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Abstract

We analyze the use of the so-called general regularization scheme
in the scenario of unsupervised domain adaptation under the covariate
shift assumption. Learning algorithms arising from the above scheme
are generalizations of importance weighted regularized least squares
method, which up to now is among the most used approaches in the co-
variate shift setting. We explore a link between the considered domain
adaptation scenario and estimation of Radon-Nikodym derivatives in
reproducing kernel Hilbert spaces, where the general regularization
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scheme can also be employed and is a generalization of the kernel-
ized unconstrained least-squares importance fitting. We estimate the
convergence rates of the corresponding regularized learning algorithms
and discuss how to resolve the issue with the tuning of their regulariza-
tion parameters. The theoretical results are illustrated by numerical
examples, one of which is based on real data collected for automatic
stenosis detection in cervical arteries.

Keywords— Unsupervised domain adaptation; Covariate shift; Reproducing
kernel Hilbert spaces; General regularization scheme; Radon-Nikodym numerical
differentiation; Tuning of regularization parameters.

1 Introduction

This paper is focused on the use of regularized kernel methods in the context of
unsupervised domain adaptation under covariate shift.

In statistical learning theory, the domain adaptation scenario arises when one
studies two relationships between the explanatory (input) variable x ∈ X ⊂ Rd
and the response (output) variable y ∈ Y ⊂ R under the assumption that they are
governed by different probabilistic laws with respect to measures p(x, y) and q(x, y)
on X×Y.

This means that an input x ∈ X does not determine uniquely an output y ∈ Y,
but rather a conditional probability ρ(y|x) of y given x, which is assumed to be
unknown. Then one uses a training data sample z = {(xi, yi), xi ∈ X, yi ∈ Y, i =
1, 2, . . . , n}, |z| = n, drawn independently and identically (i.i.d) from one of the
measures, say p(x, y), to reduce the expected risk of the prediction y from x over
the other measure q(x, y). In the context of domain adaptation, p(x, y) and q(x, y)
are called, respectively, as the source probability and the target probability.

In general, the domain adaptation problem with different source and target
probabilities is unsolvable, as p(x, y), q(x, y) could be arbitrarily far apart. There-
fore, in the present study we follow [1], [2] and rely on the so-called covariate shift
assumption, where only probabilities of inputs in the source (S) and the target
(T) domains (marginal probabilities) ρS(x) and ρT (x) differs, while the conditional
probability ρ(y|x) is the same under both the source and the target probabilities.
This means that the joint probabilities p(x, y), q(x, y) can be factorized as the
following products

p(x, y) = ρ(y|x)ρS(x), q(x, y) = ρ(y|x)ρT (x). (1)

In this article we restrict ourselves to learning with least squares loss, where the
expected risk of the prediction of y from x by means of a function f : X → Y is
defined in the target domain as

Rq(f) :=

∫
X×Y

(f(x)− y)2dq(x, y).
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It is easy to check that Rq(f) attains its minimum at the so-called regression
function

f(x) = fq(x) =

∫
Y

ydρ(y|x). (2)

But, in unsupervised domain adaptation setting, neither Rq(f) nor fq(x) can be
computed, because the information about underlying probability q(x, y) is only
provided in the form of a set X ′ = (x′1, x

′
2, . . . , x

′
m), |X ′| = m, of unlabeled examples

x′i of inputs drawn i.i.d. from the target marginal probability measure ρT (x). Then,
the goal is to use this information, together with training data z, to approximate
the ideal minimizer fq by an empirical estimator fz in the sense of excess risk

Rq(fz)−Rq(fq) = ‖fz − fq‖2L2,ρT
;

here L2,ρT is the space of square integrable functions f : X → R with respect to
the marginal probability measure ρT .

Observe that in the standard supervised learning setting [3] one would use train-
ing data z to approximate the ideal minimizer fp of the expected risk Rp(f) over
the source probability p. Then, from (1), (2) it follows that in the context of unsu-
pervised domain adaptation under covariate shift, we are aiming at approximating
the same regression function f∗(x) = fp(x) = fq(x) given by (2) as in the standard
supervised learning. The main difference between supervised learning and domain
adaptation is now that we are interested in an empirical estimator fz committing
as little error as possible not in the space L2,ρS associated with marginal source
measure ρS , but in the space L2,ρT generated by the target measure ρT .

On the other hand, since in unsupervised domain adaptation under covariate
shift the aim of approximation is the same function f∗(x) as in the standard super-
vised learning, it is natural to adjust the methods developed there to the domain
adaptation scenario.

Note that supervised learning in reproducing kernel Hilbert spaces (RKHS) is
one of the most well-developed parts of statistical learning theory, and regular-
ized kernel ridge regression is one of the most well-understood supervised learning
algorithm. This algorithm has been already employed in unsupervised domain
adaptation in combination with sample reweighting [4], [5], but to the best of our
knowledge, no risk bounds were known for this combination, even under covariate
shift assumption.

Note also that regularized kernel ridge regression is just a particular example
of a linear regularization scheme in RKHS. At the same time, a large class of
regularization scheme in RKHS, collectively known as spectral regularization, has
been extensively studied in supervised learning setting (see,e.g, [6], [7], [8], and the
references therein). First contribution of the present study is that in the next section
we show how the analysis of [6] can be extended to the setting of domain adaptation
with covariate shift. Moreover, in Section 5 using a toy example we demonstrate
a potential advantage of the use of general regularization scheme compared to a
combination of regularized kernel ridge regression and sample reweighting.
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Since we have no direct access to the target probability measure ρT and to the
space L2,ρT in which we are going to approximate the regression function f∗ = fq,
some additional assumptions should be imposed on the relationship between the
source probability ρS and the target probability ρT . In the present study we follow
[2] and assume that there is a function β : X→ R+ such that

dρT (x) = β(x)dρS(x).

Then β(x) can be viewed as the Radon-Nikodym derivative dρT
dρS

of the target mea-

sure with respect to the source measure. In the next section, we assume that β(x) is
exactly given and discuss how supervised learning algorithms based on the general
regularization scheme can be adjusted to the context of domain adaptation.

In practice, however, neither ρS nor β = dρT
dρS

is known. Therefore, in Section

3 we at first discuss how β(x) can be approximately reconstructed from unlabeled
examples of inputs drawn according to the source and target probabilities. In the
above reconstruction, the general regularization scheme in RKHS can be employed
again. Our results in this direction extend and specify recent results of [9]. Then we
discuss how to employ the general regularization scheme in unsupervised domain
adaptation without knowing the exact values of Radon-Nikodym derivative β(x)
and estimate the accuracy of the corresponding approximations.

The problem of domain adaptation has been tackled by many approaches, and
a number of surveys has been created on this topic. Here we refer to a recent survey
[10]. Most domain adaptation algorithms depend on the so-called hyperparameters
that change the performance of the algorithm and need to be tuned. Usually, algo-
rithm performance variation can be attributed to just a few hyperparameters, such
as a regularization parameter in kernel ridge regression. In spite of its importance,
the question of selecting these parameters has not been much studied in the context
of domain adaptation.

Note that usually an adaptive (data-driven) choice of a regularization parameter
is made by trying several combinations of its values, and then by selecting one of
them according to some performance criteria, such as cross-validation, for example.

Even leaving aside that the use of cross-validation is problematic in unsuper-
vised domain adaptation, in the approach above one selects only one element from
a family of approximants computed by an employed domain adaptation algorithm.
Of course, the other approximants corresponding to the tried parameter values are
used in the selection process, but then they are rejected, in spite of the numerical
expenses made for their construction. At the same time, the rejected approximants
may also contribute to the improvement of approximation accuracy, as it will be
demonstrated in the last section.

In Section 4 we explore the idea to use the computed approximations in the
construction of a new one. More precisely, the idea is to construct a new approxi-
mant in the form of a linear combination of approximants f1, f2, . . . , fl, computed
for all tried parameter values, in a way that it should mimic the best approximation
by such linear combinations. There are several implementations of this idea in the
context of supervised learning [11], [12], [13], and [14], where it is called as the

4



aggregation by the linear functional strategy, because it is based on the technique
[15] originally developed in the regularization theory.

In Section 4 we extend the above idea to the case of domain adaptation. Note
that the aggregation by the linear functional strategy presupposes that the aggre-
gated elements f1, f2, . . . , fl belong to some RKHS H = HK with a positive-definite
function K : X×X→ R as reproducing kernel. This assumption is natural for ap-
proximants f1, f2, . . . , fl constructed by means of kernel ridge regression. Moreover,
in view of recently proposed kernel framework for analysing deep networks [16] the
above assumption does not pose a significant limitation when dealing with approx-
imants resulting from neural networks algorithms. The space HK just should be
wide enough, such as a Sobolev sapace W γ

2 with a moderate index of smoothness
γ, or RKHS generated by a sum of several, possibly universal [17], reproducing
kernels.

Therefore, the approach presented in Section 4 may potentially be used not only
for the algorithms that are based on the general regularization scheme in RKHS,
but in the present study we restrict ourselves only to that class of algorithms.

Finally, in Section 5 we present some numerical tests illustrating the theoretical
results.

