Perfect Codes and Balanced Generalized Weighing Matrices

Dieter Jungnickel
Institut für Mathematik
Universität Augsburg

December 5, 2013

Overview

1. BGW-matrices
2. The classical family and codes
3. Background: Relative difference sets
4. BGW-matrices and relative difference sets
5. Monomially inequivalent BGW-matrices
6. Problems

The talk is based on joint work with Vladimir D. Tonchev (Michigan
Technological University).

BGW-matrices

A balanced generalized weighing matrix $B G W(m, k, \mu)$ over a (multiplicative) group G is an $(m \times m)$-matrix

$$
W=\left(w_{i j}\right) \quad \text { with entries from } \quad \bar{G}:=G \cup\{0\}
$$

such that each row of W contains exactly k nonzero entries, and for every $a, b \in\{1, \ldots, m\}, a \neq b$, the multiset

$$
\left\{w_{a i} w_{b i}^{-1}: 1 \leq i \leq m, w_{a i}, w_{b i} \neq 0\right\}
$$

contains exactly $\mu /|G|$ copies of each element of G.
If G is cyclic, we denote a fixed generator by ω.

Special cases

Generalised Hadamard matrices:
Here $m=k$ (so there are no entries 0). Notation: $G H(n, \lambda)$, where $n=|G|$ and $\lambda=m / n$. Existence is known for $G=E A(q)$ and parameters $(q, 1),(q, 2),(q, 4)$, etc.

Generalised conference matrices:
Here $m=k+1$, with entries 0 on the main diagonal. Notation: $G C(n, \lambda)$, where $n=|G|$ and $\lambda=(k-1) / n$. Existence is known for $G=\mathbb{Z}_{s}, s$ is a divisor of $q-1, k=q$ a prime power.

The classical family:

$$
B G W\left(\frac{q^{d}-1}{q-1}, q^{d-1}, q^{d-1}-q^{d-2}\right) \text { over } \mathbb{Z}_{s}
$$

where q is a prime power, $s \mid q-1$, and $d \geq 2$.

Examples

For $|G|=2$, one has Hadamard matrices and conference matrices.
A $G H(3,2): \quad\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ \omega & \omega^{2} & 1 & \omega^{2} & 1 & \omega \\ \omega & 1 & \omega^{2} & \omega^{2} & \omega & 1 \\ 1 & \omega^{2} & \omega^{2} & 1 & \omega & \omega \\ \omega^{2} & \omega^{2} & 1 & \omega & \omega & 1 \\ \omega^{2} & 1 & \omega^{2} & \omega & 1 & \omega\end{array}\right)$
A $G C(3,1): \quad\left(\begin{array}{ccccc}0 & 1 & \omega & \omega & 1 \\ 1 & 0 & 1 & \omega & \omega \\ \omega & 1 & 0 & 1 & \omega \\ \omega & \omega & 1 & 0 & 1 \\ 1 & \omega & \omega & 1 & 0\end{array}\right)$

Some general results

Proposition. The existence of a $B G W(m, k, \mu)$ over some group G of order m implies that of a symmetric (m, k, μ)-design.

Let $D^{(-1)}$ be the matrix arising from D by replacing each group element g by its inverse g^{-1}, and D^{*} the transpose of $D^{(-1)}$.

Lemma. Let G be a finite group. A matrix D of order m with entries from $G \cup\{0\}$ is a $B G W(m, k, \mu)$ if and only if the following matrix equation holds over the group ring $\mathbb{Z} G$:

$$
D D^{*}=\left(k-\frac{\mu}{|G|} G\right) I+\frac{\mu}{|G|} G J,
$$

where J denotes the all 1 matrix.

Some general results II

Proposition. (Cameron, Delsarte and Goethals 1979)
If D is a $B G W(m, k, \mu)$ over G, then so is D^{*}.

Theorem. (De Launey 1984)
Suppose the existence of a $B G W(m, k, \mu)$ over a group G of order n. Then:

- If m is odd and n is even, k must be a square.
- If G admits an epimorphism onto a cyclic group of odd prime order p and if h is an integer which divides the squarefree part of k but is not a multiple of p, then the order of h modulo p must be odd.

Related geometries

Theorem. (DJ 1982)

- The existence of a $B G W(m, k, \mu)$ over a group G of order n is equivalent to that of a symmetric divisible design with parameters (m, n, k, λ) admitting G as a class regular automorphism group, where $\lambda=\mu / n$.
- The existence of a generalized Hadamard matrix $G H(n, 1)$ over a group G of order n is equivalent to that of a finite projective plane of order n which admits G as the group of all (p, L)-elations for some flag (p, L).

■ The existence of a generalized conference matrix $G C(n-1,1)$ over G of order $n-1$ is equivalent to that of a finite projective plane of order n which admits G as the group of all (p, L)-homologies for some antiflag (p, L).

