B. Kaltenbacher

On the Regularizing Properties of Truncated Cholesky Factorization
On the Regularizing Properties of Truncated Cholesky Factorization

Barbara Kaltenbacher
University of Erlangen

Abstract. Due to the principle of regularization by restricting the number of degrees of freedom, truncating the Cholesky factorization of a symmetric positive definite matrix can be expected to have a stabilizing effect. Based on this idea, we consider four different approaches for regularizing ill-posed linear operator equations. Convergence in the noise free case as well as — with an appropriate a priori truncation rule — in the situation of noisy data is analyzed. Moreover, we propose an a posteriori truncation rule and characterize its convergence. Numerical tests illustrate the theoretical results. Both analysis and computations suggest one of the four variants to be favorable to the others.

Key words. Ill-Posed Problems, Regularization, Cholesky Factorization

AMS(MOS) Subject Classifications: 65F22, 15A23, 65J20, 65R30

1 Introduction

Consider the linear operator equation

\[T x = y \quad (1) \]

where \(T : l^2 \to l^2 \) is a compact linear operator and \(l^2 \) is the usual space of quadratically summable sequences with the norm

\[\| v \| = \sqrt{\sum_{j=1}^{\infty} v_j}, \quad v = (v_j)_{j \in \mathbb{N}} \in l^2 \]

(Note that by means of development with respect to appropriate bases, compact operator equations in arbitrary separable Hilbert spaces can be transferred to the form (1).) In this situation we deal with an ill-posed problem in the sense that \(x \) does not depend continuously on the data \(y \), and therefore have to apply some regularization in order to be able to recover a stable approximation to the exact solution also from noisy data \(y^\delta \), as it will be given in practice. We here assume that we know the noise level \(\delta \) in

\[\| y - y^\delta \| \leq \delta \quad (2) \]

Moreover, a solution \(x^\dagger \) to (1) is assumed to exist (i.e., \(y \in \mathcal{R}(T) \)) and to be unique. In order to simplify the exposition, we here even assume that the range of \(T \) is dense in \(l^2 \) and that its nullspace is \(\{0\} \).

\(^1\)Supported by the Austrian Academy of Sciences within the Radon Institute for Computational and Applied Mathematics, as well as the German Science Foundation DFG under grant Ka 1778/1
Our aim is to use the principle of regularization by discretization, i.e., by restriction of the degrees of freedom to finitely many (cf., e.g., [6], [8], as well as Section 3.3 in [3] and the references therein). More precisely, we consider a truncated Cholesky factorization, i.e., one that only takes into account a relatively small number of columns (and rows) in the lower triangular matrix produced by this factorization method. Using a truncated version of the Cholesky factorization can be viewed as a finite rank approximation to the inverse of the forward operator. In this sense, the present paper may be viewed as a pre-study to investigations on regularization by \mathcal{H} matrix approximation (cf., e.g., [1], [5]). On the other hand, the results obtained here can be regarded as a first step into the direction of regularization by truncated factorizations of more general nonsymmetric matrices such as LU or QR decompositions.

To be able to make use of Cholesky factorization for equations of the form (1) with not necessarily symmetric positive definite T, we here discuss two main approaches:

The first one starts from the normal equation corresponding to (1)

$$T^T T x = T^T y.$$ \hfill (3)

Here Cholesky factorization is applied to $T^T T$.

For the second one, we depart from the principle of regularizing by projecting the infinite dimensional equation (1) onto some finite dimensional subspace Y_n of the data space (here l^2)

$$Q_n T x = Q_n y$$

where Q_n is the orthogonal projection onto Y_n, and use the minimum norm solution of the projected equation, with the given noisy data y^δ inserted in place of y

$$x_n^\delta := (Q_n T)^\dagger Q_n y^\delta$$ \hfill (4)

as an approximation for x^\dagger. Here B^\dagger denotes the generalized inverse of some operator B:

$$B^\dagger : \mathcal{R}(B) \cup \mathcal{R}(B)^\perp \to \mathcal{N}(B)^\perp = \overline{\mathcal{R}(B^T)} , \quad B^\dagger|_{\mathcal{R}(B)} := (B|_{\mathcal{N}(B)^\perp})^{-1} , \quad B^\dagger|_{\mathcal{R}(B)^\perp} := 0$$

Therewith x_n^δ has to be contained in $T^T Y_n$, so that it can be written as

$$x_n^\delta = T^T u_n$$

where

$$Q_n T T^T u_n = Q_n y^\delta.$$ \hfill (5)

Since TTT is a self adjoint nonnegative definite operator from l^2 to l^2, the idea is now to define the projections Q_n (and therewith the projection spaces Y_n) by applying a truncated Cholesky decomposition to TTT.

In either of the two situations we have the possibility of taking into account

a) the full first n columns

b) the truncated n columns
b) only the upper quadratic \(n \times n \) part of the lower triangular matrix produced by the respective Cholesky factorization.

Accordingly we arrive at altogether four different methods. Considering

\[T^T T = L L^T \]

and the decomposition

\[L = \begin{pmatrix} L_{nn} & 0 \\ L_{rn} & L_{rr} \end{pmatrix} = \begin{pmatrix} L_n & 0 \\ L_{rr} \end{pmatrix} \]

with \(L_{nn} : \mathbb{R}^n \rightarrow \mathbb{R}^n, L_{rn} : \mathbb{R}^n \rightarrow l^2, L_{rr} : l^2 \rightarrow l^2 \), \(L_n = \begin{pmatrix} L_{nn} \\ L_{rn} \end{pmatrix} : \mathbb{R}^n \rightarrow l^2 \) or

\[T T^T = \tilde{L} \tilde{L}^T \]

and the decomposition

\[\tilde{L} = \begin{pmatrix} \tilde{L}_{nn} & 0 \\ \tilde{L}_{rn} & \tilde{L}_{rr} \end{pmatrix} = \begin{pmatrix} \tilde{L}_n & 0 \\ \tilde{L}_{rr} \end{pmatrix} \]

with \(\tilde{L}_{nn} : \mathbb{R}^n \rightarrow \mathbb{R}^n, \tilde{L}_{rn} : \mathbb{R}^n \rightarrow \tilde{l}^2, \tilde{L}_{rr} : \tilde{l}^2 \rightarrow \tilde{l}^2 \), \(\tilde{L}_n = \begin{pmatrix} \tilde{L}_{nn} \\ \tilde{L}_{rn} \end{pmatrix} : \mathbb{R}^n \rightarrow \tilde{l}^2 \) and correspondingly for some vector \(v \in \tilde{l}^2 \)

\[v = \begin{pmatrix} v^n \\ v^r \end{pmatrix} \],

with \(v^n \in \mathbb{R}^n, v^r \in \tilde{l}^2 \) we have:

Method 1 a)

\[\bar{x}^\delta_n := (L_n L_n^T)^\dagger T^T y^\delta \]

Method 1 b)

\[\bar{z}^\delta_n := \begin{pmatrix} (L_{nn} L_{nn}^T)^{-1} \\ 0 \end{pmatrix} T^T y^\delta \]

Method 2 a)

\[\bar{x}^\delta_n := T^T (\tilde{L}_n \tilde{L}_n^T)^\dagger y^\delta \]

Method 2 b)

\[\bar{z}^\delta_n := T^T \begin{pmatrix} (\tilde{L}_{nn} \tilde{L}_{nn}^T)^{-1} \\ 0 \end{pmatrix} y^\delta \]

Note that due to our assumption on the range and nullspace on \(T \), the submatrix \(L_{nn} \) (\(\tilde{L}_{nn} \)) is always regular. It can be computed row wise without having to compute the semi-infinite matrix \(L_{rn} \) (\(\tilde{L}_{rn} \)); increasing \(n \) by one, i.e., going from \(L_{nn} \) to \(L_{nn+1,n+1} \), amounts to computing one additional row of \(n + 1 \) entries. Moreover, we have

\[(L_n L_n^T)^\dagger = L_n (L_n^T L_n)^{-2} L_n^T \quad (\tilde{L}_n \tilde{L}_n^T)^\dagger = \tilde{L}_n (\tilde{L}_n^T \tilde{L}_n)^{-2} \tilde{L}_n^T , \]