2 Risk bounds under the assumption of knowing
the Radon-Nikodym derivative.

2.1 Assumptions and auxiliaries

From now on we assume that the regression function f∗ = fp = fq, minimizing
the expected risks Rp(f), Rq(f), belongs to a specified reproducing kernel Hilbert
space HK . Such assumption is rather common in supervised learning, where it is
referred to as ”well-specified” or ”inner regularity” case, see [18], [19] and [20].

Let JT : HK ↪→ L2,ρT and JS : HK ↪→ L2,ρS be the inclusion operators.
Recall that the information about the source and target marginal measures are only
provided in the form of samples XS = {x1, x2, . . . , xn} and XT = {x′1, x′2, . . . , x′m}
drawn independently and identically (i.i.d) from ρS and ρT respectively. In the
sequel, we distinguish two sample operators

SXT f = (f(x′1), f(x′2), . . . , f(x′m)) ∈ Rm,
SXSf = (f(x1), f(x2), . . . , f(xn)) ∈ Rn,

acting from HK to Rm and Rn, where the norms in later spaces are m−1-times and
n−1-times the standard Euclidean norms, such that the adjoint operators S∗XT :
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Rm → HK and S∗XS : Rn → HK are given as

S∗XT u(·) =
1

m

m∑
j=1

K(·, x′j)uj , u = (u1, u2, . . . , um) ∈ Rm,

S∗XSv(·) =
1

n

n∑
i=1

K(·, xi)vi, u = (v1, v2, . . . , vn) ∈ Rn.

In this section, we assume that we have access to the values β(xi) of the Radon-

Nikodym derivative β(x) = dρT (x)
dρS(x) at the points xi, i = 1, 2, . . . , n, drawn i.i.d from

ρS(x), and consider a diagonal n× n matrix B = diag(β(x1), β(x2), . . . , β(xn)).
Moreover, as in [2], we assume that β(x) is uniformly bounded on X, such that

|β(x)| ≤ b0 for some b0 > 0 and any x ∈ X.
The subsequent analysis is based on two others assumptions, both of which are

quite common and not restrictive. Namely, in what follows we always assume that
K : X×X→ R is a continuous and bounded kernel that is for any x ∈ X

‖K(·, x)‖HK = 〈K(·, x),K(·, x)〉
1
2

HK = [K(x, x)]
1
2 ≤ κ0 <∞.

In addition, we assume that for any input x ∈ X the corresponding output y ∈
Y ⊂ R satisfies the bound |y| ≤ y0 for some y0 > 0.

Moreover, in the sequel we adopt the convention that c denotes a generic positive
coefficient, which can vary from appearance to appearance and may only depend
on basic parameter such as ρS , ρT , κ0, b0, y0 and others introduced below.

We will need the following statement.

Lemma 1. With probability at least 1− δ we have

∥∥S∗XT SXT − S∗XSBSXS∥∥HK→HK ≤ c
(

log
1
2

1

δ

)(
m−

1
2 + n−

1
2

)
,

∥∥S∗XT SXT f∗ − S∗XSBȳ∥∥HK ≤ c
(

log
1
2

1

δ

)(
m−

1
2 + n−

1
2

)
,

where ȳ = (y1, y2, . . . , yn) is the vector of outputs corresponding to the inputs XS =
{x1, x2, . . . , xn}.

The proof of Lemma 1 is based on Lemma 4 of [2], which we formulate in our
notations as follows

Lemma 2. ([2]) Let φ be a map from X into HK such that ‖φ(x)‖HK ≤ R for all
x ∈ X. Then with probability at least 1− δ it holds∥∥∥∥∥∥ 1

m

m∑
j=1

φ(x′j)−
1

n

n∑
i=1

β(xi)φ(xi)

∥∥∥∥∥∥
HK

≤

(
1 +

√
2 log

2

δ

)
R

√
b20
n

+
1

m
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Moreover, we will need a concentration inequality that follows from [21], see
also [22].

Lemma 3 (Concentration lemma). If ξ1, ξ2, . . . , ξn are zero mean independent ran-
dom variables with values in a separable Hilbert space, such as, say, RKHS HK ,
and for some D > 0 one has ‖ξi‖HK ≤ D, i = 1, 2, . . . , n, then the following bound∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥
HK

≤
D
√

2 log 2
δ√

n

holds true with probability at least 1− δ.

Proof of Lemma 1

Proof. For any f ∈ HK we define a map φ = φf : X→ HK as φf (x) = K(·, x)f(x),
x ∈ X. It clear that

‖φf (x)‖HK = |f(x)| ‖K(·, x)‖HK ≤ κ0|f(x)|.

Moreover,

|f(x)| = | 〈K(·, x), f(x)〉HK | ≤ ‖K(·, x)‖HK ‖f‖HK ≤ κ0 ‖f‖HK ,

such that for the map φ = φf the condition of the above Lemma ([2]) is satisfied
with R = κ2

0 ‖f‖HK . Then directly from that lemma for any f ∈ HK we have

∥∥S∗XT SXT f − S∗XSBSXSf∥∥HK =

∥∥∥∥∥∥ 1

m

m∑
j=1

φf (x′j)−
1

n

n∑
i=1

β(xi)φf (xi)

∥∥∥∥∥∥
HK

≤

(
1 +

√
2 log

2

δ

)(√
b20
n

+
1

m

)
κ2

0 ‖f‖HK

≤ c
(

log
1
2

1

δ

)(
m−

1
2 + n−

1
2

)
‖f‖HK

that proves the first statement of Lemma 1.
To prove the second statement we observe that from just proved bound one has∥∥S∗XT SXT f∗ − S∗XSBȳ∥∥HK ≤ ∥∥S∗XT SXT f∗ − S∗XSBSXSf∗∥∥HK

+
∥∥S∗XSBSXSf∗ − S∗XSBȳ∥∥HK

≤c log
1
2

1

δ

(
m−

1
2 + n−

1
2

)
‖f‖HK

+
∥∥S∗XSBSXSf∗ − S∗XSBȳ∥∥HK

(3)

Consider now the map ξ : X×Y → HK defined by

ξ(x, y) = K(·, x)(f∗(x)− y)β(x).
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It is clear that

‖ξ(x, y)‖HK = ‖K(·, x)‖HK

∣∣∣∣∫
Y

y′dρ(y′|x)− y
∣∣∣∣ |β(x)|

≤ 2y0b0κ0.

Moreover, for p(x, y) = ρ(y|x)ρS(x) we have∫
X×Y

ξ(x, y)dp(x, y) =

∫
X

K(·, x)β(x)

∫
Y

(∫
Y

y′dρ(y′|x)− y
)
dρ(y|x)dρS(x)

= 0,

such that for (xi, yi), i = 1, 2, . . . , n, drawn i.i.i from the measure p(x, y) the corre-
sponding values ξi = ξ(xi, yi) are zero mean independent random variables in HK .
Then for the just defined ξi = K(·, xi)(f∗(xi)− yi)β(xi) the conditions of Concen-
tration lemma are satisfied with D = 2y0b0κ0, such that

∥∥S∗XSBSXSf∗ − S∗XSBȳ∥∥HK =

∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥
HK

≤
2y0b0κ0

√
2 log 2

δ√
n

.

This bound together with (3) gives us the second statement of Lemma 1.

2.2 General regularization scheme in covariate shift domain
adaptation problem

One of the most popular approaches to the approximation of the minimizer f∗ = fq
of the target expected risk Rq(f) by using the data z = {(xi, yi)}ni=1 sampled
from the source measure p(x, y) is penalized least squares regression combined with
sample reweighting, that is also called as importance weighted regularized least
squares (IWRLS), see, e.g [23], [4] and [5]. If the approximation is performed
in HK , and as above, we assume that we have access to the values βi = β(xi),
i = 1, 2, . . . , n, of the Radon-Nikodym derivative, then within IWRLS-approach
the approximant fz = fλz of f∗ = fq is constructed as the minimizer of weighted
and penalized empirical risk

Rz,λ,β(f) =
1

n

n∑
i=1

βi (f(xi)− yi)2
+ λ‖f‖2HK .

Since βi = β(xi) are assumed to be non-negative, we can use our notations and
rewrite Rz,λ,β in the form of the so-called Tikhonov regularization functional

Rz,λ,β(f) =
∥∥∥B 1

2SXSf −B
1
2 ȳ
∥∥∥2

Rn
+ λ‖f‖2HK ,

B
1
2 = diag(

√
β1,
√
β2, . . . ,

√
βn), such that its minimizer admits the following rep-

resentation

fλz = (λI + S∗XSBSXS )−1S∗XSBȳ (4)
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It is well-known that Tikhonov regularization scheme can be profitably used in
the standard supervised learning context. Here we refer to [24], where Tikhonov
regularization was analysed as a supervised learning algorithm in RKHS, and the
best-known kernel independent convergence rates were obtained for this scheme.
Then in [6] it has been shown that the same type of results are true for a large class
of supervised learning algorithms which are essentially all the linear regularization
schemes. Below we show how the analysis of [6] can be extended to the setting
of domain adaptation with covariate shift, such that IWRLS-approach (4) will be
covered.