Background: Simplex codes

The q-ary simplex code $S_{d}(q)$ of length $\frac{q^{d}-1}{q-1}$ is the linear code over $G F(q)$ with a generator matrix having as columns representatives of all distinct 1-dimensional subspaces of the d-dimensional vector space $G F(q)^{d}$.

NB: $S_{d}(q)$ is the dual code of the unique linear perfect single-error-correcting code of length $\frac{q^{d}-1}{q-1}$ over $G F(q)$, that is, of the q-ary analogue of the Hamming code.

Lemma. Each non-zero vector in $S_{d}(q)$ has Hamming weight q^{d-1}. Moreover, the supports of all these vectors form the blocks of a symmetric $\left(\frac{q^{d}-1}{q-1}, q^{d-1}, q^{d-1}-q^{d-2}\right)$ design which is isomorphic to the complement of the classical point-hyperplane design in the projective space $\operatorname{PG}(d-1, q)$.

The classical family via codes

Theorem. Any $\frac{q^{d}-1}{q-1} \times \frac{q^{d}-1}{q-1}$ matrix M with rows a set of representatives of the $\frac{q^{d}-1}{q-1}$ distinct 1-dimensional subspaces of $S_{d}(q)$ is a BGW-matrix with parameters

$$
m=\frac{q^{d}-1}{q-1}, k=q^{d-1}, \mu=q^{d-1}-q^{d-2}
$$

over the multiplicative group $G F(q)^{*}$ of $G F(q)$.
Moreover, such a matrix has rank d over $G F(q)$.

A characterization

Theorem. Let M be any BGW-matrix with parameters

$$
m=\frac{q^{d}-1}{q-1}, k=q^{d-1}, \quad \mu=q^{d-1}-q^{d-2}
$$

over $G F(q)^{*}$. Then

$$
\operatorname{rank}_{q} M \geq d
$$

Moreover, the equality $\operatorname{rank}_{q} M=d$ holds if and only if M is monomially equivalent to a matrix obtained from the simplex code.

ω-circulant matrices

An $m \times m$ matrix W is called ω-circulant provided that for $i=1, \ldots, m-1$:

$$
w_{i, j}=w_{i+1, j+1} \text { for } j=1, \ldots, m-1
$$

and

$$
w_{i+1,1}=\omega w_{i, v}
$$

Proposition. The BGW-matrices above can always be put into into ω-circulant form. They can also be put into circulant form whenever $\left(q-1, \frac{q^{d+1}-1}{q-1}\right)=1$.

An explicit description

Let β be a primitive element β for $G F\left(q^{d}\right)$ and $\omega=\beta^{-m}$. Let W be the ω-circulant $(m \times m)$-matrix with first row

$$
\begin{equation*}
\mathbf{w}=\left(\operatorname{Tr} \beta^{0}, \operatorname{Tr} \beta^{1}, \ldots, \operatorname{Tr} \beta^{m-1}\right) \tag{1}
\end{equation*}
$$

Then, with $v=m(q-1)=q^{d}-1$,

$$
W=\left(\begin{array}{ccccc}
\operatorname{Tr} \beta^{0} & \operatorname{Tr} \beta^{1} & \operatorname{Tr} \beta^{2} & \ldots & \operatorname{Tr} \beta^{m-1} \\
\operatorname{Tr} \beta^{v-1} & \operatorname{Tr} \beta^{0} & \operatorname{Tr} \beta^{1} & \ldots & \operatorname{Tr} \beta^{m-2} \\
\operatorname{Tr} \beta^{v-2} & \operatorname{Tr} \beta^{v-1} & \operatorname{Tr} \beta^{0} & \ldots & \operatorname{Tr} \beta^{m-3} \\
\vdots & \vdots & \vdots & & \vdots \\
\operatorname{Tr} \beta^{v-(m-1)} & \operatorname{Tr} \beta^{v-(m-2)} & \ldots & \ldots & \operatorname{Tr} \beta^{0}
\end{array}\right) .
$$

NB: By the linearity of the trace function and the definition of ω,

$$
\omega \operatorname{Tr} \beta^{j}=\operatorname{Tr}\left(\omega \beta^{j}\right)=\operatorname{Tr} \beta^{j-m}=\operatorname{Tr} \beta^{m(q-2)+j}
$$

Proof. The rows of W have weight q^{d-1}. Thus it suffices to check that W has q-rank d.

Note that W is the submatrix formed by the first m rows and columns of the circulant $v \times v$ matrix C with first row

$$
\mathbf{c}=\left(\operatorname{Tr} \beta^{0}, \operatorname{Tr} \beta^{1}, \ldots, \operatorname{Tr} \beta^{v-1}\right)=\left(\mathbf{w}, \lambda \mathbf{w}, \ldots, \lambda^{q-2} \mathbf{w}\right)
$$

This is the first period of an m-sequence, as β is a primitive element for $G F\left(q^{d}\right)$. Hence the circulant matrix C has q-rank d. But then W also has q-rank d.

