Former Member

Prof. Dr. Massimo Fornasier

< back

Peer Reviewed Journal Publication
  • Fornasier, Massimo; Naumova, Valeriya; Pereverzyev, Sergei (2014, online: 2014) Parameter choice strategies for multipenalty regularization. SIAM Journal on Numerical Analysis, Bd. 52 (4), S. 1770-1794. (link)
  • Artina, M.; Fornasier, M.; Solombrino, F. (2013, online: 2013) Linearly constrained nonsmooth and nonconvex minimization. SIAM Journal on Optimization, Bd. 23 (3), S. 1904-1937. (link)
  • Caponigro, M.; Fornasier, M.; Piccoli, B.; Trélat, E. (2013, online: 2013) Sparse Stabilization and Optimal Control of the Cucker-Smale Model. Mathematical Control And Related Fields, Bd. 3 (4), S. 447-466. (link)
  • Fornasier, M.; Haskovec, J.; Steidl, G. (2013, online: 2012) Consistency of Variational Continuous-Domain Quantization via Kinetic Theory. Applicable Analysis, Bd. 92 (6), S. 1283-1298.
  • Fornasier, M.; Kim, Y.; Langer, A.; Schönlieb, C. (2012) Wavelet decomposition method for L2/TV-minimization problems. Siam Journal on Imaging Science, Bd. Vol 5 (No 3), S. 857-885.
  • Fornasier, M.; Schnass, K.; Vybiral, J. (2012, online: 2012) Learning Functions of Few Arbitrary Linear Parameters in High Dimensions. Foundations of Computational Mathematics, Bd. Vol 12 (No 2), S. 229-262. (link)
  • Fornasier, Massimo; Haskovec, Jan; Vybiral, Jan (2011) Particle systems and kinetic equations modeling interacting agents in high dimension.
  • Massimo Fornasier, Jan Haskovec , and Giuseppe Toscani (2011) Fluid dynamic description of flocking via Povzner-Boltzmann equation. (link)
  • Massimo Fornasier, Andreas Langer, and Carola-Bibiane Schoenlieb (2010) A convergent overlapping domain decomposition method for total variation minimization. Numerische Mathematik, Bd. 116 (4), S. 645-685. (link)
  • Renjun Duan, Massimo Fornasier, Giuseppe Toscani (2010) A kinetic flocking model with diffusion. (link)
  • Massimo Fornasier, Rachel Ward (2010) Iterative thresholding meets free-discontinuity problems. Foundation of Computational Mathematics. (link)
  • J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani (2010) Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. (link)
  • Massimo Fornasier, Stephan Dahlke, and Karlheinz Gröchenig (2010) Optimal adaptive computation in the Jaffard algebra and localized frames. Journal of Approximation Theory, Bd. 162 (1), S. 153-185. (link)
  • Massimo Fornasier, Carola Schoenlieb (2009) Subspace correction methods for total variation and l1-minimization. SIAM J. Numer. Anal., Bd. 47 (5), S. 3397-3428. (link)
  • S. Dahlke, M. Fornasier, M. Primbs, T. Raasch, M. Werner) (2009) Nonlinear and adaptive frame approximation schemes for elliptic PDEs: theory and numerical experiments. Numerical Methods for Partial Differential Equations, Bd. 25 (6), S. 1366-1401. (link)
  • I. Daubechies, R. DeVore, M. Fornasier, and S. Güntürk (2009) Iteratively re-weighted least squares minimization for sparse recovery. Commun. Pure Appl. Math., Bd. 63 (1), S. 1-38. (link)
  • Massimo Fornasier, Francesca Pitolli (2008) Adaptive itererative thresholding algorithms for magnetoencephalography (MEG). Journal of Computational and Applied Mathematics, Bd. 221 (2), S. 386-395 . (link)
  • Massimo Fornasier, Laura Gori (2008) Sampling theorems on bounded domains. Journal of Computational and Applied Mathematics, Bd. 221 (2), S. 376-385 . (link)
  • M. Fornasier, R. Ramlau, and G. Teschke (2008) A comparison of joint sparsity and total variation minimization algorithms in a real-life art restoration problem., Bd. 31 (1-3), S. 301-329 . (link)