Recall (see, e.g., Definition 2.2 in [25]) that regularization schemes can be in-
dexed by parametrized functions gλ : [0, c]→ R, λ > 0. The only requirements are
that there are positive constants γ0, γ− 1

2
, γ−1 for which

sup
0<t≤c

|1− tgλ(t)| ≤ γ0,

sup
0<t≤c

√
t|gλ(t)| ≤

γ− 1
2√
λ
,

sup
0<t≤c

√
t|gλ(t)| < γ−1

λ
.

(5)

Qualification of the regularization scheme indexed by gλ is the maximal ν > 0 for
which

sup
0<t≤c

tν |1− tgλ(t)| ≤ γνλν , (6)

where γν does not depend on λ. Following Definition 2.3 of [25] we also say that
qualification ν covers a non-decreasing function ϕ : [0, c] → R, ϕ(0) = 0, if the
function t→ tν

ϕ(t) is non-decreasing for t ∈ (0, c].

Keeping in mind that S∗SXBSSX is a self-adjoint, non-negative and compact
operator on RKHS HK one can use the operator functional calculus to repre-
sent IWRLS-approximant (4) in terms of the function gλ(t) = (λ + t)−1 indexing
Tikhonov regularization, such that

fλz = gλ(S∗XSBSXS )S∗XSBȳ (7)

It is easy to check that for gλ(t) = (λ + t)−1 the requirements (5) are satisfied
with γ0 = γ−1 = 1, γ− 1

2
= 1

2 . Moreover, the qualification ν of the Tikhonov
regularization scheme is equal to 1, and such a small qualification is the main
drawback of this scheme.

At the same time, the whole arsenal of regularization schemes gλ(t) can poten-
tially be used to construct approximations fz = fλz of the minimizer f∗ = fq of the
target expected risk Rq(f) in the form (7) from the data XS , ȳ that are sampled
from the source measure p. For example, the qualification of the regularization can
be increased if one employs the so-called iterated Tikhonov regularization, accord-
ing to which IWRLS-approach needs to be repeated such that the approximation
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fλz = fλz,l obtained in the previous l − th step plays the role of an initial guess for

the next approximation fλz = fλz,l+1 constructed as the minimizer of weighted and
penalized empirical risk

Rl+1
z,λ,β(f) =

1

n

n∑
i=1

βi(f(xi)− yi)2 + λ
∥∥f − fλz,l∥∥2

HK
, fλz,0 = 0.

After ν such iterations we obtained the approximation fλz = fλz,ν that can be
represented in the form (7) with

gλ(t) = gλ,ν(t) =
1− λν

(λ+t)ν

t
.

The regularization indexed by gλ,ν(t) has the qualification ν that can be taken as
large as desired. Moreover, for gλ(t) = gλ,ν(t) the requirements (5), (6) are satisfied

with γ0 = 1, γ− 1
2

= ν
1
2 , γ−1 = ν, γν = 1.

The Landweber iteration is another example of an iteration procedure that is
used as a regularization, but in this scheme the number of iteration steps l defines
the value of the regularization parameter λ, such that λ = 1

l .
The Landweber iteration is indexed by the function gλ : [0, c]→ R of the form

gλ(t) =
1− (1− µt)l

t
, λ =

1

l
, 0 < µ < c−1,

which satisfies the requirements (5) with γ0 = 1, γ− 1
2

=
√
µ, γ−1 = 1. Moreover, the

Landweber iteration can be considered as a scheme with arbitrary high qualification,

but it should be noted that in (6) γν =
(
ν
µe

)ν
→ ∞ with ν → ∞. Note also that

the algorithm (7) with B = diag(1, 1, . . . , 1) and gλ(t) indexing the Landweber
iteration is known in the standard supervised learning setting as gradient descent
learning.

Note that the approximants (7) result from the application of the regularization
schemes gλ to the finite-dimensional equation

S∗XSBSXS = S∗XSBȳ (8)

However, we are not interested in solving this equation. Instead, we intent to
approximate a solution of the equation arising from the minimization of the excess
risk

Rq(f)−Rq(fq) = ‖f − fq‖2L2,ρT
(9)

In RKHS HK the above minization can be written in terms of the inclusion op-
erator JT : HK → L2,ρT as ‖JT f − fq‖L2,ρT

→ min, and it leads to the infinite-

dimensional normal equation

J∗TJT f = J∗T fq. (10)
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Because of compactness of the operator J∗TJT , its inverse (J∗TJT )−1 cannot be a
bounded operator in HK , and this makes the equation (10) ill-posed, but since fq
is assumed to be in HK = Range(JT ), the Moore-Penrose generalized solution f†

of (10) coincides in HK with fq, or JT f
† = fq in L2,ρT .

Of course, the equation (10) is not accessible because neither q nor fq are
known, but the result [26] of the regularization theory tells us that there is always a
continuous, strictly increasing function ϕ : [0, ‖J∗TJT ‖HK ]→ R that obeys ϕ(0) = 0
and allows the representation of f† = fq in terms of the so-called source condition:

fq = ϕ(J∗TJT )νq, νq ∈ HK . (11)

The function ϕ above is usually called index function. Moreover, for every ε > 0
one can find such ϕ that (11) holds true for νq with

‖νq‖HK ≤ (1 + ε)‖fq‖HK .

Note that since the operator J∗TJT is not accessible, there is a reason to restrict
ourselves to consideration of such index functions ϕ, which allow us to control
perturbations in the operators involved in the definition of source conditions. In
the context of supervised learning, a class of such index functions has been discussed
in [6], and here we follow that study. Namely, we consider the class F = F(0, c)
of index functions ϕ : [0, c]→ R+ allowing splitting ϕ(t) = v(t)ψ(t) into monotone
Lipschitz part v, v(t) = 0, with the Lipschitz constant equal to 1, and an operator
monotone part ψ,ψ(0) = 0.

Recall that a function ψ is operator monotone on [0, c] if for any pair of self-
adjoint operators U, V with spectra in [0, c] such that U ≤ V (i.e. V − U is an
non-negative operator) we have ψ(U) ≤ ψ(V ).

Examples of operator monotone index functions are ψ(t) = tν , ψ(t) = log−ν
(

1
t

)
,

ψ(t) = log−ν
(
log 1

t

)
, 0 < ν ≤ 1, while an example of a function ϕ from the above

defined class F is ϕ(t) = tr log−ν
(

1
t

)
, r > 1, 0 < ν ≤ 1, since it can be splitted in

a Lipschitz part v(t) = tr and an operator monotone part ψ(t) = log−ν
(

1
t

)
.

The following lemma can be proved by repeating line by line the argument of
the proof of Theorem 10 in [6] (see also Proposition 4.1 in [25]), where the items
denoted there as Tx and S∗xy should be substituted by T̃ and f̃ .

Lemma 4. Let J be the canonical inclusion of RKHS HK = HK(X) on X into
L2,ρ = L2,ρ(X), and T = J∗J . Consider f = ϕ(T )v, where v ∈ HK , ϕ ∈ F(0, c)

and c is large enough. Assume that a self-adjoint, non-negative operator T̃ : HK →
HK and f̃ ∈ HK are such that for some sufficiently small ∆ ∈ (0, 1) with probability
at least 1− δ we have

‖T − T̃‖HK→HK ≤ c∆ log
1
2

1

δ
, ‖T̃ f − f̃‖HK ≤ c∆ log

1
2

1

δ
.

If a regularization scheme indexed by gλ(t) has a qualification ν that covers the
function ϕ and ∆ ≤ λ < 1, then with probability at least 1− δ it holds

‖f − gλ(T̃ )f̃‖HK ≤ c
(
ϕ(λ) +

∆

λ

)
log

1

δ
.
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If, in addition, the qualification ν covers the function ϕ(t)
√
t, then

‖f − gλ(T̃ )f̃‖L2,ρ ≤ c
(
ϕ(λ)

√
λ+

∆√
λ

)
log

1

δ
.

The values of coefficients c in the above inequalities do not depend on λ,∆, δ.

Theorem 1. Assume that the source condition (11) is satisfied with ϕ ∈ F(0, c) and
c is large enough. Consider the approximant fλz given by (7), where the regulariza-
tion scheme indexed by gλ(t) has the qualification ν that covers the function ϕ(t)

√
t.

Consider also the function θ(t) = ϕ(t)t and choose λ = λm,n = θ−1(m−
1
2 + n−

1
2 ).

Then for sufficiently large m and n with probability at least 1− δ it holds

‖fq − f
λm,n
z ‖L2,ρT

≤ c log
1

δ
ϕ(θ−1(m−

1
2 + n−

1
2 ))

√
θ−1(m−

1
2 + n−

1
2 ),

‖fq − f
λm,n
z ‖HK ≤ c log

1

δ
ϕ(θ−1(m−

1
2 + n−

1
2 ))

The values of the coefficients c in the above inequalities do not depend on δ,m, n.

Proof. It is well-known [27] that under the considered assumptions with probability
at least 1− δ it holds

‖J∗TJT − S∗XT SXT ‖HK→HK ≤
2
√

2κ0 log
1
2 1
δ

m
1
2

.