(10)
where $L_n^T L_n \left(\tilde{L}_n^T \tilde{L}_n \right)$ is invertible due to the fact that for all $v^n \in \mathbb{R}^n$

\[L_n^T L_n v^n = 0 \iff L_n v^n = 0 \iff \left(L_{nn} v^n = 0 \land L_{rn} v^n = 0 \right), \]

i.e., $\mathcal{R}(L_n^T L_n)^\perp = \mathcal{N}(L_n^T L_n) \subseteq \mathcal{N}(L_{nn}) = \{0\}$. To see that $L_{rn}, L_n, \tilde{L}_n, \tilde{L}_n$ in fact map into l^2, consider the identity

\[
T^T T = LL^T = L_n^T L_n + \begin{pmatrix} 0 & 0 \\ 0 & L_{rr} L_{rr}^T \end{pmatrix}
\]

that by left and right multiplication with an arbitrary vector $v \in L^2$ yields

\[
\|Tv\|_{l^2}^2 = \|L_n^T v\|_{l^2}^2 + \|L_{rr}^T v^r\|_{l^2}^2 = \|L_{nn} v^n + L_{rr} v^r\|_{l^2}^2 + \|L_{rr}^T v^r\|_{l^2}^2,
\]

hence

\[
\|L_n\|_{\mathbb{R}^n \rightarrow l^2} = \|L_n^T\|_{l^2 \rightarrow \mathbb{R}^n} \leq \|T\|_{l^2 \rightarrow l^2} \\
\|L_{rr}\|_{l^2 \rightarrow l^2} = \|L_{rr}^T\|_{l^2 \rightarrow l^2} \leq \|T\|_{l^2 \rightarrow l^2} \\
\|L_{rn}\|_{\mathbb{R}^n \rightarrow l^2} = \|L_{rn}^T\|_{l^2 \rightarrow \mathbb{R}^n} \leq \|T\|_{l^2 \rightarrow l^2}
\]

where the last inequality is obtained by taking the supremum over all v with $v^n = 0$ in (12).

It will turn out that although all of these four methods seem to be reasonable at a first glance, only the last one converges unconditionally (cf. Theorem 1). As a matter of fact, Method 2b) can be written in the form (4) with Q_n being just the projection onto the span of the first n unit vectors. Therefore, for this method, convergence immediately follows from known results on regularization by discretization as outlined, e.g., in [3]. Nevertheless, for the sake of completeness we spend a few lines on the proof of convergence also of this method in Theorem 1 below.

This paper is organized as follows: Section 2 provides a convergence analysis of Methods 1 a) – 2 b) both in the case of exact data and in the situation with noisy right hand side y^δ. For the practically relevant latter setting, an a posteriori truncation rule is investigated in Section 3. The theoretical results are illustrated by numerical tests for two model problems in Section 4. Finally, some conclusions are drawn in Section 5.

\section{Convergence}

In this section we derive sufficient and necessary conditions for convergence of the four described methods to the exact solution x^\dagger of (1), considering first of all noiseless data, i.e., $\delta = 0$, which leads to respective versions

\[
\bar{x}_n := \bar{x}_n^0, \quad \bar{z}_n := \bar{z}_n^0, \quad \tilde{x}_n := \tilde{x}_n^0, \quad \tilde{z}_n := \tilde{z}_n^0,
\]

and letting n tend to infinity.
Theorem 1.
For method 1 a), \(\bar{x}_n \to x^\dagger \) as \(n \to \infty \) if and only if
\[
\exists C \in \mathbb{R} \; \forall n \in \mathbb{N} \quad \left\| (L_n L_n^T)^\dagger \left(\begin{array}{cc} 0 & 0 \\ 0 & L_{rr} L_{rr}^T \end{array} \right) \right\| \leq C ;
\] (13)
for method 1 b) \(\bar{z}_n \to x^\dagger \) as \(n \to \infty \) if and only if
\[
\exists C \in \mathbb{R} \; \forall n \in \mathbb{N} \quad \left\| L_{rn} L_{nn}^{-1} \right\| \leq C ;
\] (14)
for method 2 a) \(\bar{z}_n \to x^\dagger \) as \(n \to \infty \) if and only if
\[
\forall x \in l^2 : \quad \left(\begin{array}{c} 0 \\ M_n \end{array} \right) \to (0 \tilde{L}_{rr}^T \tilde{L}_n (\tilde{L}_n^T \tilde{L}_n)^{-1} x_n \longrightarrow 0 \quad \text{as} \quad n \to \infty
\] (15)
for method 2 b) \(\tilde{z}_n \to x^\dagger \) as \(n \to \infty \) without any additional conditions on \(\tilde{L} \).

Note that due to the Banach Steinhaus theorem, applied to the operator
\[
\left(\begin{array}{cc} 0 & 0 \\ M_n \end{array} \right) \text{ with } M_n := (0 \tilde{L}_{rr}^T \tilde{L}_n (\tilde{L}_n^T \tilde{L}_n)^{-1} ,
\] (16)
(15) implies
\[
\exists C \in \mathbb{R} \; \forall n \in \mathbb{N} \quad \left\| \left(\begin{array}{c} 0 \\ M_n \end{array} \right) \tilde{L}_n (\tilde{L}_n^T \tilde{L}_n)^{-1} \right\| \leq C .
\] (17)
Conversely, (17) does not imply (15). This can be seen by means of the simple counterexample \(M_n : (x_1, \ldots, x_n) \mapsto (0, \ldots, 0, x_1, 0, \ldots) \), shifting \(x_1 \) to the \((n+1)\)st position and erasing the rest, since for \(x^n := (1, 0, \ldots, 0) \), one has \(M_n x^n = (0, \ldots, 0, 1, 0, \ldots) \neq 0 \).

Proof. Equivalence of convergence of \(\bar{x}_n \) to \(x^\dagger \) with (13) can be obtained by
\[
\left\| \bar{x}_n - x^\dagger \right\| = \left\| (L_n L_n^T)^\dagger T^T (T^T - I) x^\dagger \right\|
\leq \sqrt{\left\| \text{Proj}_{\mathcal{N}(L_n L_n^T)} x^\dagger \right\|^2 + \left\| (L_n L_n^T)^\dagger \left(\begin{array}{cc} 0 & 0 \\ 0 & L_{rr} L_{rr}^T \end{array} \right) x^\dagger \right\|^2}
\] (18)
where we have used (11) and the fact that \((L_n L_n^T)^\dagger L_n L_n^T \) is the projection onto the orthogonal complement of the nullspace of \(L_n L_n^T \). The first term on the right hand side of (18) goes to zero since the spaces \(\mathcal{N}(L_n L_n^T) \) are nested:
\[
w \in \mathcal{R}(L_n L_n^T) = \mathcal{R}(L_n) \Rightarrow \left(\exists v^n \in \mathbb{R}^n : w = L_n v^n \right)
\Rightarrow \left(\exists v^{n+1} := \left(\begin{array}{c} v^n \\ 0 \end{array} \right) \in \mathbb{R}^{n+1} : w = L_{n+1} v^{n+1} \right)
\Rightarrow w \in \mathcal{R}(L_{n+1}) = \mathcal{R}(L_{n+1} L_{n+1}^T)
and their union is dense in $\mathcal{R}(T^T T)$, which we have assumed to be dense in l^2. Therefore convergence occurs if and only if the second term on the right hand side of (18) goes to zero, which is equivalent to (13). Namely, if (13) holds, then $\left\| (L_nL_n^T)^\dagger \begin{pmatrix} 0 & 0 \\ 0 & L_{rr}L_{rr}^T \end{pmatrix} x^\dagger \right\| \leq C \left\| x^{\dagger r} \right\|$, which tends to zero as $n \to \infty$, due to the fact that $x^\dagger \in l^2$. On the other hand convergence of the second term on the right hand side of (18) by the Banach Steinhaus Theorem implies (13).

