta^{j}) = \operatorname{Tr} \beta^{j-m} = \operatorname{Tr} \beta^{m(q-2)+j}.$$

Proof. The rows of W have weight q^{d-1} . Thus it suffices to check that W has q-rank d.

Note that W is the submatrix formed by the first m rows and columns of the circulant $v \times v$ matrix C with first row

$$\mathbf{c} = (\operatorname{Tr} \beta^0, \operatorname{Tr} \beta^1, \dots, \operatorname{Tr} \beta^{v-1}) = (\mathbf{w}, \lambda \mathbf{w}, \dots, \lambda^{q-2} \mathbf{w}).$$

This is the first period of an m-sequence, as β is a primitive element for $GF(q^d)$. Hence the circulant matrix C has q-rank d. But then W also has q-rank d.

Background: Relative difference sets

Let G be an additively written group of order v = mn, and let N be a normal subgroup of order n and index m of G. A k-element subset R is called a **relative difference set** with parameters (m, n, k, λ) , if the list of differences

$$(r - r': r, r' \in R, r \neq r')$$

contains no element of N and covers every element in $G \setminus N$ exactly λ times.

Example: Let R be the set of elements of $GF(q^d)$ of trace 1 (relative to GF(q)). Then R is an RDS with parameters

$$(\frac{q^d-1}{q-1}, q-1, q^{d-1}, q^{d-2})$$

in the cyclic group $G = GF(q^d)^*$ relative to $N = GF(q)^*$.

Proposition. Let N be a cyclic group of order n with generator ω . Then the existence of an ω -circulant BGW-matrix with parameters (m, k, μ) over N is equivalent to that of an (m, n, k, λ) -difference set in the cyclic group G of order v = mn relative to the unique subgroup of order n, where $\lambda = \mu/n$.

Proposition. Let R be the trace 1-RDS, and define an $(m \times m)$ -matrix $X = (x_{ij})_{i,j=0,...,m-1}$ with entries in GF(q) as follows:

If there is a (necessarily unique) element $r \in R\beta^j \cap N\beta^i$, then set $x_{ij} = \beta^{-j}r$, and otherwise set $x_{ij} = 0$.

Then X is an ω -circulant BGW-matrix with classical parameters.

Theorem. Let W be the BGW-matrix with classical parameters and q-rank d constructed via the simplex code, and let X be the ω -circulant matrix associated with the trace 1-RDS. Then $X = W^*$.

Problem: Determine the q-rank of the "classical" BGW-matrix $X = W^*$. Equivalently, determine the q-rank of $X^T = W^{(-1)} = W^{(q-2)}$.

More generally, determine the q-rank of all BGW-matrices of the form $W^{(t)}$.

Theorem. Let W be the BGW-matrix with classical parameters and q-rank d constructed via the simplex code, and let t be a positive integer in the range $1 \le t \le q - 2$.

Write $q = p^r$, where p is prime, and let $\sum_{i=0}^{r-1} t_i p^i$ be the p-ary expansion of t (thus $0 \le t_i < p$ for all i). Then

rank_qW^(t) =
$$\prod_{i=0}^{r-1} \binom{d-1+t_i}{d-1}$$
.

Sketch of proof.

As before, the ω -circulant matrix $W^{(t)}$ is a submatrix of a larger circulant matrix, $C^{(t)}$, with first row

$$\mathbf{c}^{(t)} = ((\operatorname{Tr} \beta^0)^t, (\operatorname{Tr} \beta^1)^t, \dots, (\operatorname{Tr} \beta^{v-1})^t).$$

The periodic sequences with first period $\mathbf{c}^{(t)}$ are twisted versions of *m*-sequences; their linear complexity and hence the rank of the matrices $C^{(t)}$ were determined by Antweiler and Bömer (1992).

Now one shows that $W^{(t)}$ has the same rank, using some results on linear shift register sequences.

Let $X = (W^{(q-2)})^T$ be the classical balanced generalized weighing matrix from the RDS-construction. Then, with $q = p^r$,

$$\operatorname{rank}_{q} X = \binom{d+p-3}{d-1} \binom{d+p-2}{d-1}^{r-1}.$$

Let W be the BGW-matrix with classical parameters and q-rank dconstructed via the simplex code, and let t be a positive integer in the range $1 \le t \le q-2$ satisfying (t, q-1) = 1. Write $q = p^r$, where p is prime. Then the matrix $W^{(t)}$ is monomially equivalent to W if and only if the mapping $x \mapsto x^t$ is an automorphism of GF(q), that is, if and only if $t = p^h$ for some integer h.

A few problems

- There exist further examples of inequivalent BGW-matrices with classical parameters, e.g. an example with parameters (85,64,48) and rank 16 over GF(4). Problem: Find further general constructions or even a classification.
- Find families of ω -circulant BGW-matrices over other but cyclic groups.
 - The only other known family of parameters is

$$m = k + 1, \ k = n(2n - 1), \ \mu = k - 1$$

over the cyclic group of order n, where $n = 2^{d-1} - 1$ and $d \ge 3$. Find an infinite family of BGW-matrices with new parameters. Even better, find a new family of cyclic relative difference sets.

Thanks for your attention.