The combination of this bound and the first inequality of Lemma 1 yields that with
probability 1− δ one has

‖J∗TJT − S∗XSBSXS‖HK→HK ≤c log
1
2

1

δ
(m−

1
2 + n−

1
2 ).

Moreover, from Lemma 1 with probability 1− δ we have

‖S∗XSBSXSfq − S
∗
XSBȳ‖HK ≤‖S

∗
XT SXT − S

∗
XSBSXS‖HK→HK‖fq‖HK

+ ‖S∗XT SXT fq − S
∗
XSBȳ‖HK

≤c log
1
2

1

δ
(m−

1
2 + n−

1
2 )

Now we observe that the assumptions of Lemma 4 are satisfied for T = J∗TJT ,

f = fq, T̄ = S∗XSBSXS , f̄ = S∗XSBȳ, ∆ = m−
1
2 + n−

1
2 and

λ = λm,n = θ−1(m−
1
2 + n−

1
2 ) = θ−1(∆) ≥ ∆.

Moreover, for λ = λm,n and ∆ = (m−
1
2 + n−

1
2 ) we have ϕ(λ)λ = ∆ ⇒ ϕ(λ) = ∆

λ ,

ϕ(λ)
√
λ = ∆√

λ
. Then the statement of the theorem follows from Lemma 4.
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Remark 1. To the best of our knowledge, up to now in the setting of domain adap-
tation with covariate shift no error bounds were known even for IWRLS-approach
(4) that corresponds to Tikhonov regularization scheme gλ(t) = (λ + t)−1. On the
other hand, in the standard supervised learning setting this scheme has been anal-
ysed in [24] uniformly for whole class of RKHS HK under the assumption, which
in our terms can be written as ‖(JTJ∗T )−rfq‖L2,ρT

≤ c with r > 1
2 . From Propo-

sition 3.2 of [28] we know that the above assumption can be equivalently written

as the source condition (11) with ϕ(t) = tr−
1
2 . For this index function our The-

orem 1 gives respectively the error bounds of orders O
(

(m−
1
2 + n−

1
2 )

2r
2r+1

)
and

O
(

(m−
1
2 + n−

1
2 )

2r−1
2r+1

)
in L2,ρT and HK . For a sufficiently large number m ≥ n of

unlabeled inputs x′1, x
′
2, . . . , x

′
m sampled from the target measure ρT the above results

match the orders of the bounds [24] in the standard supervised learning setting. The
comparison of Theorem 1 with the results [24] (for Tikhonov regularization) and [6]
(for general regularization scheme) allows the conclusion that in the scenario of do-
main adaptation with covariate shift one can guarantee the same order of the error
as in the standard supervised learning setting, provided that the number of unlabeled
target inputs is big enough, and the values of the Radon-Nikodym derivative at that
inputs are known. The later assumption is seldom satisfied in practice. Therefore,
in the next section we discuss approximate Radon-Nikodym differentiation and its
use in the context of domain adaptation.

3 Approximate domain adaptation

3.1 Regularized Radon-Nikodym numerical differentiation in
RKHS.

In this section our goal is to approximate the Radon-Nikodym derivative β(x) = dρT
dρS

by some function β̃(x) and then use this approximation within the regularization
(7), where the matrix B = diag(β(x1), β(x2), . . . , β(xn)) will be substituted by a
matrix B̃ = diag(β̃(x1), β̃(x2), . . . , β̃(xn)). This in fact means that we need a strat-
egy that ensures a good pointwise approximation to the derivatives β(x). Then
it seems to be natural to approximate β(x) in the norm of some reproducing ker-
nel Hilbert space, where pointwise evaluations are well-defined. Such space does
not need to be the same as the one we used in the previous section for domain
adaptation, but with some abuse of notations we still denote it as HK .

In the literature various RKHS-based approaches are available for a Radon-
Nikodym derivative estimation. Here we may refer to [29] and to references therein.
Conceptually, several of the above approaches can be derived from a regularization
of an integral equation, which can be written in our terms as

J∗SJSβ = J∗TJT1 (12)

and which is ill-pose similar to (10). Here 1 is the constant function that takes the
value 1 everywhere, and almost without loss of generality we assume that 1 ∈ HK ,

13



because otherwise the kernel K1(x, x′) = 1 +K(x, x′) will, for example, be used to
generate a suitable RKHS containing all constant functions.

Equation (12) originates from the observation that for any bounded and con-
tinuous function f its expected value with respect to measure ρT coincides with the
expected value of fβ with respect to measure ρS , i.e,∫

X

f(x′)β(x′)dρS(x′) =

∫
X

f(x′)dρT (x′).

By replacing the function f(x′) by K(x, x′) we obtain that for any x ∈ X it holds∫
X

K(x, x′)β(x′)dρS(x′) = J∗Sβ =

∫
X

K(x, x′)dρT (x′) = J∗T1 = J∗TJT1. (13)

However, if following [29] and [9] we assume that β = dρT
dρS
∈ HK , then J∗Sβ = J∗SJSβ

and from (13) we arrive at the equation (12).
Note that β ∈ HK is essentially a model assumption that is only needed for

theoretical analysis presented below.
Just as the equation (10) is inaccessible, so is the equation (12). But in con-

trast to (10), the reduction of (12) to a finite-dimensional problem does not require
any labels, such as ȳ, that were necessary for dealing with (8). Since in prac-
tice, the amount of unlabeled inputs is usually much greater than that of labeled
ones, we assume that the sizes M and N of i.i.d. samples (x′1, x

′
2, . . . , x

′
M ) and

(x1, x2, . . . , xN ) drawn respectively from ρT and ρS are much larger than m and n
appearing in Theorem 1.

Then we consider two sample operators

SM,T f = (f(x′1), f(x′2), . . . , f(x′M )) ∈ RM ,
SN,Sf = (f(x1), f(x2), . . . , f(xN )) ∈ RN ,

and the finite-dimensional problem

S∗N,SSN,Sβ = S∗M,TSM,T1, (14)

which is an empirical version of the equation (12), where, similar to the above
notations the operators S∗N,S : RN → HK , S∗M,T : RM → HK are given as

S∗N,Sv(·) =
1

N

N∑
i=1

K(·, xi)vi, u = (v1, v2, . . . , vN ) ∈ RN ,

S∗M,Tu(·) =
1

M

M∑
j=1

K(·, x′j)uj , u = (u1, u2, . . . , uM ) ∈ RM .

A regularization of equations (12), (14) may serve as a starting point for several
approaches of estimating the Radon-Nikodym derivative β. For example, as it has
been observed in [29], the known kernel mean matching (KMM) method [2] can be
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viewed as the regularization of (13), (12) by the method of quasi (least-squares)
solutions, originally proposed by Valentin Ivanov (1963) and also known as Ivanov
regularization (see, e.g., [30] and [31] for its use in the context of learning). In KMM
an Ivanov-type regularization is applied to the empirical version (14) that allows
one to explicitly control a constrained approximation of the values βi = β(xi),
i = 1, 2, . . . , n, n < N, but it leads to a quadratic problem in variables βi.

At the same time, the kernelized unconstrained least-squares importance fitting
(KuLSIF) proposed in [29] allows an analytic-form solution and can be reduced to
solving a linear problem with respect to corresponding variables.

From Theorem 1 of [29] it follows that in KuLSIF the approximation β̃ of the
Radon-Nikodym derivative β = dρT

dρS
is in fact constructed by application of the

Tikhonov regularization scheme to the empirical version (14) of the equation (12),
that is in KuLSIF we have

β̃ = βλM,N = gλ(S∗N,SSN,S)S∗M,SSM,S1, (15)

where gλ(t) = (λ+ t)−1.
Though there are several studies devoted to KMM and KuLSIF, to the best of

our knowledge there has been no study of pointwise approximation error β(x)−β̃(x),
which is of interest in the analysis of regularized domain adaptation methods, such
as IWRLS. For example, in [29] and [32] (see Type I setting there) the statistical
consistency and accuracy of KuLSIF have been analysed in the space L2,ρS , where
pointwise evaluations are undefined. We can also mention the study [9], where
KuLSIF represented as (15) with gλ(t) = (λ+ t)−1 was discussed in a RKHS, but
only convergence of β̃ to β was proved, without quantifying its rate.

At the same time, using again Lemma 4 and the concept of source conditions
naturally appearing because of equation (12), we can obtain the following statement

Theorem 2. Assume that β = dρT
dρS

meets source condition β = φ(J∗SJS)νβ, where

φ ∈ F(0, c), and c is large enough. Consider the approximant βλM,N given by (15),
where the regularization scheme indexed by gλ(t) has the qualification ν that covers

the index function φ(t). Let λ = λM,N = θ−1
φ (M−

1
2 + N−

1
2 ), where θφ(t) = φ(t)t.

Then for sufficiently large M an N with probability at least 1− δ it holds∥∥∥β − βλM,NM,N

∥∥∥
HK
≤ c

(
log

1

δ

)
φ
(
θ−1
φ (M−

1
2 +N−

1
2 )
)
.

