RICAM Events

Group Seminar

IPMI: Bayesian uncertainty modelling in electroencephalography (EEG) source imaging
Speaker: Ville Rimpilainen (Ioanian University Corfu)
Date: July 12, 2017 15:30
Location: SP2 416-2

In electroencephalography (EEG) brain imaging neural sources are estimated with the help of measured electric potentials around the head and prior information. The problem is highly ill-posed and prone to modelling errors. The most typical modelling errors are the geometry of the head and the electrical properties of the different tissues. In this talk, I will show our recent results regarding the use of the Bayesian approximation error (BAE) approach which can take variantions in these features into account. In BAE, first a probabilistic model is postulated for the uncertain parameters and subsequently an approximate marginalization is carried out. The results show that BAE can give feasible result without the precise knowledge of the uncertain head parameters.

To stay informed about new RICAM events subscribe to the RICAM talks mailinglist.

<< back