Former Member

Prof. Dr. Joachim Schöberl

< back

Peer Reviewed Journal Publication
  • Monk, Peter; Schöberl, Joachim; Sinwel, Astrid (2009) Hybridizing Raviart-Thomas elements for the Helmholtz equation. Electromagnetics.
  • Schöberl, Joachim; Sinwel, Astrid (2009) Tangential-displacement and normal-normal stress continuous mixed finite elements for elasticity. Mathematical Models and Methods in Applied Sciences.
  • Schöberl, J.; Melenk, J.M.; Pechstein, C.; Zaglmayr, S. (2008) Additive Schwarz preconditioning for p-Version Triangular and Tetrahedral Finite Elements. IMA Journal on Numerical Analysis.
  • D. Boffi, F. Kikuchi, J. Schöberl (2006) Edge element computation of Maxwell's eigenvalues on general quadrilateral meshes. Mathematical Models and Methods in Applied Sciences., Bd. 16, S. 265-273.
  • C. Carstensen, J. Schöberl (2006) Residual-based a posteriori error estimate for a mixed Reissner-Mindlin plate finite element method. Numerische Mathematik, Bd. 103, S. 225-250.
  • J. Gerstmayr, J. Schöberl (2006) A 3D finite element method for flexible multibody systems. Multibody System Dynamics, Bd. 15, S. 309-324.
  • F. Bachinger, U. Langer, J. Schöberl (2006) Efficient Solvers for Nonlinear Time-Periodic Eddy Current Problems. Computing and Visualization in Science, Bd. 9, S. 197-207.
  • A. Becirovic, P. Paule, V. Pillwein, A. Riese, C. Schneider, J. Schöberl (2006) Hypergeometric Summation Algorithms for High-order Finite Elements. Computing, Bd. 78, S. 235-249.
  • S. Hein, T. Hohage, W. Koch, J. Schöberl (2006) Acoustic Resonacnes in a High Lift Configuration. Journal of Fluid Mechanics.
  • Schöberl, J. (2006) A posteriori error estimats for Maxwell Equations. Mathematics of Computations.
  • S. Beuchler, J. Schöberl (2006) New Shape functions for triangular p-FEM using integrated Jacobi polynomials. Numerische Mathematik, Bd. (103), S. 339-366.
  • M. Hofer, N. Finger, J. Schöberl, S. Zaglmayr, U. Langer, R. Lerch (2006) Finite Element Simulation of Wave Propagation in Periodic Piezoelectric SAW Structures. IEEE Transactions on UFFC, Bd. 53(6), S. 1192-1201.
  • Beuchler, S.; Schöberl, J. (2005) Optimal extensions on tensor product meshes. Applied Numerical Mathematics, Bd. 54(3-4), S. 391-405.
  • Dostal, Z.; Schöberl, J. (2005) Minimizing Quadrtic Functions Subject to Bound Constraints With the Rate of Convergence and Finite Termination. Computational Optimization and Applications, Bd. 30, S. 23-44.
  • Bachinger, F.; Schöberl, J.; Langer, U. (2005) Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems. Numeische Mathematik, Bd. 100(4), S. 593-616.
  • Schöberl, J.; Zaglmayr, S. (2005) High order Nedelec elements with local complete sequence property. International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Bd. 24(2), S. 374-384.
  • Huber, Martin; Schöberl, Joachim; Sinwel, Astrid; Zaglmayr, Sabine Simulation of Diffraction in periodic Media with a coupled Finite Element and Plane Wave Approach. SIAM Journal on Scientific Computing.

Conference Contribution: Publication in Proceedings
  • Mayer, M.; Zaglmayr, S.; Wagner, K.; Schöberl, J. (2008) Perfectly Matched Layer Finite Element Simulation of Parasitic Acoustic Wave Radiation in Microacoustic Devices. (2007 IEEE International Ultrasonics Symposium).
  • P. Paule, V. Pillwein, C. Schneider, J. Schöberl (2006) Hypergeometric Summation Techniques for High Order Finite Elements., PAMM - Proc. App. Math. Mech., Bd. 6, S. 689-690.
  • Schöberl, J. (2005) Multigrid Methods for Maxwell Equations. (Plenary talk at European Multigrid Conference, Sheveningen).
  • Schöberl, J. (2005) Additive Schwarz Methods for p and hp-Finite Elements. (plenary talk at Domain Decomposition 16, New York).

Contribution in Collection
  • Beuchler, S.; Pillwein, V.; J. Schoeber, ; Zaglmayr, S. (2011, online: 2011) Sparsity optimized high finite element function on Simplices. In: Ulrich Langer, Peter Paule (Hrsg.), Numerical and Symbolic Scientific Computation: Progress and Prospects Texts and Monographs in Symbolic Computation; Wien: Springer Verlag, S. 21-44.

Research Report
  • Peter Monk, ; Joachim Schöberl, ; Sinwel, Astrid (2008) Hybridizing Raviart-Thomas Elements for the Helmholtz Equation. Bericht-Nr. Ricam-Report 2008-22; RICAM: Linz. (link)
  • Huber, Martin; Schöberl, Joachim; Sinwel, Astrid; Zaglmayr, Sabine (2007) Simulation of Diffraction in periodic Media with a coupled Finite Element and Plane Wave Approach. Bericht-Nr. 2007-22; RICAM: Linz .
  • Schöberl, Joachim; Sinwel, Astrid (2007) Tangential-Displacement and Normal-Normal-Stress Continuous Mixed Finite Elements for Elasticity. Bericht-Nr. RICAM-Report No. 2007-10; RICAM: Linz.
  • S. Gerhold, M. Kauers, J. Schöberl (2006) Hypergeometric Summation Algorithms for High Order Finite Elements. Bericht-Nr. 2006-8; Johannes Kepler University, Linz, SFB "Numerical and Symbolic Scientific Computing":.