To treat convergence of \bar{z}_n defined in method 1b) we rewrite

$$
\| \bar{z}_n - x^\dagger \| = \left\| \left(\begin{pmatrix} L_{nn}L_{nn}^T & 0 \\ 0 & 0 \end{pmatrix} T^T I - I \right) x^\dagger \right\|
= \left\| \begin{pmatrix} 0 & L_{nn}L_{rr}^T \\ 0 & -I_r \end{pmatrix} x^\dagger \right\|
= \sqrt{\left\| L_{nn}L_{rr}^T x^\dagger r \right\|^2 + \left\| x^\dagger r \right\|^2}
$$

where A^{-T} abbreviates $(A^{-1})^T = (A^T)^{-1}$ and we have inserted

$$
T^T T = \begin{pmatrix} L_{nn}L_{nn}^T & L_{nn}L_{nn}^T \\ L_{rr}^T L_{nn}^T & L_{rr}^T L_{nn}^T + L_{rr}L_{rr}^T \end{pmatrix}.
$$

Now, we use the second line in (19) with the Banach Steinhaus Theorem for necessity, as well as the fact that $x^\dagger r \to 0$ as $n \to \infty$ for any $x^\dagger \in l^2$ for sufficiency of the uniform boundedness condition (14).

In method 2a) we have

$$
\| \tilde{x}_n - x^\dagger \| = \left\| (T^T (\tilde{L}_n\tilde{L}_n^T) T - I) x^\dagger \right\|
= \left\| (\tilde{L}^T \tilde{L}_n^T \tilde{L}_n^T) \tilde{L} - I \right\| \tilde{x}
= \left\| \left(\begin{pmatrix} I_n \\ M_n \end{pmatrix} \begin{pmatrix} I_n & M_n^T \end{pmatrix} - I \right) \tilde{x} \right\|
= \sqrt{\left\| M_n^T \tilde{x} \right\|^2 + \left\| M_n \tilde{x}^n + (M_nM_n^T - I_r) \tilde{x} \right\|^2}
$$

with M_n as defined in (16), where we have used (10). Here \tilde{x} is chosen such that $\tilde{L}\tilde{x} = Tx^\dagger$ and $\| \tilde{x} \| = \left\| x^\dagger \right\|$, which is possible due to $\mathcal{R}(T) = \mathcal{R}(TT^T)^{\frac{1}{2}} = \mathcal{R}(\tilde{L}\tilde{L}^T)^{\frac{1}{2}} = \mathcal{R}(\tilde{L})$ and equality of the singular values of T and \tilde{L} (cf. Proposition 2.18 in [3]).

From the third line in (20) we first of all conclude that convergence of \tilde{x}_n for arbitrary x^\dagger, by the Banach Steinhaus theorem implies uniform boundedness of M_n by some constant C. If this uniform boundedness holds, we can estimate from below according to

$$
\| \tilde{x}_n - x^\dagger \| \geq \| M_n \tilde{x}_n \| - \max\{C^2, 1\} \| \tilde{x} \|,
$$
which since \(\hat{x}^r \) goes to zero as \(n \to \infty \) for \(\hat{x} \in l^2 \) and \(x^\dagger \) (and therewith \(\hat{x} \)) was arbitrary (note that due to our assumptions of bijectivity of \(T \) and \(\tilde{L} \) on their respective ranges, there is a one-to one correspondence between \(x^\dagger \) and \(\hat{x} \)) yields necessity of (15). Sufficiency for convergence immediately follows from the last line in (20) together with (17) and \(\hat{x}^r \to 0 \) as \(n \to \infty \).

Finally, convergence of \(\tilde{z}_n \) according to method 2b) follows from the error representation

\[
\| \tilde{z}_n - x^\dagger \| = \| \left(T^T \begin{pmatrix} \tilde{L}_n \tilde{T}_n \end{pmatrix}^{-1} & 0 \\ 0 & 0 \end{pmatrix} T - I \right) x^\dagger \| = \| \left(\tilde{L}^T \begin{pmatrix} \tilde{L}_n \tilde{T}_n \end{pmatrix}^{-1} & 0 \\ 0 & 0 \end{pmatrix} \tilde{L} - I \right) \hat{x} \| = \| \hat{x}^r \| \tag{21}
\]

with \(\hat{x} \) chosen like in the proof for method 2a) above. \(\diamond \)

Now, the influence of noise in the data is taken into account by using an appropriate truncation index \(n^* = n^*(\delta) \) in dependence of \(\delta \), that guarantees convergence of \(\bar{x}_n^\delta, (\tilde{x}_n^\delta, z_n^\delta) \) to \(x^\dagger \) as \(\delta \to 0 \). It is straightforward to see that the noise amplification factors in the respective methods, i.e. \(\gamma_{1a}, \gamma_{1b}, \gamma_{2a}, \gamma_{2b} \) in

\[
\begin{align*}
\| \bar{x}_n^\delta - x_n^\delta \| & \leq \gamma_{1a}^\delta, \\
\| \tilde{x}_n^\delta - x_n^\delta \| & \leq \gamma_{1b}^\delta, \\
\| z_n^\delta - z_n \| & \leq \gamma_{2a}^\delta, \\
\| \tilde{z}_n^\delta - z_n \| & \leq \gamma_{2b}^\delta,
\end{align*}
\]

with \(\delta \) the data noise level in (2), are given as follows:
For method 1 a)

\[
\gamma_{1a}^\delta = \| (L_n L_n^T)^\dagger T^T \| = \sqrt{\lambda_{\max}((L_n L_n^T)^\dagger LL^T (L_n L_n^T)^\dagger)} \leq \frac{\sqrt{1 + C}}{\sqrt{\lambda_{\min}(L_n^T L_n)}} \tag{22}
\]
if (13) holds.
For method 1 b)

\[
\gamma_{1b}^\delta = \| \begin{pmatrix} (L_n L_n^T)^{-1} & 0 \\ 0 & 0 \end{pmatrix} T^T \| = \sqrt{\lambda_{\max} \left(\begin{pmatrix} (L_n L_n^T)^{-1} & 0 \\ 0 & 0 \end{pmatrix} LL^T (L_n L_n^T)^{-1} \right)} = \frac{1}{\sqrt{\lambda_{\min}(L_n L_n^T)}}.
\]

For method 2 a)

\[
\gamma_{2a}^\delta = \| T^T (\tilde{L}_n \tilde{T}_n)^\dagger \| \leq \frac{\sqrt{1 + C}}{\sqrt{\lambda_{\min}(\tilde{L}_n^T \tilde{L}_n)}}
\]

7
if
\[\exists C \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad \left\| \left(\bar{L}_n \tilde{L}_n^T \right)^\dagger \begin{pmatrix} 0 & 0 \\ 0 & \bar{L}_{rr} \tilde{L}_{rr}^T \end{pmatrix} \right\| \leq C ; \] (23)
i.e., a condition similar to (13) but different from the convergence condition (15) for method 2a) with exact data holds.

For method 2 b)
\[\gamma_{2b}^n = \frac{1}{\sqrt{\lambda_{\min} \left(\tilde{L}_{nn} \tilde{L}_{nn}^T \right)}}. \]

Corollary 1 In the situation of noisy data \(y^\delta \) satisfying (2), let the stopping index \(n^* = n^*(\delta) \) in method 1.a) be chosen such that
\[n^*(\delta) \to \infty \text{ and } \gamma_{1a}^n \cdot \delta \to 0 \quad \text{as } \delta \to 0 , \] (24)
and analogously for methods 1 b), 2 a), 2 b) with \(\gamma_{1b}^n \), \(\gamma_{2a}^n \), \(\gamma_{2b}^n \). Moreover let the convergence conditions of Theorem 1 and in case of method 2a) additionally (23) hold. Then the respective method converges as the noise level tends to zero, i.e.,
\[\bar{x}_{n^*(\delta)}^\delta \to x^\dagger \quad \text{as } \delta \to 0 , \]
and analogously for \(\bar{z}_{n^*(\delta)}^\delta \), \(\bar{x}_{n^*(\delta)}^\delta \), \(\bar{z}_{n^*(\delta)}^\delta \).