Proof. Referring again to [27] we have with probability 1− δ that

∥∥J∗TJT − S∗M,TSM,T

∥∥
HK→HK

≤
c log

1
2 1
δ√

M
,

∥∥J∗SJS − S∗N,SSN,S∥∥HK→HK ≤ c log
1
2 1
δ√

N
.
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Then with the same probability it holds that∥∥S∗N,SSN,Sβ − S∗M,TSM,T1
∥∥
HK
≤
∥∥J∗SJS − S∗N,SSN,S∥∥HK→HK ‖β‖HK
+ ‖J∗TJT − S∗M,TSM,T ‖HK→HK‖1‖HK

≤c
(
N−

1
2 +M−

1
2

)
log

1
2

1

δ
,

where we also have used that β ∈ HK and β solves (12).
Now the statement of the theorem follows from Lemma 4 if we observe that

its assumptions are satisfied for ϕ = φ, T = J∗SJS , f = β, T̃ = S∗N,SSN,S , f̃ =

S∗M,TSM,T1, ∆ = M−
1
2 +N−

1
2 , and, moreover, that for λ = λM,N = θ−1

φ (M−
1
2 +

N−
1
2 ) = θ−1

φ (∆) ≥ ∆ it holds

φ(λM,N ) =
∆

λM,N
= φ

(
θ−1
φ (M−

1
2 +N−

1
2 )
)
.

Substituting in (7) the matrix B by the matrix

BM,N = diag(β
λM,N
M,N (x1), β

λM,N
M,N (x2), . . . , β

λM,N
M,N (xn))

we can employ general regularization scheme in unsupervised domain adaptation
without knowing the exact values of Radon-Nikodym derivative β(x).

To estimate the accuracy of the approximation

fλz,M,N = gλ(S∗XSBM,NSXS )S∗XSBM,N ȳ (16)

we at first observed that for any f ∈ HK

∥∥S∗XSBSXSf − S∗XSBM,NSXSf
∥∥
HK

=
1

n

∥∥∥∥∥
n∑
i=1

K(·, xi)
(
β(xi)− β

λM,N
M,N (xi)

)
f(xi)

∥∥∥∥∥
HK

≤ κ3
0

∥∥∥β − βλM,NM,N

∥∥∥
HK
‖f‖HK

Then in view of Theorem 2 with probability 1− δ we have

‖J∗TJT − S∗XSBM,NSXS‖HK→HK
≤
∥∥J∗TJT − S∗XSBSXS∥∥HK→HK +

∥∥S∗XSBSXS − S∗XSBM,NSXS
∥∥
HK→HK

≤ c
(

log
1
2

1

δ

)
(m−

1
2 + n−

1
2 ) + κ3

0

∥∥∥β − βλM,NM,N

∥∥∥
HK

≤ c
(

log
1

δ

)[
m−

1
2 + n−

1
2 + φ

(
θ−1
φ (M−

1
2 +N−

1
2 )
)]

(17)
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In a similar way one can easily check that∥∥S∗XSBȳ − S∗XSBM,N ȳ
∥∥
HK
≤ κ2

0y0

∥∥∥β − βλM,NM,N

∥∥∥
HK

,

and then Theorem 2 and the argument from the proof of Theorem 1 with probability
1− δ give us

‖S∗XSBM,NSXSfq − S∗XSBM,N ȳ‖HK
≤
∥∥S∗XSBSXSfq − S∗XSBȳ∥∥HK +

∥∥S∗XSBSXS − S∗XSBM,NSXS
∥∥
HK→HK

‖fq‖HK
+
∥∥S∗XSBȳ − S∗XSBM,N ȳ

∥∥
HK

≤c(m− 1
2 + n−

1
2 ) log

1
2

1

δ
+
∥∥∥β − βλM,NM,N

∥∥∥
HK

(
κ3

0 ‖fq‖HK + κ2
0y0

)
≤c
(

log
1

δ

)[
m−

1
2 + n−

1
2 + φ

(
θ−1
φ (M−

1
2 +N−

1
2 )
)]

(18)

Now we are in position to formulate a statement which links regularized domain
adaptation and Radon-Nikodym numerical differentiation.

Theorem 3. Let assumptions and conditions of Theorems 1 and 2 be satisfied.
Then with probability at least 1− δ for

λδ = θ−1

((
log

1
2

1

δ

)(
m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 ))
))

,

it holds∥∥∥fq − fλδz,M,N

∥∥∥
HK
≤ c

(
log

3
2

1

δ

)
ϕ
(
θ−1(m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 )))

)
,∥∥∥fq − fλδz,M,N

∥∥∥
L2,ρT

≤ c
(

log
3
2

1

δ

)
ϕ
(
θ−1(m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 )))

)
ζ0,

where ζ0 =
√
θ−1(m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 ))).

Proof. From (17), (18) it follows that the assumptions of Lemma 4 are satis-
fied for T = J∗TJT , f = fq, T̃ = S∗XSBM,NSXS , f̃ = S∗XSBM,N ỹ, and ∆ =(
m−

1
2 + n−

1
2 + φ(θφ(M−

1
2 +N−

1
2 ))
)

log
1
2 1
δ .

Therefore, the statement of the theorem follows from Lemma 4 in the same way
as in the proofs of Theorems 1 and 2.

Remark 2. As has been emphasized in Remark 1, the main massage of Theorem
1 is that for sufficiently large number of unlabeled data sampled from the target
domain (marginal probability ρT ) one may potentially guarantee the same order
of error bounds as in the standard supervised learning. But for this one needs to
know the exact values of the corresponding Radon-Nikodym derivative. From such
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perspective, Theorem 3 continues the above message by saying that in unsupervised
domain adaptation error bounds of the same order as in the standard supervised
learning may potentially be guaranteed provided that there are big enough amounts
of unlabeled data sampled from both target and source domains. To estimate how
big these amounts have to be, let us consider the case where KuLSIF-approach is
employed in Radon-Nikodym numerical differentiation. As we already noted, it
corresponds to (15) with gλ(t) = (λ + t)−1 indexing the Tikhonov regularization
scheme. Since this is a scheme with the qualification ν = 1, its full regularization
and approximation capacity will be realized when β = dρT

dρS
meets source condition

β = φ(J∗SJS)νβ with φ(t) = t. Then φ(θ−1
φ (M−

1
2 + N−

1
2 )) = (M−

1
2 + N−

1
2 )

1
2 ,

and the error bounds guaranteed by Theorem 3 will be of the same order as the
ones in Theorem 1, if M and N are of order n2. This, for example, means that
in unsupervised domain adaptation performed by a combination of IWRLS- and
KuLSIF-approaches an amount of unlabeled data should be at least as big as the
squared amount of labeled ones to potentially allow an accuracy of the same order
as in the standard supervised learning.

4 Resolving the regularization parameter issue by
an aggregation

The choice of the regularization parameters λm,n, λM,N , λδ suggested by Theorems
1, 2, 3 crucially relies on the knowledge of the index functions ϕ, φ describing the
smoothness of fq, β = dρT

dρS
in terms of the corresponding source conditions. Since

such smoothness is usually unknown, one faces the issue of how to choose the values
of the regularization parameter λ for constructing the approximations (15), (16).
Note that the issue with the choice of λ in (15) is easier, because in the regularization
theory one can find several parameter choice rules that can guarantee an accuracy

of order φ
(
θ−1
φ (M−

1
2 +N−

1
2 )
)

under the assumption of Theorem 2 and do not

require any knowledge of the index functions φ. One of such rules is the so-called
balancing principle (see, e.g., Section 1.1.5 in [25]), which has been already used
in the context of kernel learning in [33], [8]. In particular, Proposition 4.5 from
[25] allows us to assume that we already have in our disposal an approximation
β̃M,N = βλM,N of β = dρT

dρS
∈ Range(φ(J∗SJS)) such that with probability 1 − δ it

holds ∥∥∥β − β̃M,N

∥∥∥
HK
≤ c

(
log

1

δ

)
φ
(
θ−1
φ (M−

1
2 +N−

1
2 )
)

Then the argument from the previous section allows the calculation of such matrix
BM,N = diag(β̃M,N (x1), β̃M,N (x2), . . . , β̃M,N (xn)) that (17), (18) hold. As a result,
with probability 1− δ we have that∥∥J∗TJT fq − S∗XSBM,N ȳ

∥∥
HK
≤ c

(
log

1

δ

)(
m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 ))
)

(19)
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The above bound will be used in the present section in resolving the issue with the
choice of λ in (16). Note that this issue is more sophisticated all around, because, as
Theorem 3 hints, a choice of λ in (16) is coupled with the value of the regularization
parameter in (15), which is usually not given a priori. In this situation, the use of
known regularization parameter choice rules seems to be problematic.

Note that according to that rules, one would select only one element, say f
λµ
z,M,N ,

from a family of approximants fλz,M,N given by (16) for several values of the reg-

ularization parameter λ = λ1, λ2, . . . , λl. Other elements fλkz,M,N , k 6= µ, would be
left aside, in spite of efforts spent for their construction.

In contrast, in the present section we discuss the use of a linear combination

fz =
l∑

k=1

ckf
λk
z,M,N (20)

of the approximants computed for all tried values of the regularization parameter
λ.