  • Ingrid Daubechies, Massimo Fornasier, and Ignace Loris (2008) Accelerated projected gradient methods for linear inverse problems with sparsity constraints. Journal of Fourier Analysis and Applications, Bd. 14 (5-6), S. 764-792. (link)
  • Massimo Fornasier, Holger Rauhut (2008) Iterative thresholding algorithms. Applied and Compuational Harmonic Analysis, Bd. 25 (2), S. 187--208. (link)
  • Maria Charina, Costanza Conti, and Massimo fornasier (2008) Adaptive frame methods for nonlinear variational problems. Numerische Mathematik, Bd. 109 (1), S. 45-75.
  • Massimo Fornasier, Holger Rauhut (2008) Recovery algorithms for vector valued data with joint sparsity constraints. SIAM Journal on Numerical Analysis, Bd. 46 (2), S. 577-613.
  • S. Dahlke, Massimo Fornasier, H. Rauhut, G. Steidl, and G. Teschke (2008) Generalized coorbit theory, Banach frames, and the relation to alpha-modulation spaces. Proceedings of the London Mathematical Society, Bd. 96 (2), S. 464-506.
  • S. Dahlke, Massimo Fornasier, T. Raasch, R. Stevenson and M. Werner (2007) Adaptive frame methods for elliptic operator equations: the steepest descent approach. IMA Journal of Numerical Analysis, Bd. 27 (4), S. 717−740 . (link)
  • Fornasier, Massimo (2007) Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Problems, Bd. 23, S. 2505–2526 . (link)
  • Massimo Fornasier, Riccardo March (2007) Restoration of color images by vector valued BV functions and variational calculus. SIAM Journal on Applied Mathematics, Bd. 68 (2), S. 437–460 . (link)
  • Fornasier, Massimo (2007) Banach frames for alpha-modulation spaces. Ap, Bd. 22 (2), S. 157-175 . (link)
  • S. Dahlke, Massimo Fornasier, T. Raasch (2006) Adaptive frame methods for elliptic operator equations. Advances in Computational Mathematics, Bd. 27 (1), S. 27-63 .
  • Fornasier, Massimo; Solombrino , Francesco (online: 2014) Mean-Field Optimal Control. ESAIM: Control, Optimisation and Calculus of Variations, Bd. 20 (4), S. 1123–1152.
  • Fornasier, Massimo; Piccoli, Benedetto; Rossi, Francesco (online: 2014 Mean-field sparse optimal control. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Bd. 372.
  • Ehler, Martin; Fornasier, Massimo; Sigl, Juliane (online: 2014 Quasi-linear Compressed Sensing. Multiscale Modeling & Simulation, Bd. 12 (2), S. 725–754.
  • Subspace correction methods for total variation and l1-minimization. (link)
  • Massimo Fornasier, Riccardo March Existence of minimizers of the Mumford and Shah functional with singular operators in two space dimensions. SIAM J. Math. Anal. (link)
  • Stephan Dahlke, Massimo Fornasier, and Thorsten Raasch Multilevel preconditioning for adaptive sparse optimization. Mathematics of Computation. (link)
  • Fornasier, M.; Rauhut, H.; Ward, R. Low rank matrix recovery via iteratively reweighted least squares minimization. (link)
  • Fornasier, Massimo; Haskovec, Jan; Vybiral, Jan Particle systems and kinetic equations modeling interacting agents in high dimension. SIAM Multiscale Modeling and Simulation, S. 36. (link)
  • Massimo Fornasier, Yunho Kim, Andreas Langer, and Carola-Bibiane Schönlieb Wavelet Decomposition Method for L2/TV-Image Deblurring. SIAM Journal on Imaging Sciences. (link)
  • Bongini, Mattia; Fornasier, Massimo (online: 2014 Sparse Stabilization of Dynamical Systems Driven by Attraction and Avoidance Forces. Networks and Heterogeneous Media, Bd. 9 (1), S. 1-31.