The truncation index choice (24) is an a priori rule that requires knowledge of positive lower bounds of the eigenvalues appearing in the noise amplification factor estimates. Note that by the Courant-Fisher variational characterization of eigenvalues (cf., e.g. Theorem 8.2 in [2]), the following relations between the \(n \)th eigenvalue of \(T^T T = LL^T \) (ordered in decreasing magnitude) and \(\lambda_{\min} \left(\tilde{L}_{nn} \tilde{L}_{nn}^T \right) \) or \(\lambda_{\min} \left(\tilde{L}_{n} \tilde{L}_{n}^T \right) \) respectively, hold:
\[\lambda_n(\tilde{L} \tilde{L}^T) = \inf_{\dim(L) = n-1} \sup \left\{ v^T L L^T v \mid \|v\| = 1 \wedge v \in L^\perp \right\} \]
\[\leq \inf_{\dim(L) = n-1 \wedge \mathcal{L} \subset \mathcal{L} \subseteq \mathcal{L} \subseteq \mathcal{L} \subseteq \mathcal{L}} \sup \left\{ v^T \left(\begin{array}{ccc} L_{nn} & L_{nn} L_{nn}^T & L_{nn} L_{nn}^T \\ L_{nn} L_{nn}^T & L_{nn} L_{nn}^T & L_{nn} L_{nn}^T \\
\end{array} \right) v \mid \|v\| = 1, \ v \in \mathcal{L}^\perp \right\} \]
\[\leq \inf_{\mathcal{L} \subseteq \mathcal{L}} \sup \left\{ v^T T L_{nn} L_{nn}^T v \mid \|v\| = 1, \ v \in \mathcal{L}^\perp \right\} \]
\[= \lambda_{\min} \left(L_{nn} L_{nn}^T \right) ; \]
where \(e_1, \ldots, e_n \) are the first \(n \) unit vectors.
\[\lambda_n(\tilde{L} \tilde{L}^T) = \inf_{\dim(L) = n-1} \sup \left\{ v^T \left(L_{nn} L_{nn}^T + \begin{array}{ccc} 0 & 0 \\ 0 & L_{rr} L_{rr}^T \end{array} \right) v \mid \|v\| = 1 \wedge v \in \mathcal{L}^\perp \right\} \]
\[\geq \lambda_n \left(L_{nn} L_{nn}^T \right) = \lambda_{\min} \left(L_{nn} L_{nn}^T \right) ; \] (26)
analogously of course for $TT^T = \tilde{L}\tilde{L}^T$.

3 A posteriori truncation: A characterization of convergence with the discrepancy principle

In this section, we derive and analyze an a posteriori truncation index choice, based on the so-called discrepancy principle, that, generally speaking, chooses out of a family of possible regularized approximations, the most stable one such that on the other hand the residual is of the order of magnitude of the data noise. In our context, this reads as

$$n^* = n^*(\delta, y^\delta) = \min\{n \in \mathbb{N} \mid \|T\tilde{x}^\delta_n - y^\delta\| \leq \tau\delta\}$$

(27)

with a fixed constant $\tau > 0$ for method 1a), and analogously with \tilde{x}^δ_n replaced by \tilde{z}^δ_n, \tilde{x}^δ_n, \tilde{z}^δ_n for methods 1b), 2a), and 2b), respectively. It can be shown, that the conditions

$$\exists C_1 \in \mathbb{R} \forall n \in \mathbb{N} : \lambda_{\max}(L_{rr}L^T_{rr}) \leq C_1\lambda_{\min}(L^T_{n+1}L_{n+1})$$

(28)

for method 1a),

$$\exists C_1 \in \mathbb{R} \forall n \in \mathbb{N} : \lambda_{\max}(L_{rr}L^T_{rr}) \leq C_1\lambda_{\min}(L^T_{n+1,n+1}L_{n+1,n+1})$$

(29)

for method 1b) and and likewise for \tilde{L}, on the eigenvalues of the subblocks of L characterize convergence and, in cases 2a), 2b), even optimality of the regularization methods described in the previous section, when combined with a discrepancy principle for the choice of n^*.

First of all we consider the approach via the normal equation:

Theorem 2 If (28), and (13) as well as

$$\exists C^{1a} \in \mathbb{R} \forall n \in \mathbb{N} : \|L^T_{rr}L^T_{n}L_n\| \leq C^{1a} ;$$

(30)

hold then method 1a) with (27) and $\tau > \max\{C^{1a}, 1\}$, is a regularization method in the sense that for all $x^\dagger \in l^2$ and for all $y^\delta \in l^2$ such that (2) holds for $y = Tx^\dagger$,

$$\tilde{x}_{n^*}^\delta \rightarrow x^\dagger \mbox{ as } \delta \rightarrow 0 .$$

The same holds true for method 1b) if (29) and (14), as well as $\tau > 1$ hold.

Proof. Consider first of all method 1a). The residual can be decomposed as

$$T\tilde{x}^\delta_n - y^\delta = T(\tilde{x}^\delta_n - \tilde{x}_n) - (y^\delta - y) + T(\tilde{x}_n - x^\dagger) ,$$

(31)
where the norm of term (*) can be estimated by
\[
\|T(\bar{x}_n^\delta - \bar{x}_n) - (y^\delta - y)\| = \|T(L_nL_n^T)^\dagger TT - I)(y^\delta - y)\| \leq \max\{C^{1a}, 1\}\delta
\] (32)

which can be obtained similarly to (20).

Now we recall (cf. (22)) that under condition (13)
\[
\|\bar{x}_{n^*} - x^\dagger\| \leq \sqrt{1 + C} \frac{\delta}{\sqrt{\lambda_{\min}(L_{n^*}^T L_{n^*})}} + \|\bar{x}_{n^*} - x^\dagger\| = \frac{\delta}{\sqrt{\lambda_{\min}(L_{n^*}^T L_{n^*})}} \to 0 \text{ as } l \to \infty
\] (33)

holds, and consider sequences \((\delta_k)_{k \in \mathbb{N}}, (y_k)_{k \in \mathbb{N}}\) with \(\delta_k \xrightarrow{k \to \infty} 0, \|y_k - y\| \leq \delta_k\), and \(n_k^* := n^*(\delta_k)\) chosen according to the discrepancy principle.

In case \((n_k^*)_{k \in \mathbb{N}}\) has a finite accumulation point, there exists a subsequence \((n_l^*)_{l \in \mathbb{N}}\) of \((n_k^*)_{k \in \mathbb{N}}\), (which, for simplicity we denote by \((n_l^*)_{l \in \mathbb{N}}\)) that converges to some \(N^* \in \mathbb{N}\), so that for all sufficiently large \(l\) we have \(n_l^* = N^*\) and therewith
\[
\|\bar{x}_{n_l^*}^\delta - x^\dagger\| \leq \sqrt{1 + C} \frac{\delta_l}{\sqrt{\lambda_{\min}(L_{n_l^*}^T L_{n_l^*})}} + \|\bar{x}_{N^*} - x^\dagger\| \leq \max\{C^{1a}, 1\}\delta_l
\] (34)

Due to the discrepancy principle and by (31), (32) we have
\[
\tau \delta_l \geq \|T\bar{x}_{n_l^*}^\delta - y^\delta\| \geq \|T(\bar{x}_{N^*} - x^\dagger)\| - \max\{C^{1a}, 1\}\delta_l
\]

Taking the limit \(l \to \infty\) on both sides of this inequality yields
\[
T(\bar{x}_{N^*} - x^\dagger) = 0,
\]

which due to our assumption that the nullspace of \(T\) is trivial, implies
\[
\bar{x}_{N^*} = x^\dagger,
\]

whence (34) yields convergence of \(\bar{x}_{n_l^*}^\delta\) to \(x^\dagger\) as \(l \to \infty\).