It is clear that the best L2,ρT−space approximation of the target regression
function fq by linear combinations fz corresponds to the vector c̄ = (c1, c2, . . . , cl)
of ideal coefficients in (20) that solves the linear system Gc̄ = ḡ with the Gram

matrix G =

(〈
fλkz,M,N , f

λu
z,M,N

〉
L2,ρT

)l
k,u=1

and the right-hand side vector ḡ =(〈
fq, f

λk
z,M,N

〉
L2,ρT

)l
k=1

. But, of course, neither Gram matrix G nor the vector ḡ

is accessible, because there is no access to the target measure ρT .

To overcome this obstacle we first observe that the norms
∥∥∥fλkz,M,N

∥∥∥
HK

are

under our control, such that we can put a threshold γl > 0 and consider only

λk, k = 1, 2, . . . , l, for which
∥∥∥fλkz,M,N

∥∥∥
HK
≤ γl.

Then the following lemma is helpful.

Lemma 5. Assume that conditions of Theorems 1 and 2 hold. Then for λ1, λ2, . . . , λl

such that
∥∥∥fλkz,M,N

∥∥∥
HK
≤ γl, k = 1, 2, . . . , l, with probability 1− δ we have

〈
fq, f

λk
z,M,N

〉
L2,ρT

=
1

n

n∑
i=1

β̄M,N (xi)yif
λk
z,M,N (xi)

+O

((
log

1

δ

)(
m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 ))
))

〈
fλkz,M,N , f

λu
z,M,N

〉
L2,ρT

=
1

m

m∑
j=1

fλkz,M,N (x′j)f
λu
z,M,N (x′j) +O

(
(log

1

δ
)m−

1
2

)
,

where the coefficients implicit in O−symbols may depend on a chosen threshold γl,
but do not depend on m,n,M,N.
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Proof. We prove only the first statement since the proof of the second follows
analogously.

Keeping in mind that fq, f
λk
z,M,N ∈ HK we have〈

fq, f
λk
z,M,N

〉
L2,ρT

=
〈
JT fq, JT f

λk
z,M,N

〉
L2,ρT

=
〈
J∗TJT fq, f

λk
z,M,N

〉
HK

=
〈
S∗XSBM,N ȳ, f

λk
z,M,N

〉
HK

+
〈
J∗TJT fq − S∗XSBM,N ȳ, f

λk
z,M,N

〉
HK

=
〈
BM,N ȳ, SXSf

λk
z,M,N

〉
Rn

+
〈
J∗TJT fq − S∗XSBM,N ȳ, f

λk
z,M,N

〉
HK

=
1

n

n∑
i=1

β̃M,N (xi)yif
λk
z,M,N (xi) +

〈
J∗TJT fq − S∗XSBM,N ȳ, f

λk
z,M,N

〉
HK

(21)

Moreover, from (19) with probability 1− δ we have that∣∣∣∣〈J∗TJT fq−S∗XSBM,N ȳ, f
λk
z,M,N 〉HK

∣∣∣∣
≤ c

∥∥∥fλkz,M,N

∥∥∥
HK

(
log

1

δ

)(
m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 ))
)
(22)

Now, the required statement follows from (21) and (22).

Remark 3. If in line with Remark 2, M and N are taken so large that one can
assume the inequality m−

1
2 + n−

1
2 ≥ φ(θ−1

φ (M−
1
2 + N−

1
2 )), then it is natural to

consider only λk, k = 1, 2, . . . , l, bounded from below by m−
1
2 + n−

1
2 , because one

expects λk to be of order θ−1
(
m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 ))
)
> m−

1
2 +n−

1
2 .

Using (5) and (18) we can conclude that for such λk with probability 1− δ it holds∥∥∥fλkz,M,N

∥∥∥
HK
≤
∥∥gλk(S∗XSBM,NSXS )S∗XSBM,NSXSfq

∥∥
HK

+
∥∥gλk(S∗XSBM,NSXS )(S∗XSBM,N ȳ − S∗XSBM,NSXSfq)

∥∥
HK

≤‖fq‖HK sup
t
|gλk(t)t|+

∥∥S∗XSBM,N ȳ − S∗XSBM,NSXSfq
∥∥
HK

sup
t
|gλk(t)|

≤(γ0 + 1) ‖fq‖HK + c
γ−1

λk

(
log

1

δ

)(
m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 ))
)

≤c log
1

δ
.

This means that for big enough M and N , the threshold value γl in Lemma 5
can be taken as γl = O(log 1

δ ).

At this point we would like to stress that in practice the number l of the el-
ements in the set {fλkz,M,N}lk=1 can be assumed to be negligible compared to the
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cardinalities m,n,M,N of the available data samples (usually not more than 10
- 15 approximants are computed for different values of the regularization parame-
ters). Therefore, l-dependent coefficients do not affect the orders O(m−

1
2 + n−

1
2 +

φ(θ−1
φ (M−

1
2 + N−

1
2 ))) or O(m−

1
2 ). Then Lemma 5 suggests to approximate the

inaccessible Gram matrix G and the vector ḡ by respectively

G̃ =

 1

m

m∑
j=1

fλkz,M,N (x′j)f
λu
z,M,N (x′j)

l

k,u=1

, g̃ =

(
1

n

n∑
i=1

β̃M,N (xi)yif
λk
z,M,N (xi)

)l
k=1

,

which can be effectively computed from data samples. Moreover, Lemma 5 tells us
that with probability 1− δ it holds

‖ḡ − g̃‖Rl = O

(
(log

1

δ
)
(
m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 ))
))

,∥∥∥G− G̃∥∥∥
Rl→Rl

= O

(
(log

1

δ
)m−

1
2

)
(23)

With the matrix G̃ at hand one can easily check whether or not it is well-conditioned
and G̃−1 exists. If it is not the case, then some of approximants fλkz,M,N are (almost)
linearly dependent on others (a reason for that can be that some of λk are too close
to each other). Such approximants cannot (essentially) influence the quality of the
best approximation by linear combinations (20); they can be detected (by using,
for example, the condition number of G̃ as a detection tool) and withdrawn from
the consideration.

Thus, we assume that G̃−1 exists. In view of Lemma 5 it is then natural to
assume that m is so large that with probability 1− δ we have∥∥∥G− G̃∥∥∥

Rl→Rl
<

1∥∥∥G̃−1
∥∥∥
Rl→Rl

. (24)

This in its turn allows the application of the well known Banach theorem on inverse
operators, which tells that

∥∥G−1
∥∥
Rl→Rl ≤

∥∥∥G̃−1
∥∥∥
Rl→Rl

1−
∥∥∥G̃−1

∥∥∥
Rl→Rl

∥∥∥G− G̃∥∥∥
Rl→Rl

= O(1). (25)

Theorem 4. Consider f̃z =
∑l
k=1 c̃kf

λk
z,M,N , where c̃ = (c̃1, c̃2, . . . , c̃l) = G̃−1g̃,

and assume the conditions of Lemma 5 and (24). Then with probability 1 − δ it
holds

∥∥∥fq − f̃z∥∥∥
L2,ρT

≤min
ck

∥∥∥∥∥fq −
l∑

k=1

ckf
λk
z,M,N

∥∥∥∥∥
L2,ρT

+O

(
(log

1

δ
)
(
m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 ))
))

, (26)
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where a coefficient implicit in O−symbol may depend on l, but does not depend on
m,n,M,N.

Proof. Note that the minimum in the right hand side of (26) is attained on c̄ =
(c1, c2, . . . , cl) = G−1ḡ. Let f̄z be a linear combination (20) defined by the vector
of coefficients c̄. Then from (23)-(25) with probability 1− δ we have

‖c̄− c̃‖Rl ≤
∥∥∥G̃−1

∥∥∥
Rl→Rl

(
‖ḡ − g̃‖Rl +

∥∥∥G− G̃∥∥∥
Rl→Rl

‖c̄‖Rl
)

= O

(
(log

1

δ
)
(
m−

1
2 + n−

1
2 + φ(θ−1

φ (M−
1
2 +N−

1
2 ))
))

(27)

Moreover,∥∥∥fq − f̃z∥∥∥
L2,ρT

≤
∥∥fq − f̄z∥∥L2,ρT

+
∥∥∥f̄z − f̃z∥∥∥

L2,ρT

≤
∥∥fq − f̄z∥∥L2,ρT

+
√
l ‖c̄− c̃‖Rl max

k

∥∥∥fλkz,M,N

∥∥∥
L2,ρT

≤
∥∥fq − f̄z∥∥L2,ρT

+
√
lγl ‖c̄− c̃‖Rl , (28)

and the statement of the theorem follows now from (27), (28).

Remark 4. Assume that the sequence λ1, λ2, . . . , λl of the tried values of the reg-
ularization parameter λ is so tight, and one of the values, say λ = λµ, is so close

to the value λδ indicated in Theorem 3, that the corresponding approximant f
λµ
z,M,N

provides an accuracy of the order guaranteed by that theorem. Then under con-
ditions of Theorem 4 the aggregate approximation f̃z also guarantees an accuracy
of the same order, but does not require any knowledge of the index functions ϕ, φ
describing the smoothness of fq and dρT

dρS
. This follows from the fact that the second

term of the right-hand side of (26) is negligible compared to the error bounds given
by Theorem 3, and from the obvious inequality

min
ck

∥∥∥∥∥fq −
l∑

k=1

ckf
λk
z,M,N

∥∥∥∥∥
L2,ρT

≤
∥∥∥fq − fλµz,M,N

∥∥∥
L2,ρT

.