  • Fornasier, Massimo (2010) Numerical methods for sparse recovery. In Reihe: Radon Series on Computational and Applied Mathematics, hrsg. v. Fornasier, Massimo: de Gruyter. (link)
  • J.A. Carrillo, M. Fornasier, G. Toscani, F. Vecil Particle, kinetic, hydrodynamic models of swarming., hrsg. v. Pareschi, Lorenzo; Naldi, Giovanni; Toscani, Giuseppe: Birkhäuser. (link)

Conference Contribution: Publication in Proceedings
  • Gabriella Bretti, Massimo Fornasier, Francesca Pitolli (2010) Electric current density imaging via an accelerated iterative algorithm with joint sparsity constraints. (SPARS'09). (link)
  • Wolfgang Baatz, Massimo Fornasier, Jan Haskovec (2010) Mathematical methods for spectral image reconstruction., Proceedings of the workshop Scientific Computing for Cultural Heritage (Scientific Computing for Cultural Heritage). (link)
  • Wolfgang Baatz, Massimo Fornasier, Peter Markowich, Carola-Bibiane Schönlieb (2010) Binary based fresco restoration., Proceedings of the conference Bridge 2009: Mathematics, Music, Art, Architecture, Culture (Bridge 2009). (link)
  • Fornasier, M. (2009) Compressive Algorithms. Adaptive Solutions ofPDEs and Variational Problems. (IMA Mathematics of Surfaces XIII conference). (link)
  • Massimo Fornasier, Andreas Langer, and Carola Schoenlieb (2009) Domain decomposition methods for compressed sensing. (SampTA09); Marseilles. (link)
  • Fornasier, Massimo (2009) Mathematics enters the picture. In: Quarteroni, A. (Hrsg.), Mathknow08 (Mathknow08), hrsg. v. Springer. (link)
  • I. Daubechies, R. DeVore, M. Fornasier, and S. Güntürk (2008) Iteratively Re-weighted Least Squares Minimization: Proof of Faster than Linear Rate for Sparse Recovery. (Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference), S. 26-29. (link)
  • W. Baatz, M. Fornasier, C.-B. Schoenlieb, and P. Markowich (2008) Inpainting of ancient Austrian frescoes. In: Leeuwarden (Hrsg.) (International Conference Bridges: Mathematical Connections in Art, Music, and Science, 2008), S. 150-156. (link)

Contribution in Collection
  • Fornasier, Massimo; Rauhut, Holger Compressive Sensing., Handbook of Mathematical Methods in Imaging: Springer. (link)

  • Fornasier, Massimo (2008) Compressive Algorithms. Adaptive Solutions of PDE’s and Variational Problems. Habilitationsschrift, Fakultät für Mathematik, Vienna, Vienna. (link)

Research Report
  • M. Bongini, M. Fornasier and D. Kalise (2014) (Un)conditional consensus emergence under perturbed and decentralized feedback controls. Bericht-Nr. Nr. 2014-14;. (link)
  • Fornasier, Massimo; Naumova, Valeriya; Pereverzyev, Sergei (2013, online: 2013) Parameter Choice Strategies for Multi-Penalty Regularization. Bericht-Nr. RICAM Report No 2013-10; RICAM: Linz . (link)
  • Fornasier, M.; Solombrino, F. Mean-field optimal control. (link)
  • M.Fornasier; Vecil, F. Numerical analysis on Cucker-Smale collective behavior models. (link)
  • M.Ehler; Fornasier, M.; Sigl, J. Quasi-linear compressed sensing. (link)