In the complementary case of \(n_k^* \to \infty\) as \(k \to \infty\) we can use minimality of \(n^*\) in the discrepancy principle and (31), (32) to conclude for \(n < n_k^*\).

\[
(\tau - \max\{C^{1a}, 1\})\delta_k
\]
\[
\leq \|T(\bar{x}_n - x^\dagger)\|
\leq \|T(L_nL_n^T)^\dagger TT - I)x^\dagger\|
\leq \|L^T((L_nL_n^T)^\dagger LL^T - I)x^\dagger\|
\leq \|L^T-Proj_{N(L_nL_n^T)}+(L_nL_n^T)^\dagger(00L_{rr}L_{rr}^T)x^\dagger\|
\leq \sqrt{\|LL^TP_{N(L_nL_n^T)}\|^2\|P_{N(L_nL_n^T)}x^\dagger\|^2}
+ \sqrt{\|LL^T(L_nL_n^T)^\dagger(00L_{rr}L_{rr}^T)x^\dagger\|^2}\|x^\dagger\|^r.
\] (35)
Here we insert once more $LL^T = L_n L_n^T + \begin{pmatrix} 0 & 0 \\ 0 & L_{rr} L_{rr}^T \end{pmatrix}$ to obtain

$$\|LL^T \text{Proj}_N(L_n L_n^T)\| = \left\| \begin{pmatrix} 0 & 0 \\ 0 & L_{rr} L_{rr}^T \end{pmatrix} \text{Proj}_N(L_n L_n^T) \right\| \leq \lambda_{\max}(L_{rr} L_{rr}^T)$$

and, by (13),

$$\|LL^T(L_n L_n^T)^\dagger \begin{pmatrix} 0 & 0 \\ 0 & L_{rr} L_{rr}^T \end{pmatrix}\| = \left\| \text{Proj}_N(L_n L_n^T) \right\| \leq (1 + C) \lambda_{\max}(L_{rr} L_{rr}^T)$$

so that (35) implies

$$\delta_k \leq \frac{1}{\tau - \max\{C^{1a}, 1\}} \sqrt{\lambda_{\max}(L_{rr} L_{rr}^T)} \left(\left\| \text{Proj}_N(L_n L_n^T)x^\dagger \right\| + \sqrt{1 + C} \left\| x^\dagger r^{k+1} \right\| \right) \tag{36}$$

Inserting this, with $n := n_k^* - 1$, in its turn, into (33), and using (28), we obtain

$$\left\| \bar{y}_{n_k^*} - x^\dagger \right\| \leq \frac{\sqrt{(1 + C)C_1}}{\tau - \max\{C^{1a}, 1\}} \left(\left\| \text{Proj}_N(L_n L_n^T)x^\dagger \right\| + \sqrt{1 + C} \left\| x^\dagger r^{k+1} \right\| \right)$$

$$+ \left\| \bar{y}_{n_k^*} - x^\dagger \right\| \quad \xrightarrow{k \to \infty} \quad 0$$

since n_k^* tends to infinity. Now a subsequence-subsequence argument yields the assertion.

The proof for method 1b goes analogously with (32) replaced by

$$\left\| T(\bar{z}_n^\delta - \bar{z}_n) - (y^\delta - y) \right\| = \left\| T \left(\begin{pmatrix} L_{nn} L_{nn}^T \end{pmatrix}^{-1} 0 \\ 0 \end{pmatrix} T^T - I \right) (y^\delta - y) \right\| \leq \delta$$

(which can be shown like (21)), with (33) replaced by

$$\left\| \bar{z}_{n^*}^\delta - x^\dagger \right\| \leq \frac{\delta}{\sqrt{\lambda_{\min}(L_{n^* n^*} L_{n^* n^*}^T)}} + \left\| \bar{z}_{n^*} - x^\dagger \right\| ,$$

and with (35), (36) replaced by

$$(\tau - 1)\delta_k \leq \left\| T(\bar{z}_n^\delta - x^\dagger) \right\|$$

$$= \left\| T \left(\begin{pmatrix} (L_{nn} L_{nn}^T)^{-1} 0 \\ 0 \end{pmatrix} T^T T - I \right) x^\dagger \right\|$$

$$= \left\| L^T \left(\begin{pmatrix} (L_{nn} L_{nn}^T)^{-1} 0 \\ 0 \end{pmatrix} LL^T - I \right) x^\dagger \right\|$$

$$= \left\| \begin{pmatrix} 0 & 0 \\ 0 & L_{rr}^T \end{pmatrix} x^\dagger \right\|$$
In the approach via projection in data space, where (28), (29) become

\[\exists C_2 \in \mathbb{R} \ \forall n \in \mathbb{N} : \ \lambda_{\text{max}}(\tilde{L}_{rr}^T \tilde{L}_{rr}) \leq C_2 \lambda_{\text{min}}(\tilde{L}_{n+1, n+1}^T \tilde{L}_{n+1, n+1}) \] (37)

\[\exists C_2 \in \mathbb{R} \ \forall n \in \mathbb{N} : \ \lambda_{\text{max}}(\tilde{L}_{rr}^T \tilde{L}_{rr}) \leq C_2 \lambda_{\text{min}}(\tilde{L}_{n+1, n+1}^T \tilde{L}_{n+1, n+1}) \] (38)

for \(TT^T = \tilde{L} \tilde{L}^T \), one can make use of the fact that \(\tilde{x}_n^\delta \) and \(\tilde{z}_n^\delta \) are in the range of \(TT \) to even prove optimal convergence rates i.e., a source condition

\[x^\dagger = (T^T T)^\nu w \] (39)

for some \(w \in l^2 \), with \(0 < \nu \leq \frac{1}{2} \) implies the convergence rate \(O(\delta^{2\nu}/T) \).

Theorem 3 If (37), and (23) hold then method 2a), with the discrepancy principle and \(\tau > \max\{C, 1\} \), converges, i.e., for all \(x^\dagger \in l^2 \) and for all \(y^\delta \in l^2 \) such that (2) holds for \(y = T x^\dagger \),

\[\tilde{x}_n^\delta \to x^\dagger \text{ as } \delta \to 0 . \]

The same holds true for method 2b) if (38) and

\[\exists C^{2b} \in \mathbb{R} \ \forall n \in \mathbb{N} : \ |\tilde{L}_{rn} \tilde{L}_{nn}^{-1}| \leq C^{2b} , \] (40)

as well as \(\tau > \sqrt{1 + (C^{2b})^2} \).

In both cases convergence is order optimal, i.e., for all \(\nu \leq \frac{1}{2} \) a source condition (39) implies

\[|\tilde{x}_n^\delta(\nu, y^\delta) - x^\dagger| \leq C \|w\| \frac{1}{\tau^{1/2}} \delta^{\frac{2\nu}{1+\nu}} , \text{ and } |\tilde{z}_n^\delta(\nu, y^\delta) - x^\dagger| \leq C \|w\| \frac{1}{\tau^{1/2}} \delta^{\frac{2\nu}{1+\nu}} , \] (41)

respectively.

Note that the convergence conditions as well as results for Method 2b) can be directly deduced from Theorem 1 in [4], when viewing this method as a special case of (4) with \(Q_n = \text{Proj}_{\text{span}(e_1, \ldots, e_n)} \).

Proof.

We here mainly consider Method 2b) since in view of Theorem 1 it seems to be the best one at least from the point of view of convergence with exact data. The proof goes analogously for method 2a); points where differences in the proof would occur are indicated by remarks in brackets.

To show sufficiency of (38) for convergence, we first of all consider the case \(\nu = \frac{1}{2} \) in the source condition (39), which is equivalent to

\[x^\dagger = T^T w \] (42)
for some $w \in l^2$ and prove that then
\[
\|\tilde{z}^\delta_n - x^\dagger\| \leq C\sqrt{\|w\|}\sqrt{\delta}
\] (43)
holds for some constant $\tilde{C} > 0$. Using an argument by Plato (cf. [7]), we can then conclude convergence for any $x^\dagger \in l^2$ (without source condition) and optimality for all $\nu \leq \frac{1}{2}$. From the definition of \tilde{z}_n^δ and the source condition (42), we get
\[
\tilde{z}_n^\delta - x^\dagger = T^T(u_n - w)
\]
with $u_n = \begin{pmatrix} (\tilde{L}_n^T L_n)^{-1} & 0 \\ 0 & 0 \end{pmatrix} y^\delta$ (in method 2a, $u_n = (\tilde{L}_n^T L_n)^{\dagger} y^\delta$), so that by the interpolation inequality we can estimate the error for $n = n^\star$ as follows
\[
\|\tilde{z}^\delta_n - x^\dagger\| \leq \sqrt{\|T(\tilde{z}^\delta_n - x^\dagger)\|\sqrt{\|u_n - w\|}}.
\] (44)
The first term on the right hand side of (44) can be estimated by
\[
\|T(\tilde{z}^\delta_n - x^\dagger)\| = \|T\tilde{z}^\delta_n - y\| \leq \|T\tilde{z}^\delta_n - y^\delta\| + \delta \leq (\tau + 1)\delta,
\] (45)
where we have used the discrepancy principle. To estimate the second term, we first of all rewrite it as
\[
\|u_n^\star - w\| = \left\| \begin{pmatrix} (\tilde{L}_n^* L_n^r) & 0 \\ 0 & 0 \end{pmatrix} y^\delta - w \right\|
\[
\leq \sqrt{1 + (C^{2b})^2 \|w\| + \frac{\delta}{\lambda_{\min}(L_n^* L_n^r)}},
\]
(46)

since
\[
\left\| \begin{pmatrix} (\tilde{L}_n L_n^T)^{-1} & 0 \\ 0 & 0 \end{pmatrix} T T^T - I \right\| = \left\| \begin{pmatrix} (\tilde{L}_n L_n^T)^{-1} & 0 \\ 0 & 0 \end{pmatrix} \tilde{L} \tilde{L}^T - I \right\|
\[
\leq \sqrt{1 + (C^{2b})^2}.
\] (47)
(For method 2a) we get, in place of (46), $\|u_n^\star - w\| \leq \sqrt{1 + C^2 \|w\| + \frac{\delta}{\lambda_{\min}(L_n^* L_n^r)}}$, since $\|(\tilde{L}_n L_n^T)^{\dagger} T T^T - I\| \leq \sqrt{1 + C^2}$, cf. (18).)