5 Numerical illustrations

5.1 Academic examples

Our first two illustrations are on toy data, and they are intended mainly to demon-
strate potential advantages of the use of the general regularization scheme (7),
(16) over a widely used importance weighted regularized least squares (IWRLS)
corresponding to Tikhonov regularization and indexed by gλ(t) = (λ+ t)−1.

In our first example, we simulate inputs XT = (x′1, x
′
2, . . . , x

′
m) in the target

domain to be sampled from the continuous uniform distribution ρT ∼ U(0, 1) over
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[0, 1], while inputs XS = (x1, x2, . . . , xn) in the source domain are sampled from
the beta distribution ρS ∼ B( 1

2 , 1). in this case, the Radon-Nikodym derivative

β = dρT
dρS

is known to be β = 2
√
x.

The outputs are simulated as values of the function f∗(x) = 1 + e−
x2

2 observed
in Gaussian white noise, such that yi = f∗(xi) + εi, i = 1, 2, . . . , n, where εi are
zero-mean Gaussian random variables with standard deviation δ.

In algorithms described in Section 3, we choose the kernel as

K(x, x′) = 1 +
√
xx′ + e−

(x−x′)2
2 ,

such that, in the considered case, the corresponding space HK contains both func-
tions β(x) and f∗(x).

In our numerical experiments we employ a particular case of the general regu-
larization scheme (16), where

gλ(t) = gλ,k(t) =

(
1− λk

(λ+ t)k

)
t−1, (29)

and k is a natural number. As we already mentioned in Section 2.2, IWRLS-
approach corresponds to (16), (29) with k = 1, while for k = 2, 3, . . . , the ap-
proximation (16), (29) can be computed by applying IWRLS-approach iteratively
k times, that corresponds to the so-called iterated Tikhonov regularization.

More precisely, for gλ(t) = gλ,k(t) the approximant fλz,M,N = fλ,kz,M,N given by
(16), (29) is the k−th term of the sequence

fλ,lz,M,N (x) =

n∑
i=1

cliK(x, xi), l = 1, 2, . . . , k, (30)

where the coefficient vector c̄l = (cl1, c
l
2, . . . , c

l
n) can be calculated as

c̄l = (nλI +BM,N,αK)
−1

(nλc̄l−1 +BM,N,αȳ) , (31)

l = 1, 2, . . . , k, c̄0 = (0, 0, . . . , 0);

here I is n by n identity matrix, K = (K(xi, xj))
n
i,j=1,

BM,N,α = diag(βαM,N (x1), βαM,N (x2), . . . , βαM,N (xn)),

and βαM,N (x) is defined by (15) with gλ(t) = (λ+ t)−1, λ = α.
Note that, in principle, the general regularization scheme can also be em-

ployed for computing the values of the approximate Radon-Nikodym derivative
βαM,N (xi), but for simplicity here we restrict ourselves to the use of KuLSIF-
approach proposed in [29]. Moreover, we put M = m, N = n, such that BM,N,α =
diag(βα1 , β

α
2 , . . . , β

α
n ), where βαi = βαm,n(xi) and the vector of diagonal elements

β̄α = (βα1 , β
α
2 , . . . , β

α
n ) can be calculated as

β̄α = (nαI + K)−1F̄ , (32)
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where F̄ = (Fi)
n
i=1, Fi = n

m

∑m
j=1K(xi, x

′
j).

The noisy inputs yi = f∗(xi) + εi, εi ∼ N(0, δ2), have been simulated with δ =
0.3. Then the algorithm (30) - (32) has been implemented with M = m = N = n =
10, λ = 0.1, α = 0.5, and k = {1, 2, 5, 10}. The performance of each implementation
has been measure in terms of the root-mean-square deviation (RMSD).

RMSD =

m−1
m∑
j=1

(
f∗(x′j)− f

λ,k
z,M,N (x′j)

)2

 1
2

A summary of the performance over 20 simulations of (xi)
n
i=1, (x′j)

m
j=1, (yi)

n
i=1

is presented in the form of notched box plots in Figure 1. It is clear that in our first
example the considered realization of the general regularization scheme outperforms
the usual IWRLS (k = 1).

Figure 1: Root-mean-square deviations in the first example.

The performance of the algorithm (30) - (32) for a particular simulation is
displayed in Figure 2. In this figure, the stars denote the exact values f∗(x′j),

and the diamonds denote the values fλ,5z,M,N (x′j). Moreover, the triangles mark

the values fλ,5z,M,N (x′j) resulting from the algorithm (30) - (32), where the matrix
BM,N,α is substituted by the matrix B = diag(β(x1), β(x2), . . . , β(xn)) containing
the exact values of the Radon-Nikodym derivative, which in the considered case is
β(x) = 2

√
x. As it can be seen from Figure 2, the performance is not essentially

changed when the approximate matrix BM,N,α is substituted by the ideal one. This
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means, that in the considered case, KuLSIF-approach provides a reliable estimation
of the Radon-Nikodym derivative.

Figure 2: The performance of the algorithm in the first example for a par-
ticular simulation.

Recall that following [2], in our theoretical analysis we rely on the assumption

that β(x) = dρT (x)
dρS(x) is uniformly bounded for any x ∈ X. Our second example shows

how the algorithm (30) - (32) may perform in the situation where this assumption is
violated. We keep the same setup as in the first example, but swap the source and
the target distributions, such that now ρT ∼ B( 1

2 , 1), ρS ∼ U(0, 1), and β(x) = 1
2
√
x

is an unbounded function on X = [0, 1]. A summary of the performance over 20
simulations is presented in Figure 3. The figure shows that in the second example,
the performance of the usual IWRLS (k = 1) becomes essentially worse as compared
to the first example (Figure 1), while the considered realization of the general
regularization scheme still performs reliably. This hints that the area of applications
of algorithm (30) - (32) is wider than the one for the usual IWRLS.

5.2 Detection of vertebral artery stenosis based on diagnoses
of carotid artery stenosis

In this section, we demonstrate an application of the aggregation approach pre-
sented in Section 4 to the problem of automatic stenosis detection from lumen
diameters.
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Figure 3: Root-mean-square deviations in the second example.

Stenosis is an abnormal narrowing in a blood vessel caused by lesion that re-
duces the space of lumen. In cervical arteries, such as internal carotid arteries
(ICA) and vertebral arteries (VA), a stenosis can reduce, or even block, blood flow
to the brain and significantly increases the risk of developing a stroke. Therefore,
automatic stenosis detection is an important neuroradiological problem.

Such a detection problem can appear at the final or quantification stage of
computerized tomography (CT) or magnetic resonance imaging (MRI) angiogra-
phy, when vessel lumen segmentation and centerline extraction have already been
performed. Then the above detection culminates the efforts spent in those previous
stages, and for this reason it deserves a special consideration.

After the segmentation of CT/MRI scans, the existing software allows for es-
timating the diameters ds, s = 1, 2, . . . , of the vessel cross-sections at about 500
positions ts along the vessel centerlines. Since the positions ts and their total num-
bers may vary from patient to patient, it is reasonable to structure the above data
in terms of functions x(t), e.g. cubic interpolation splines with knots at ts, describ-
ing the change in the vessel diameter and taking the values x(ts) = ds, s = 1, 2, . . . .
In this way, clinical data can be presented as a training sample z of functional
inputs xi = xi(t), i = 1, 2, . . . , n, labeled by outputs yi taking the value yi = 0 for
the diagnosis no stenosis, and the value yi = 0.25, 0.5, 0.75, 1.0, if the diagnosis is,
respectively, light, medium, moderate or high stenosis. Then such data can be used
to construct a predictor that automatically detects presence or absence of stenosis
by assigning a label y = 1 or y = 0 to a new input function x = x(t) extracted from
CT/MRI scan.

At this point we would like to note that the prediction from functional inputs
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x = x(t) is not directly covered by our theoretical analysis. However, the algorithm
(30) - (32) can still be used for such inputs if we employ there a kernel K(x, x′),
which is natural extension to functions of a positive definite radial basis kernel.
Examples of such kernels are given, for instance, in Table 1 of [19], and, in our
further calculations, we have used inverse multiquadratic kernel

K(x, x′) = 1 +

(
1 +
‖x(·)− x′(·)‖2

2ε

)− 1
2

, (33)

where

‖x(·)− x′(·)‖2 =

∫ b

0

(x(t)− x′(t))2
dt. (34)

Recall that in the present context, x(t), x′(t) are functions of a position t along
vessel centerlines. Since the lengths of such centerlines are patient-dependent, in
(34) we need to consider x(t), x′(t) restricted to some interval (0, b) of minimum
length observed in the available clinical data, which in the considered case is b =
140(mm).

We have permission for research-driven secondary use of anonymized clinical
data collected at the Department of Neuroradiology and Department of Neurology,
Medical University of Innsbruck, within the ReSect-study [34]. For the illustration
below, the data of n = 38 ICA and m = 35 VA have been selected.