Background: Relative difference sets

Let G be an additively written group of order $v=m n$, and let N be a normal subgroup of order n and index m of G. A k-element subset R is called a relative difference set with parameters (m, n, k, λ), if the list of differences

$$
\left(r-r^{\prime}: r, r^{\prime} \in R, r \neq r^{\prime}\right)
$$

contains no element of N and covers every element in $G \backslash N$ exactly λ times.
Example: Let R be the set of elements of $G F\left(q^{d}\right)$ of trace 1 (relative to $G F(q))$. Then R is an RDS with parameters

$$
\left(\frac{q^{d}-1}{q-1}, q-1, q^{d-1}, q^{d-2}\right)
$$

in the cyclic group $G=G F\left(q^{d}\right)^{*}$ relative to $N=G F(q)^{*}$.

BGW-matrices via relative difference sets

Proposition. Let N be a cyclic group of order n with generator ω. Then the existence of an ω-circulant $B G W$-matrix with parameters (m, k, μ) over N is equivalent to that of an (m, n, k, λ)-difference set in the cyclic group G of order $v=m n$ relative to the unique subgroup of order n, where $\lambda=\mu / n$.

Proposition. Let R be the trace 1-RDS, and define an $(m \times m)$-matrix $X=\left(x_{i j}\right)_{i, j=0, \ldots, m-1}$ with entries in $G F(q)$ as follows:

If there is a (necessarily unique) element $r \in R \beta^{j} \cap N \beta^{i}$, then set $x_{i j}=\beta^{-j} r$, and otherwise set $x_{i j}=0$.

Then X is an ω-circulant BGW-matrix with classical parameters.

The relation to the perfect code construction

Theorem. Let W be the BGW-matrix with classical parameters and q-rank d constructed via the simplex code, and let X be the ω-circulant matrix associated with the trace $1-\mathrm{RDS}$. Then $X=W^{*}$.

Problem: Determine the q-rank of the "classical" BGW-matrix $X=W^{*}$.
Equivalently, determine the q-rank of $X^{T}=W^{(-1)}=W^{(q-2)}$.

More generally, determine the q-rank of all BGW-matrices of the form $W^{(t)}$.

Monomially inequivalent BGW-matrices

Theorem. Let W be the BGW-matrix with classical parameters and q-rank d constructed via the simplex code, and let t be a positive integer in the range $1 \leq t \leq q-2$.
Write $q=p^{r}$, where p is prime, and let $\sum_{i=0}^{r-1} t_{i} p^{i}$ be the p-ary expansion of t (thus $0 \leq t_{i}<p$ for all i). Then

$$
\operatorname{rank}_{q} W^{(t)}=\prod_{i=0}^{r-1}\binom{d-1+t_{i}}{d-1}
$$

Sketch of proof.
As before, the ω-circulant matrix $W^{(t)}$ is a submatrix of a larger circulant matrix, $C^{(t)}$, with first row

$$
\mathbf{c}^{(t)}=\left(\left(\operatorname{Tr} \beta^{0}\right)^{t},\left(\operatorname{Tr} \beta^{1}\right)^{t}, \ldots,\left(\operatorname{Tr} \beta^{v-1}\right)^{t}\right) .
$$

The periodic sequences with first period $\mathbf{c}^{(t)}$ are twisted versions of m-sequences; their linear complexity and hence the rank of the matrices $C^{(t)}$ were determined by Antweiler and Bömer (1992).

Now one shows that $W^{(t)}$ has the same rank, using some results on linear shift register sequences.

Two consequences

- Let $X=\left(W^{(q-2)}\right)^{T}$ be the classical balanced generalized weighing matrix from the RDS-construction. Then, with $q=p^{r}$,

$$
\operatorname{rank}_{q} X=\binom{d+p-3}{d-1}\binom{d+p-2}{d-1}^{r-1}
$$

- Let W be the BGW-matrix with classical parameters and q-rank d constructed via the simplex code, and let t be a positive integer in the range $1 \leq t \leq q-2$ satisfying $(t, q-1)=1$. Write $q=p^{r}$, where p is prime. Then the matrix $W^{(t)}$ is monomially equivalent to W if and only if the mapping $x \mapsto x^{t}$ is an automorphism of $G F(q)$, that is, if and only if $t=p^{h}$ for some integer h.

A few problems

- There exist further examples of inequivalent BGW-matrices with classical parameters, e.g. an example with parameters $(85,64,48)$ and rank 16 over $G F(4)$. Problem: Find further general constructions or even a classification.
- Find families of ω-circulant BGW-matrices over other but cyclic groups.
- The only other known family of parameters is

$$
m=k+1, k=n(2 n-1), \mu=k-1
$$

over the cyclic group of order n, where $n=2^{d-1}-1$ and $d \geq 3$. Find an infinite family of BGW-matrices with new parameters. Even better, find a new family of cyclic relative difference sets.

Thanks for your attention.