To obtain (43) from (44), (46), we now have to be able to estimate $\frac{\delta}{\lambda_{\min}(L_n^* L_n^r)}$ from above by a multiple of $\|w\|$. (Note that then also the respective estimate for method 2a)
holds automatically, by (25), (26).) For this purpose, we use the maximality of \(n^* \) in (27) to conclude that for all \(n < n^* \)

\[
\tau \delta < \| T \tilde{z}_n^\delta - y^\delta \| \\
= \left\| \begin{pmatrix} T T^T \left((\tilde{L}_{nn} \tilde{L}_{nn}^T)^{-1} & 0 \\ 0 & 0 \end{pmatrix} T T^T - T T^T \right) w \\
+ \left(T T^T \left((\tilde{L}_{nn} \tilde{L}_{nn}^T)^{-1} & 0 \\ 0 & 0 \end{pmatrix} - I \right) (y^\delta - y) \right\| \\
\leq \left\| \begin{pmatrix} 0 & 0 \\ 0 & \tilde{L}_{rr} \tilde{L}_{rr}^T \end{pmatrix} \right\| w + \sqrt{1 + (C^2 b)^2} \delta .
\]

(48)

where we have used (47). Inequality (48) implies

\[
(\tau - \sqrt{1 + (C^2 b)^2}) \delta < \left\| \begin{pmatrix} 0 & 0 \\ 0 & \tilde{L}_{rr} \tilde{L}_{rr}^T \end{pmatrix} \right\| w \leq \lambda_{\text{max}}(\tilde{L}_{rr} \tilde{L}_{rr}^T) \| w \| ,
\]

and now the eigenvalue condition (38) with \(n := n^* - 1 \) comes into play and yields

\[
\frac{\delta}{\lambda_{\text{min}}(\tilde{L}_{n^* n^*} \tilde{L}_{n^* n^*}^T)} \leq \frac{C_2}{\tau - \sqrt{1 + (C^2 b)^2}} \| w \| ,
\]

which, when inserted into (44),(46) gives (43).

The above mentioned result from [7] yields the conclusions on (optimal) convergence. ♦

From the proofs of Theorems 2 and 3 it is obvious that the eigenvalue conditions (28), (29), (37), and (38) should be even necessary for convergence of the respective methods with the discrepancy principle. We here do a justification of this converse conjecture only for method 2b; for the other methods analogous arguments can be used.

Conjecture 1 If (40) holds and if for all \(x^\dagger \in l^2 \) and for all \(y^\delta \in l^2 \) such that (2) holds for \(y = T x^\dagger \), \(\tilde{z}_n^\delta \) converges to \(x^\dagger \) with \(n^* \) chosen according to the discrepancy principle with \(\tau > 0 \), then

\[
\exists C_2 \in \mathbb{R} \ \forall n \in \mathbb{N} : \ \lambda_{\text{max}}(\tilde{L}_{rr} \tilde{L}_{rr}^T) \leq C_2 \lambda_{\text{min}}(\tilde{L}_{nn} \tilde{L}_{nn}^T) \quad (49)
\]

has to be satisfied.

Idea of Proof.

Necessity of condition (49) for convergence can be argued as follows: As in the proofs of the previous section we use the fact that for arbitrary \(x^\dagger \in l^2 \) there exists a unique \(\hat{x} \in l^2 \)
with $Tx^{†} = \hat{L}x$ and $\|\hat{x}\| = \|x^{†}\|$, so that we can write

\[
\|\hat{z}^\delta_n - x^{†}\|^2 = \|\hat{z}^\delta_n - \hat{z}_n + \hat{z}_n - x^{†}\|^2 = \|TT^T\left(\tilde{L}_{nn}\tilde{L}_{nn}^{T}\right)^{-1} 0 0 \right)\left(y^\delta - y\right) + \left(TT^T\left(\tilde{L}_{nn}\tilde{L}_{nn}^{T}\right)^{-1} 0 0 \right)T - I \right) x^{†}\| \geq \|TT^T\left(\tilde{L}_{nn}\tilde{L}_{nn}^{T}\right)^{-1} 0 0 \right)\left(y^\delta - y\right) + \left(TT^T\left(\tilde{L}_{nn}\tilde{L}_{nn}^{T}\right)^{-1} 0 0 \right)T - I \right) x^{†}\| \geq \|\hat{z}^\delta_n - x^{†}\|^2 = \frac{\delta^2}{\lambda_{\min}(\tilde{L}_{nn^*}^{T}\tilde{L}_{nn^*})} + \|\hat{x}^r\|^2.
\]

(50)

The data noise $y^\delta - y$ is arbitrary. If we set it — as a worst case — to a multiple of an eigenvector to $\lambda_{\max}\left(\left(\tilde{L}_{nn^*}^{T}\tilde{L}_{nn^*}\right)^{-1} 0 0 \right)$, then (50) implies

\[
\|\hat{z}^\delta_n - x^{†}\|^2 = \frac{\delta^2}{\lambda_{\min}(\tilde{L}_{nn^*}^{T}\tilde{L}_{nn^*})} + \|\hat{x}^r\|^2.
\]

(51)

(Note however, that this worst case choice of the data noise depends on the stopping index, which prevents this idea of proof from being completely rigorous.)

On the other hand, we get from the discrepancy principle (analogously to (48))

\[
\tau \delta \geq \|TT^T\left(\tilde{L}_{nn^*}^{T}\tilde{L}_{nn^*}\right)^{-1} 0 0 \right)\left(y^\delta - y\right) + \left(TT^T\left(\tilde{L}_{nn^*}^{T}\tilde{L}_{nn^*}\right)^{-1} 0 0 \right)T - I \right) x^{†}\| \geq \|\left(0 0 0 \tilde{L}_{r^*r^*}\right)\hat{x}\| - \sqrt{1 + (C^{2b})^2} \delta
\]

and therewith

\[
\delta > \frac{1}{\tau + \sqrt{1 + (C^{2b})^2}} \left(\frac{0 0 \tilde{L}_{r^*r^*}}{0 0 \tilde{L}_{r^*r^*}}\right)\hat{x}\|.
\]

Hence, due to (51), \hat{z}^δ_n can only converge to $x^{†}$ if

\[
\|\left(0 0 \tilde{L}_{r^*r^*}\right)\hat{x}\|^2 \rightarrow 0 \text{ as } \delta \rightarrow 0
\]
which, since \(x^\dagger \) and therewith \(\hat{x}^r \) is arbitrary in a dense subset \(D \) of \(l^2 \) to be defined in the very next sentence, by the uniform boundedness principle implies that

\[
\tilde{C} \geq \left\| \begin{pmatrix} 0 & 0 \\ 0 & \tilde{L}_{r^* r^*} \end{pmatrix} \right\|^2_{\min(L_n^* n^* \tilde{L}_{n^* n^*}^T)} = \frac{\lambda_{\max} (\tilde{L}_{r^* r^*} \tilde{L}_{r^* r^*}^T)}{\lambda_{\min} (L_n^* n^* \tilde{L}_{n^* n^*}^T)} \tag{52}
\]

with a constant \(\tilde{C} \) independent of \(\delta \). We can choose \(D \) to be the set of all \(x^\dagger \) such that ˆ\(x^r \) does not vanish for any \(n \in \mathbb{N} \) so that by considering the second term on the right hand side of (51) we can conclude from convergence of \(\tilde{z}_n^\delta \) to \(x^\dagger \) that \(n^* \) has to tend to infinity as \(\delta \to 0 \). Therefore, by (52), condition (49) has to hold.