Source inputs xi = xi(t), i = 1, 2, . . . , n, reflect the changes in diameters in
selected ICA, of which 8 are affected by stenosis. These inputs are labeled by
yi ∈ {0, 0.25, 0.5, 0.75, 1.0} depending on severity of stenosis.

Target inputs x′j = x′j(t), j = 1, 2, . . . ,m, reflect the changes in diameters in
selected VA; 4 of these arteries are affected by stenosis, but all target inputs are
used as unlabeled ones.

Then the training data z = {(xi, yi)} and unlabeled inputs {x′j} have been pro-
cessed by the algorithm (30) - (34) to construct the potential VA stenosis classifiers
fλ,lz,m,n(x); l = 1, i.e. this time we use a combination of IWRLS- and KuLSIF-

approaches. The classifiers fλ,1z,m,n are constructed for λ = λk = 10−k, k = 1, 2, 3, 4.
Concerning the value of the regularization parameter α in (32), we keep it the same
as in the previous section, i.e. α = 0.5. Moreover, in (33) we choose ε = 100.

Then we aggregate fλkz,m,n = fλk,1z,m,n, k = 1, 2, . . . , l, l = 4, into the proposed

classifier f̃z in the way described in Theorem 4, where in the definition of g̃ we use
β̃M,N (xi) = βαi , i = 1, 2, . . . , n, given by (32).

Following [35] we use three metrics to evaluate the performance of stenosis
detecting algorithms: the sensitivity SE = TP

TP+FN , the specificity SP = TN
TN+FP ,

and the positive predictive value PPV = TP
TP+FP , where TP is the number of

cases when at least one stenosis in the considered artery has been detected by both
the reference standard and the algorithm, regardless of the severity (because even
mild narrowing of cervical artery calls for preventive measures); TN counts the
cases when no stenosis in the considered artery has been detected by the reference

27



standard and by the algorithm; FN,FP are respectively the numbers of cases, when
the absence or presence of stenosis has been wrongly detected by the algorithm.

Note that both SE and PPV give different information, and if one of them
excels more than the other, the so-called F1-score can be a better metric compared
to SE and PPV , because it is defined as their evenly weighted harmonic mean, i.e.
F1 = 2SE×PPV

SE+PPV .
Note also that when a continuous-valued predictor f(x) is used as binary classi-

fier, its diagnostic ability depends on the so-called discrimination threshold c, such
that a particular artery corresponding to an input, say x′j , is assumed to be affected
by stenosis if f(x′j) > c.

The potential or optimal diagnostic ability of a particular classifier f(x) can be
assessed in terms of the receiver/relative operating characteristic (ROC) curve that
visualizes the diagnostic ability of f(x) as its discrimination thresholds c are varied.
Recall that ROC curve is created by plotting the value SE against the value 1−SP
for various threshold settings.

The ROC analysis provides tools to select a possibly optimal discrimination
threshold c. One of them is the so-called Youden’s method suggesting such c = copt
for which the point (1− SP, SE) has the minimal distance to the point (0, 1).

Results of ROC analysis can be summarized as a single metric by computing
the area under the ROC curve abbreviated as AUC, which ranges from near 0.5
for randomly assigned diagnoses to 1.0 for perfect diagnosing (classification). Be-
low we report the performance of the considered classifiers on the target inputs
x′j = x′j(t), j = 1, 2, . . . ,m, in all the above metrics under the assumption that
the classifiers are equipped with their optimal (Youden’s) discrimination thresholds
c = copt.

The classifiers fλk,1z,m,n, k = 1, 2, 3, 4, produced by the algorithm (30) - (34) and

their aggregation f̃z have been applied to unlabeled target inputs x′j = x′j(t), j =
1, 2, . . . ,m, reflecting the change in diameters in selected vertebral arteries (VA).
Then the detected presence or absence of stenosis indicated by the classifiers has
been compared with known diagnoses. The results are reported in the first rows of
Table 1 and are in agreement with our theoretical analysis, which predicts that the
aggregation can perform better than the aggregated classifiers.

Algorithm AUC SE SP PPV F1

fλ1,1z,m,n with λ1 = 10−1 0.209 0 0.882 0 NaN

fλ2,1z,m,n with λ2 = 10−2 0.621 0 0.882 0 NaN

fλ3,1z,m,n with λ3 = 10−3 0.669 1 0.912 0.25 0.4

fλ4,1z,m,n with λ4 = 10−4 0.677 1 0.912 0.25 0.4

Aggregation 0.976 1 0.969 0.75 0.857

Shahzad et.al. 0.924 0.857 0.818 0.5 0.631

Table 1: Performance of the compared classifiers on the target inputs
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We may also compare the performance of the aggregation with some other ap-
proaches to automatic stenosis detection. The survey [35] gives a profound overview
of the algorithms detecting stenosis from the diameters of the vessel cross-sections,
i.e. from the same inputs as the ones considered above. The algorithms discussed
in [35] have been developed for coronary artery stenosis detection, but in principle,
they can also be used for diagnosing stenoses of other types of arteries, such as VA.
Among the method overviewed in [35], the algorithm [36] outperforms the others
and can be considered here as state-of-the-art algorithm. As it can be seen from the
last row of Table 1, on the considered VA-dataset, the algorithm [36] equipped with
ROC-optimized threshold performs even better than it was reported in [35] (there
the reported values were SE = 0.55, PPV = 0.27). At the same time, Table 1
demonstrates that the proposed aggregation approach still gives a superior stenosis
prediction performance in comparison to the method [36].
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[20] G. Blanchard, N. Krämer, Convergence rates of kernel conjugate gradient for
random design regression, Analysis and Applications 14 (2016) 763–794. doi:
https://doi.org/10.1142/S0219530516400017.

[21] I. Pinelis, An approach to inequalities for the distributions of infinite-
dimensional martingales, Probability in Banach Spaces 8 (1992) 128–134.
doi:https://doi.org/10.1007/978-1-4612-0367-4_9.

[22] L. Rosasco, E. D. Vito, M. Belkin, On learning with integral operators, Journal
of Machine Learning Research 11 (2010) 905–934.

[23] T. Evgeniou, M. Pontil, T. A. Poggio, Regularization networks and support
vector machines, Advances in Computational Mathematics 13(1) (2000) 1–50.
doi:https://doi.org/10.1023/A:1018946025316.

[24] S. Smale, D.-X. Zhou, Learning theory estimates via integral operators and
their approximations, Constructive Approximation 26 (2007) 153–172. doi:

https://doi.org/10.1007/s00365-006-0659-y.

[25] S. Lu, S. V. Pereverzyev, Regularization theory for ill-posed problems -
selected topics, De Gruyter 58 (2013) . doi:https://doi.org/10.1515/

9783110286496.

[26] P. Mathe, B. Hofmann, How general are general source conditions?, Inverse
Problems 24 (2008) 015009. doi:https://doi.org/10.1088/0266-5611/24/
1/015009.

[27] E. D. Vito, L. Rosasco, A. Caponnetto, U. D. Giovannini, F. Odone, Learning
from examples as an inverse problem, Journal of Machine Learning Research
6 (2005) 883–904.

[28] E. D. Vito, L. Rosasco, A. Caponnetto, Discretization error analysis for
Tikhonov regularization in learning theory, Analysis and Applications 4 (2006)
81–99. doi:https://doi.org/10.1142/S0219530506000711.

[29] T. Kanamori, T. Suzuki, M. Sugiyama, Statistical analysis of kernel-based
least-squares density-ratio estimation, Machine Learning 86 (2012) 335–367.
doi:https://doi.org/10.1007/s10994-011-5266-3.

31

http://dx.doi.org/https://doi.org/10.5555/1248547.1248642
http://dx.doi.org/https://doi.org/10.5555/1248547.1248642
http://dx.doi.org/https://doi.org/10.1142/S0219530510001564
http://dx.doi.org/https://doi.org/10.1142/S0219530510001564
http://dx.doi.org/https://doi.org/10.5555/2946645.3053434
http://dx.doi.org/https://doi.org/10.1142/S0219530516400017
http://dx.doi.org/https://doi.org/10.1142/S0219530516400017
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-0367-4_9
http://dx.doi.org/https://doi.org/10.1023/A:1018946025316
http://dx.doi.org/https://doi.org/10.1007/s00365-006-0659-y
http://dx.doi.org/https://doi.org/10.1007/s00365-006-0659-y
http://dx.doi.org/https://doi.org/10.1515/9783110286496
http://dx.doi.org/https://doi.org/10.1515/9783110286496
http://dx.doi.org/https://doi.org/10.1088/0266-5611/24/1/015009
http://dx.doi.org/https://doi.org/10.1088/0266-5611/24/1/015009
http://dx.doi.org/https://doi.org/10.1142/S0219530506000711
http://dx.doi.org/https://doi.org/10.1007/s10994-011-5266-3


[30] L. Oneto, S. Ridella, D. Anguita, Tikhonov, Ivanov and Morozov regularization
for support vector machine learning, Machine Learning 103 (2016) 103–136.
doi:https://doi.org/10.1007/s10994-015-5540-x.
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