Some comments on the eigenvalue conditions (28), (29), (37), (38) are in order: In the context of method 2b), note that similarly to (25) one gets

\[
\lambda_{n+1}(T T^T) = \inf_{\dim(L)=n} \sup\{ v^T T T^T v \mid \|v\| = 1 \land v \in \mathcal{L}^\perp \} \\
\leq \sup\{ v^T L L^T v \mid \|v\| = 1 \land \forall w^n \in \mathbb{R}^n : v^T \tilde{L}_n w^n = 0 \} \\
\leq \sup\{ v^r T \tilde{L}_{rr} \tilde{L}_{rr}^T v^r \mid \|v\| = 1 \} \leq \lambda_{\max} (\tilde{L}_{rr} \tilde{L}_{rr}^T),
\]

where we have set \(\mathcal{L} \) equal to the span of the \(n \) columns of \(\tilde{L}_n \) to obtain the first inequality. In view of (38), this is an estimate the "wrong direction", though, so that we here still have a gap in the theory even for method 2b) that needed no assumptions on \(T \) for convergence in the case of exact data.

With an analogous partition of \(T T^T \) to the one of \(\tilde{L} \)

\[
T T^T = \begin{pmatrix} A_{nn} & A_{rn}^T \\ A_{rn} & A_{rr}^T \end{pmatrix} = \begin{pmatrix} \tilde{L}_{nn} \tilde{L}_{nn}^T \\ \tilde{L}_{rn} \tilde{L}_{nn}^T \end{pmatrix} \begin{pmatrix} \tilde{L}_{nn} \tilde{L}_{rn}^T \\ \tilde{L}_{rn} \tilde{L}_{rr}^T \end{pmatrix}
\]

the conditions

\[
\forall n \in \mathbb{N} : \quad \lambda_{\max}(A_{rr}) \leq C \lambda_{\min}(A_{nn}) \tag{54}
\]

and

\[
\forall n \in \mathbb{N} : \quad \lambda_{\min}(A_{nn}) \leq C_1 \lambda_{\min}(A_{n+1,n+1}) \tag{55}
\]

are sufficient for (38), (40). We expect that (54), (55) can be achieved by appropriate symmetry preserving column and row reordering strategies.

Note also, that in methods 1a) and 2a), the eigenvalue relation (28) or (37) with \(n+1 \) replaced by \(n \), implies the convergence condition (13), or (15), respectively.

For estimating the truncation index \(n^* \) from above, the following corollary applies.

Corollary 2 Let either

i) \(n^* \) be chosen according to the a priori rule (24) and the conditions of Corollary 1 be satisfied

or
ii) n^* be chosen according to the discrepancy principle (27) and the conditions of Theorems 2 or 3, respectively, be satisfied. Then

$$
\lambda_{\min}(L_{nn}L_{nn}^T) \geq \lambda_{n^*}(T^TT) \geq \lambda_{\min}(L_nL_n^T) \geq C\delta^2 \quad \text{for method 1a)}
$$

$$
\lambda_{\min}(L_{nn}L_{nn}^T) \geq C\delta^2 \quad \text{for method 1b)}
$$

$$
\lambda_{\min}(\tilde{L}_{nn}\tilde{L}_{nn}^T) \geq \lambda_{n^*}(TTT) \geq \lambda_{\min}(\tilde{L}_n\tilde{L}_n^T) \geq C\delta^2 \quad \text{for method 2a)}
$$

$$
\lambda_{\min}(\tilde{L}_{nn}\tilde{L}_{nn}^T) \geq C\delta^2 \quad \text{for method 2b)}
$$

Proof. In case of the a priori choice, the estimates follow directly from the stopping rule (24) as well as (25), (26).

If the discrepancy principle is used, then the assertions follow from the eigenvalue relations (28), (29), (37), (38) as well as the upper estimates of δ in the proofs of Theorems 2, 3, e.g., (36). Note that in the context of Theorem 3 one can, in place of (48) show such an estimate also in the absence of a source condition via

$$
\tau \delta < \|T\tilde{z}_n^\delta - y^\delta\|
$$

$$
= \left\| \left(TTT \left(\tilde{L}_{nn}\tilde{L}_{nn}^T \right)^{-1} 0 0 \right) - I \right\| T_{x^\dagger}
$$

$$
+ \left\| \left(TTT \left(\tilde{L}_{nn}\tilde{L}_{nn}^T \right)^{-1} 0 0 \right) - I \right\| (y^\delta - y)
$$

$$
\leq \left\| \left(\tilde{L}\tilde{L}^T \left(\tilde{L}_{nn}\tilde{L}_{nn}^T \right)^{-1} 0 0 \right) - I \right\| \tilde{L}\tilde{x}
$$

$$
+ \sqrt{1 + (C^{2b})^2\delta}
$$

$$
= \left\| \begin{pmatrix}
0 & 0 \\
0 & \tilde{L}_{rr}\tilde{L}_{rr}^T
\end{pmatrix}
\tilde{x}
\right\|
$$

$$
+ \sqrt{1 + (C^{2b})^2\delta}.
$$

where $\tilde{x} = \tilde{L}^{-1}T_{x^\dagger}$.

The estimate above implies that for mildly inverse problems, where $\lambda_n(T^TT) \sim n^{\alpha}$ with some $\alpha > 0$, we get an estimate of the form

$$
n^* \leq C\delta^{-2/\alpha},
$$

while for severely ill-posed problems, where $\lambda_n(T^TT) \sim \exp(-\alpha n)$, we obtain

$$
n^* \leq C + \frac{2}{\alpha} |\log \delta|,
$$

at least in methods 1a), 2a).

To give an overview on the convergence results derived here together with the different necessary and sufficient conditions, we summarize them in the following tables:
Methods

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>$\bar{x}^{\delta}_n := (L_n L_n^T)^T y^{\delta}$</td>
<td>$T^T T = LL^T$</td>
</tr>
<tr>
<td>1b</td>
<td>$\bar{z}^{\delta}n := \left(\begin{array}{c} (L{nn} L_{nn}^T)^{-1} \ 0 \ 0 \end{array} \right) T^T y^{\delta}$</td>
<td>$T^T T = LL^T$</td>
</tr>
<tr>
<td>2a</td>
<td>$\bar{x}^{\delta}_n := T^T (\tilde{L}_n \tilde{L}_n^T)^T y^{\delta}$</td>
<td>$T^T T = \tilde{L} \tilde{L}^T$</td>
</tr>
<tr>
<td>2b</td>
<td>$\bar{z}^{\delta}n := T^T \left(\begin{array}{c} (\tilde{L}{nn} \tilde{L}_{nn}^T)^{-1} \ 0 \ 0 \end{array} \right) y^{\delta}$</td>
<td>$T^T T = \tilde{L} \tilde{L}^T$</td>
</tr>
</tbody>
</table>

Convergence with exact data ($\delta = 0$)

<table>
<thead>
<tr>
<th>method</th>
<th>necessary and sufficient condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>$\left| (L_n L_n^T)^T \left(\begin{array}{c} 0 \ 0 \ L_{rr} L_{rr}^T \end{array} \right) \right| \leq C$</td>
</tr>
<tr>
<td>1b</td>
<td>$| L_{nn} L_{nn}^{-1} | \leq C$</td>
</tr>
<tr>
<td>2a</td>
<td>$\left(\begin{array}{c} 0 \ \tilde{L}_{rr}^T \ \tilde{L}_n (\tilde{L}_n \tilde{L}_n)^{-1} \end{array} \right) \xrightarrow{ptw} 0 \text{ as } n \to \infty$</td>
</tr>
<tr>
<td>2b</td>
<td>$-$</td>
</tr>
</tbody>
</table>
Convergence with $\delta > 0$ and a priori truncation choice

<table>
<thead>
<tr>
<th>method</th>
<th>truncation rule</th>
<th>condition additional to case $\delta = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a)</td>
<td>$n^(\delta) \to \infty$ and $\frac{\delta}{\sqrt{\lambda_{\min}(L_n^T L_n^)}} \to 0$ as $\delta \to 0$</td>
<td>$-$</td>
</tr>
<tr>
<td>1b)</td>
<td>$n^(\delta) \to \infty$ and $\frac{\delta}{\sqrt{\lambda_{\min}(L_{n^ n^}^T L_{n^ n^}^)}} \to 0$ as $\delta \to 0$</td>
<td>$-$</td>
</tr>
<tr>
<td>2a)</td>
<td>$n^(\delta) \to \infty$ and $\frac{\delta}{\sqrt{\lambda_{\min}(\tilde{L}_{n^ n^}^T \tilde{L}_{n^ n^}^)}} \to 0$ as $\delta \to 0$</td>
<td>$\left| (\tilde{L}n \tilde{L}n^T)^\dagger \begin{pmatrix} 0 & 0 \ 0 & \tilde{L}{rr}^T \tilde{L}{rr}^T \end{pmatrix} \right| \leq C$</td>
</tr>
<tr>
<td>2b)</td>
<td>$n^(\delta) \to \infty$ and $\frac{\delta}{\sqrt{\lambda_{\min}(\tilde{L}_{n^ n^}^T \tilde{L}_{n^ n^}^)}} \to 0$ as $\delta \to 0$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Convergence with $\delta > 0$ and discrepancy principle

<table>
<thead>
<tr>
<th>method</th>
<th>eigenvalue condition</th>
<th>condition additional to case $\delta = 0$ and to eigenvalue relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a)</td>
<td>$\frac{\lambda_{\max}(L_{rr} L_{rr}^T)}{\lambda_{\min}(L_{n+1}^T L_{n+1}^*)} \leq C$</td>
<td>$\left| (0 L_{rr}^T) L_n (L_n^T L_n)^{-1} \right| \leq C$</td>
</tr>
<tr>
<td>1b)</td>
<td>$\frac{\lambda_{\max}(L_{rr} L_{rr}^T)}{\lambda_{\min}(L_{n+1,n+1}^T L_{n+1,n+1}^*)} \leq C$</td>
<td>$-$</td>
</tr>
<tr>
<td>2a)</td>
<td>$\frac{\lambda_{\max}(\tilde{L}{rr} \tilde{L}{rr}^T)}{\lambda_{\min}(\tilde{L}{n+1,n+1}^T \tilde{L}{n+1,n+1}^*)} \leq C$</td>
<td>$\left| (\tilde{L}n \tilde{L}n^T)^\dagger \begin{pmatrix} 0 & 0 \ 0 & \tilde{L}{rr}^T \tilde{L}{rr}^T \end{pmatrix} \right| \leq C$</td>
</tr>
<tr>
<td>2b)</td>
<td>$\frac{\lambda_{\max}(\tilde{L}{rr} \tilde{L}{rr}^T)}{\lambda_{\min}(L_{n+1,n+1}^T L_{n+1,n+1}^*)} \leq C$</td>
<td>$\left| \tilde{L}{rr} L{rr}^{-1} \right| \leq C$</td>
</tr>
</tbody>
</table>
4 Numerical Tests

To test the proposed methods, we use the following two examples.

Example 1: The Abel integral equation
\[
\int_{-1}^{t} \frac{x(s)}{\sqrt{t-s}} \, ds = y(t), \quad t \in (-1, 1),
\]
represents the rotational symmetric two-dimensional case in X-ray tomography.

Example 2: Numerical differentiation is a simple but instructive example of a linear ill-posed problem. We here consider twice numerical differentiation \(x = y'' \) with symmetry boundary conditions \(y(-1) = y(1) \) which leads to the integral equation
\[
\int_{-1}^{t} (t-s)x(s) \, ds - \frac{1}{2} \int_{-1}^{1} (1-s)x(s) \, ds = y(t), \quad t \in (-1, 1).
\]

In both examples, a development both in preimage and in image space with respect to the orthonormal basis functions \(s \mapsto \cos(2\pi ns) \) of \(L^2(-1,1) \) leads to a formulation of the problem as an operator equation (1) in \(l^2 \).

As exact solution, we used
\[x^\dagger(s) = 1 - |s| \]
and computed the \(l^2 \) versions of the respective operators by means of fast Fourier transform. The data were generated synthetically, using a different number (307) of nodes in the FFT than for the inverse computations (256) in order to avoid an inverse crime.

To compare the behavior in the noise free case, we display the convergence history with increasing \(n \) of each of the four methods in a semi-logarithmic plot in Figure 1. Here, the unconditional convergence result for method 2b) in Theorem 1 is confirmed, but also methods 1a) and 2a) exhibit convergence for these examples.

To test this method also with noisy data and the discrepancy principle as a truncation rule, we add uniformly distributed random noise to the right hand side. For each of the two examples and noise levels we made three experiments. The respective mean values of the stopping indices and the relative errors are listed in Table 1 and indicate convergence of the error as \(\delta \to 0 \). In both cases we used \(\tau = 1.1 \) in the discrepancy principle. It can be verified that in the second example \(x^\dagger \) as given above satisfies the source condition (39) with \(\nu = \frac{1}{2} \). As a matter of fact, the numbers on the right of Table 1 indicate the convergence rate \(O(\sqrt{\delta}) \).

Remark 1 Concerning the numerical effort, the versions 1 b) and 2 b) have a twofold advantage: Only columns of length \(n \) (instead of “infinitely long” columns in the respective a) versions) have to be computed. Moreover, the Cholesky factorization can be immediately used for computing the application of \((L_nL_n^T)^{-1}\) (or of \((\tilde{L}_n\tilde{L}_n^T)^{-1}\)) to some vector, by forward-backward substitution, as needed in the implementation. The latter is not the case for Methods 1 a) and 2 a), where \((L_nL_n^T)^\dagger\) (or \((\tilde{L}_n\tilde{L}_n^T)^\dagger\)) has to be applied to some vector.
Figure 1: Error versus truncation index for Method 1 a) (dash-dotted), 1 b) (dotted), 2 a) (dashed), and 2 b) (solid) for Example 1 (left) and Example 2 (right).

Table 1: Convergence as $\delta \to 0$ for Example 1 (left) and Example 2 (right)

<table>
<thead>
<tr>
<th>δ</th>
<th>n^*</th>
<th>$\frac{|\tilde{z}_{n^*} - x^+|}{|x^+|}$</th>
<th>δ</th>
<th>n^*</th>
<th>$\frac{|\tilde{z}_{n^*} - x^+|}{|x^+|}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>17</td>
<td>0.1204</td>
<td>0.1%</td>
<td>8</td>
<td>0.1270</td>
</tr>
<tr>
<td>0.5%</td>
<td>41</td>
<td>0.1132</td>
<td>0.05%</td>
<td>11</td>
<td>0.0875</td>
</tr>
<tr>
<td>0.25%</td>
<td>58</td>
<td>0.0874</td>
<td>0.025%</td>
<td>12</td>
<td>0.0717</td>
</tr>
<tr>
<td>0.125%</td>
<td>84</td>
<td>0.0546</td>
<td>0.0125%</td>
<td>15</td>
<td>0.0483</td>
</tr>
</tbody>
</table>

5 Conclusions and Remarks

In this paper we have analyzed four tentative regularization methods for linear ill-posed operator equations, that are based on truncating the Cholesky factorization for positive definite matrices. We derived conditions for convergence in the noise free case and in case of noisy data, especially also with the discrepancy principle as truncation rule. These theoretical considerations and numerical test results as well as the computational effort clearly suggest one of the four methods as best, namely the one that is based on regularization by projection in data space and truncation of the factorization matrix up to its square upper left hand part. Still we are left with some conditions that are hard to verify practically but have to be satisfied theoretically to guarantee convergence with noisy data. Realization of these conditions by means of appropriate matrix reordering strategies will be the subject of future research.

Acknowledgment

The author wishes to thank Prof. W. Hackbusch for interesting discussions that stimulated the idea of this paper.

Part of this work was completed during the authors stay at the Radon Institute for
Computational and Applied Mathematics in Linz. Therefore support by the Austrian Academy of Sciences is gratefully acknowledged.

References

